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Abstract: Wildfire smoke exposure is associated with a range of acute health outcomes, which can be
more severe in individuals with underlying health conditions. Currently, there is limited information
on the susceptibility of healthcare facilities to smoke infiltration. As part of a larger study to address
this gap, a rehabilitation facility in Vancouver, Canada was outfitted with one outdoor and seven
indoor low-cost fine particulate matter (PM2.5) sensors in Air Quality Eggs (EGG) during the summer
of 2020. Raw measurements were calibrated using temperature, relative humidity, and dew point
derived from the EGG data. The infiltration coefficient was quantified using a distributed lag model.
Indoor concentrations during the smoke episode were elevated throughout the building, though
non-uniformly. After censoring indoor-only peaks, the average infiltration coefficient (range) during
typical days was 0.32 (0.22–0.39), compared with 0.37 (0.31–0.47) during the smoke episode, a 19%
increase on average. Indoor PM2.5 concentrations quickly reflected outdoor conditions during and
after the smoke episode. It is unclear whether these results will be generalizable to other years due to
COVID-related changes to building operations, but some of the safety protocols may offer valuable
lessons for future wildfire seasons. For example, points of building entry and exit were reduced from
eight to two during the pandemic, which likely helped to protect the building from wildfire smoke
infiltration. Overall, these results demonstrate the utility of indoor low-cost sensors in understanding
the impacts of extreme smoke events on facilities where highly susceptible individuals are present.
Furthermore, they highlight the need to employ interventions that enhance indoor air quality in such
facilities during smoke events.

Keywords: indoor air quality; PM2.5; wildfire smoke; infiltration; low-cost sensors; healthcare facility

1. Introduction

Wildfire smoke may become the dominant source of exposure to fine particulate mat-
ter (PM2.5) in western North America, which has uncertain human health implications [1].
Short-term exposure to wildfire smoke is associated with an increased risk of acute res-
piratory outcomes, such as exacerbations of asthma and chronic obstructive pulmonary
disease (COPD) [2–6]. Within Canada, short-term exposures during the 2013–2015 and
2017–2018 wildfire seasons were associated with 54–250 deaths due to acute cardiorespi-
ratory outcomes, while long-term exposures were associated with 570–2500 deaths due
to chronic disease [7]. Although such estimates are typically made using PM2.5 ambient
air quality data, these outdoor concentrations do not explicitly assess variability in indoor
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PM2.5 exposure. Most people in North America spend at least 85% of their time inside
a home or other building [8], meaning that most health effects associated with ambient
smoke are due to exposures that occur indoors. As wildfire seasons are expected become
longer and more intense [9], it is critical that we study smoke infiltration and effective
interventions, particularly in settings that house susceptible populations [10].

The indoor infiltration of outdoor wildfire smoke has not been comprehensively
studied, so it remains unclear how much protection remaining indoors provides during
wildfire smoke episodes. In addition, there are limited data for multi-story non-residential
buildings such as offices and healthcare facilities. Healthcare facilities are particularly
concerning because they serve individuals who are more susceptible to smoke exposure
due to compromised health status [3,11]. One study during the 2018 Camp Fire may provide
some insight. Pantelic et al. (2019) compared two large commercial buildings, one with a
mechanical ventilation system (HVAC) that was outfitted with two-staged particle filtration,
and one without. The building with HVAC had a mean indoor PM2.5 concentration of 21
µg/m3 and an indoor-to-outdoor ratio of 0.27. In comparison, the building with natural
ventilation had a mean indoor concentration of 36 µg/m3 and an indoor-to-outdoor ratio
of 0.67 [12]. The latter is more consistent with infiltration coefficients typically reported
for single-family residences, which rarely have outdoor air intakes to filter incoming air,
and rely on natural ventilation and leaks in the building envelope for air exchange. For
example, the mean infiltration factor for 17 homes in southern British Columbia, Canada
during the 2004–2005 wildfire seasons was 0.61 [13].

Differences between buildings suggest that airtightness, filtration and ventilation play
important roles in outdoor PM2.5 infiltration during wildfire smoke episodes [12]. A more
airtight envelope reduces smoke penetration through cracks and crevices, and mechanical
ventilation typically provides at least some filtration of incoming outdoor air. Furthermore,
it may be possible to increase filtration of fresh or recirculating air by upgrading and/or
reducing air bypass around filters. It is also possible to reduce the fresh air intake on
some HVAC systems during smoke episodes, though this is antithetical to best practice for
COVID-19 risk reduction [14]. Even when measures are taken to reduce smoke infiltration,
indoor PM2.5 concentrations vary widely between different buildings and residential homes
during smoky periods [15,16]. Methods that evaluate infiltration on a building-by-building
basis may be needed to inform actions taken by facility operators and HVAC specialists,
especially for facilities where susceptible individuals reside. Low-cost sensors may have
an important role to play in evaluating and optimizing building-specific interventions
in both existing buildings and new construction projects. Notably, the building stock
for hospitals, rehabilitation centers, long-term care, residential care, and publicly-funded
housing is highly variable, with many older facilities constructed under outdated building
codes. There is currently no comprehensive information about wildfire smoke infiltration
in such environments.

Another factor underlying infiltration is meteorological conditions, such as precip-
itation, wind speed, wind direction, temperature, and relative humidity. Some studies
have reported that wind speed, temperature, and ambient relative humidity are negatively
correlated with PM2.5 concentrations and the PM2.5 indoor–outdoor ratio [17–20]. Precip-
itation is also inversely proportional to PM2.5 concentrations, due to the removal effect
where particulate matter is removed from the air to the surface by rain [17]. However,
there are some studies that show no correlation or negligible effects of temperature and
precipitation [18,21,22], while others show positive relationship between temperature and
PM exposure, due to increased window opening for ventilation and cooling [23].

There are many factors affecting infiltration of wildfire smoke, and there is a real
opportunity to use low-cost sensors to better understand the impacts on specific buildings.
One caveat is that the data quality from low-costs sensors can be uncertain because they are
sensitive to many variables, including relative humidity, temperature, particle morphology,
and particle composition [24]. Correcting for these effects is necessary to yield higher-
quality data for analysis. When evaluated under outdoor field conditions, low-cost PM2.5
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sensors are generally well-correlated with reference instruments, but they tend to over-
predict concentrations in both ambient and wildfire smoke conditions [25]. Nonetheless,
linear correction has been effective for reducing errors [25,26]. Although their performance
indoors has not been widely evaluated, their outdoor performance suggest that indoor
networks of low-cost sensors can significantly improve our understanding of indoor air
quality and its health impacts, especially during significant outdoor air quality events [27].

British Columbia experienced extreme wildfire seasons in 2017 and 2018, including
episodes of prolonged smoke that affected multiple healthcare facilities. In response, local
health authorities began planning to outfit three inpatient healthcare facilities with multiple
indoor and outdoor low-cost PM2.5 sensors. This initiative was intended to support and
inform future planning, design, and operational measures required to reduce the health
risks associated with outdoor air quality for patients and staff in existing and future
facilities. Sensors were installed at a rehabilitation facility in Vancouver in August 2020,
with the intention of leaving them in place for at least one year. About 2 weeks later,
dense smoke was transported into southern British Columbia from wildfires in California,
Oregon, and Washington states. As such, we have a unique opportunity to examine the
impacts of wildfire smoke on an inpatient rehabilitation facility.

In this study, we describe methods used to calibrate the low-cost sensor data using
measurements from the surrounding regulatory network. After data calibration, we
summarize indoor and outdoor PM2.5 concentrations at the healthcare facility during the
smoke episode and during typical days on either side of the smoke episode. Specifically, we
remove indoor peaks from the indoor measurements, calculate the coefficient of infiltration
at each indoor location, and examine the speed of infiltration into the facility.

2. Materials and Methods
2.1. Study Context and Period

Greater Vancouver is a major urban center on the southwestern coast of British
Columba, Canada. In 2020, its population was approximately 2.5 million people. The region
typically has excellent ambient air quality, with an annual average PM2.5 concentration of
approximately 5.0 µg/m3. Days exceeding the 24-h objective of 25 µg/m3 are rare, except
during wildfire seasons when the region can experience markedly higher concentrations of
PM2.5 originating from fires in British Columbia and other parts of western North America.
Our analyses cover the period from August 21 through 31 October 2020. For all analyses
we defined the smoke episode as September 8 through 18, which corresponds with the timing
of the 11-day air quality advisory issued by Metro Vancouver. We defined the typical days
as August 21 through September 7 and September 19 through October 31.

2.2. The Rehabilitation Facility

The facility is a large multi-story rehabilitation center that usually serves inpatient and
outpatient populations, but all outpatient services were suspended during the study period
due to the COVID-19 pandemic. The facility provides services in four different programs:
(1) acquired brain injury; (2) spinal cord injury; (3) arthritis; and (4) neuromusculoskeletal.
The main building was constructed in 1972. It has four floors above ground and a basement,
and most rehabilitation activities occur on the ground floor in the physical and occupational
therapy rooms. However, most therapy programs were offered in patient rooms during
the study period in accordance with the pandemic safety plan. Offices and patient rooms
are located on the second to fourth floors, and the basement serves a range of operational
functions, including the loading bay.

Heating for the facility is provided by radiators, and cooling is provided by an HVAC
system with ten air handling units. Most of the windows are fully operable. During the
smoke episode the pre-filters in the air handling units were changed more frequently, the
cooling system was operational, and building occupants were asked to keep the windows
closed. No other special precautions were taken to limit indoor smoke impacts. Due to
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COVID-19 protocols, entrance to the building was only possible through two doors: one in
the main lobby for patients and visitors, and one at the side of the ground floor for staff.

2.3. Low-Cost Sensors

The 2018 model of the Air Quality Egg (EGG) by Wicked Device was used for this study
(version 2.0) [28]. All the EGGs had dual Plantower PMS5003 (2016) sensors that measure
PM2.5 concentrations via light scattering, with the reported value being the average of the
two sensors. The Plantower sensors report an effective range between 0–500 µg/m3 and a
maximum consistency error of ±10% at 100–500 µg/m3 and ±10 µg/m3 at 0–100 µg/m3.
Each EGG also had a temperature and relative humidity sensor. Some EGGs used in the
study also had sensors for carbon dioxide (CO2), nitrogen dioxide (NO2), and volatile
organic compounds (VOC), but these data are not included in the analyses. The EGGs log
measurements from all sensors at 1-min intervals and automatically upload the data to a
central repository.

2.4. Sensor Deployment at the Facility

Nine EGGs were deployed to the facility in August 2020, with two placed outdoors
and seven placed indoors at a height of approximately two meters. One outdoor EGG was
placed on the roof of the main building, and one was placed outside of a window on the
second floor. The latter EGG failed early in the study period and was excluded from the
analyses. Three indoor EGGs were placed near the elevator doors in the basement, in the
ground floor lobby, and on the fourth floor. The remaining EGGs were placed in a basement
office, the ground floor therapy room, a fourth-floor office, and a fourth-floor patient room
(Figure 1). The placement of the nine sensors was discussed with subject matter experts to
identify locations that would provide useful information for the study objectives.
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2.5. Collocation of the Low-Cost Sensors with Federal Equivalency Methods (FEM)

Six EGGs from the larger project were co-located at the Kensington Park ambient air
quality monitoring station (Figure 2) from 17 July through 30 July 2020. This station is part
of the National Air Pollution Surveillance (NAPS) network that measures PM2.5 using beta
attenuation monitors that meet Federal Equivalency Method (FEM) standards. Two of the
co-located EGGs (EGG 4 and EGG 6) were later deployed to the facility, in the ground floor
lobby and outside on the second floor, respectively. Again, EGG 6 failed early in the study
period and was excluded from the facility analyses.
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Figure 2. Locations of the rehabilitation facility (red dot) and three National Air Pollution Surveillance
(NAPS) monitoring stations (blue dots) at Vancouver International Airport (YVR), Clark Drive, and
Kensington Park in greater Vancouver, Canada. Location of greater Vancouver relative to North
America (red square on inset map).

2.6. Data Calibration with a Regional Baseline Model

The average PM2.5 concentrations at Kensington Park in July 2020 were low and did
not represent concentrations during the smoke episode, so we developed and applied a
novel approach using data from FEM monitors located at the Vancouver International
Airport (YVR) and Clark Drive NAPS stations during the study period. These stations are
located to the southwest and northeast of the facility, respectively (Figure 2). To check the
accuracy of the calibration model it was applied to the six EGGs that were co-located with
the FEM monitor at Kensington Park.

All data management, analyses, and visualization for this study were conducted using
R version 4.0.3 [29]. Measurements from the EGGs and NAPS stations were available at
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1-min resolution, which were smoothed to 15-min intervals using the timeAverage function
of the openair package [30]. The following measurements were collected from each EGG for
this study: Temperature (T, ◦C); relative humidity (RH, %); and PM2.5 (µg/m3).

The EGG PM2.5 data collected at the facility rooftop were used to train a calibration
model with the average baseline of the FEM PM2.5 concentrations (i.e., estimated regional
PM2.5 concentration) in a multiple linear regression that also included temperature, relative
humidity, and dewpoint parameters, as suggested elsewhere [31]. The EGG dew point was
computed by the Magnus formula [32] as shown in Equation (1):

DP(T, RH) =
λ ·(ln

(
RH
100

)
+ β ·T

λ+T )

β− (ln
(

RH
100

)
+ β ·T

λ+T )
(1)

where λ = 243.12 ◦C; β = 17.62; T = temperature measured by the EGG; and RH = relative
humidity measured by the EGG.

The data for the calibration model were taken from a 5-week period, from August 21
at 08:00 until September 24 at 08:00. This period was chosen because the rooftop EGG data
were relatively continuous throughout. A Kalman smoothing function was applied to the
rooftop EGG PM2.5 and FEM PM2.5 data to impute any missing values. The baseline for
each time series was then computed using a Rolling Ball algorithm [33], and the average of
the FEM baselines was taken. The baselines were computed using the baseline package in
R [33]. Assuming the average of the FEM PM2.5 concentrations to be the true value, EGG
measurements of PM2.5, temperature (T), relative humidity (RH) and dewpoint (DP) were
used to predict the FEM baseline and the resulting equation (Equation (2)) was applied to
all EGG PM2.5 data collected at the facility.

Corrected PM2.5 = −40.562 + 1.019*PM2.5 − 1.7102*T − 0.534*RH + 2.153*DP (2)

To test the accuracy of the model, PM2.5 baselines for the FEM collocation period
were computed in the same manner as described for the facility datasets. The regional
baseline model was then applied to the collocation EGG data and compared with the FEM
PM2.5 concentrations. Metrics to quantitatively assess the performance of the calibration
model included Pearson r, the mean absolute error (MAE) and the coefficient of variation
of the mean absolute error (CvMAE), as calculated by Equation (3). These metrics are
used to quantify the correlation between the estimated and true concentration of PM2.5
(Pearson r), the average of differences between the estimated and true concentration of
PM2.5 (MAE), and the mean absolute error normalized to PM2.5 concentration (CvMAE). A
higher Pearson r signifies a strong linear relationship, and lower MAE and CvMAE signify
closer agreement between the calibrated and true values of PM2.5.

CvMAE =
1

avg.FEM[PM2.5]
×
(

1
n

n

∑
i=1
|calibrated[PM2.5]i − FEM[PM2.5]i |

)
(3)

where n = the number of observations in the collocation dataset.

2.7. Removal of Indoor-Generated PM2.5

Before calculating the infiltration coefficients, we used an algorithm to remove indoor
peaks that could have resulted from indoor sources, such as kitchen and manufacturing
activities in the facility. The algorithm we used was adapted from a previous paper on
infiltration of outdoor PM2.5 using 1-h averages [34]. To adapt the approach for 1-min measurements,
we modified the algorithm and implemented stricter thresholds to identify indoor peaks.
Each indoor peak comprises rising concentrations and decaying concentrations, which
were identified as described below.
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First, for every time point (t), we checked whether (1) the indoor–outdoor ratio was
greater than 2.0, (2) the indoor concentration was at least 2 µg/m3, and (3) the indoor
concentration had increased from the previous time point (Equation (4)). Outdoor concen-
trations were taken from the rooftop sensor at the facility. When these conditions were
met, the beginning of an indoor peak was identified, and the data point was removed.
Second, we checked all measurements following the beginning of an indoor peak and
removed them if the concentration continued to rise (Equation (5)). Finally, we removed
the decaying side by checking whether (1) the previous measurement had been removed,
(2) the indoor–outdoor ratio was greater than 1.0, and (3) the indoor concentration had
decreased from the previous time point (Equation (6)).

It

Ot
> 2 and It ≥ 2µg/m3 and

It

It−1
> 1 (4)

It−1 was previously removed and
It

It−1
> 1 (5)

It−1 was previously removed and
It

Ot
> 1 and

It

It−1
≤ 1 (6)

where: I = the indoor concentrations at time intervals t and t − 1; O = the outdoor
concentration at time interval t.

2.8. Smoke Infiltration

The infiltration coefficient represents the proportion of outdoor PM2.5 that has infil-
trated and persisted indoors. Once the indoor peaks were removed, the infiltration coeffi-
cient was quantified using distributed lag linear models and the dlnm package [35,36]. In
this model, the indoor PM2.5 concentration at time (t) is estimated by the cumulative lagged
effects of the outdoor rooftop PM2.5 concentration over a 60-min interval (Equation (7)).

It = β1Ot−1 + β2Ot−2 + · · ·+ βmOt−m + α m = 1, 2, . . . , 60 (7)

where: It = the indoor PM2.5 concentration at time t; Ot−m = the outdoor concentration at
time t-m minutes; βm = the lagged coefficient of Ot−m; α = the intercept.

Each coefficient represents the contribution and persistence of the outdoor concen-
tration at every previous minute over a 60-min interval on the current indoor PM2.5
concentration. The infiltration coefficient (Finf) is quantified by the sum of the lagged
coefficients (Equation (8)). We used the 1-min calibrated indoor EGG PM2.5 with peaks
removed and rooftop EGG PM2.5 for the calculations during periods that capture the smoke
episode and typical days. Missing values were omitted.

Fin f = β1 + β2 + . . . + βm m = 1, 2, . . . , 60 (8)

To qualitatively examine the persistence of indoor smoke, we used stacked heat maps
of EGG PM2.5 concentrations on the facility rooftop and indoors. Each plot shows the
smoke period compared with the pre- and post-smoke periods, by hours of the day.

2.9. Meteorological Conditions

The EGGs measure temperature and relative humidity, so we were able to examine
differences in these parameters at the facility during the smoke episode and the typical
days. Although we could not measure complete meteorology at the facility, we were
able to access information on temperature, humidity, wind speed, wind direction, and
precipitation at the FEM sites at YVR, Clark Drive, and Kensington Park. We compared
meteorological parameters during the smoke episode and the typical days.
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3. Results and Discussion
3.1. Calibration Model Performance

Prior to any analyses with the EGG data collected at the facility, they were calibrated
using the regional baseline model described above (Equation (2)). The magnitudes and
directions of the model coefficients were comparable with those previously reported for
similar models [31]. When tested on the collocation period data, Pearson r values ranged
from 0.73–0.83 among the EGGs, MAE ranged from 2.61–4.88 µg/m3, and CvMAE ranged
from 0.48–0.91 (Table 1). The aggregate performance of the calibration models was relatively
strong, with mean Pearson r, CvMAE, and MAE values of 0.80, 0.58, and 3.10, respectively.
The average concentration at the Kensington Park ambient air quality monitoring station
during the collocation period was very low (4.47 µg/m3), which accounts for the high
CvMAE values during our calibration model assessment. The EGGs also reported very
low average PM2.5 levels during this period (Table 1).

Table 1. The 1-min mean PM2.5 concentration, the Pearson r, the mean absolute error (MAE), and
the coefficient of variation of the mean absolute error (CvMAE) of the six project Air Quality Egg
(EGG) lost-cost sensors that were co-located at Kensington Park (Figure 2) prior to the study period.
The EGG 4 and EGG 6 sensors were later deployed to the facility inside the ground floor lobby and
outside a second-floor window, respectively. However, EGG 6 failed shortly after the beginning of
the study period.

Mean PM2.5
(µg/m3) Pearson r Mean MAE

(µg/m3) Mean CvMAE

EGG 1 5.92 0.82 2.70 0.50
EGG 2 13.77 0.73 4.88 0.91
EGG 3 5.82 0.83 2.61 0.48
EGG 4 7.21 0.78 3.01 0.56
EGG 5 6.95 0.83 2.66 0.49
EGG 6 6.21 0.82 2.73 0.51

The 24-h average of uncalibrated PM2.5 concentrations during the typical days and
smoke episode were 8.7 µg/m3 and 73.1 µg/m3, respectively In comparison, the 24-h
average of calibrated PM2.5 concentrations were 7.5 µg/m3 and 72.0 µg/m3, respectively.
The preliminary results of our regional baseline regression have implications for future low-
cost sensor calibration studies. When collocation data are not available or representative of
the outdoor conditions at the time the study is performed, we suggest that a calibration
model can be developed from a regional PM2.5 baseline that reflects the surrounding region
during the study period. Use of regional baseline calibration may drastically reduce the
need for lengthy collocation periods when performing measurements of pollutants from
outdoor sources with low-cost sensors, especially for citizen science projects that require
large and distributed sensor networks. We recommend this as an area for future study,
specifically as it applies to extreme air quality events such as wildfire smoke episodes.

3.2. Indoor Peak Removal

We applied an algorithm that removed peaks caused by indoor PM2.5 sources at the
facility, and the number of peaks varied by location (Table 2). The ground floor therapy
room and a patient room on the fourth floor had the most indoor peaks. The therapy room
had known indoor sources such as a model kitchen, a facility for manufacturing assistance
aids, and supplies for hot wax therapy, all of which were used by staff during working
hours. Indoor sources of PM2.5 in the patient room are unknown.
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Table 2. Infiltration coefficients and their relative ranks for indoor locations in the rehabilitation center after removing
indoor peaks during the smoke episode and typical days.

Location Number of Indoor
Peaks Removed

Infiltration Coefficient Rank

Typical Days Smoke Episode Typical Days Smoke Episode

Fourth floor patient room 138 0.38 0.37 2 3
Fourth floor office 3 0.26 0.31 5 7

Fourth floor elevator 6 0.33 0.35 4 4
Ground floor lobby 14 0.36 0.45 3 2

Ground floor therapy room 159 0.22 0.31 7 6
Basement office 8 0.27 0.34 6 5

Basement elevator 64 0.39 0.47 1 1

3.3. Indoor and Outdoor PM2.5 Concentrations

Air quality in greater Vancouver was excellent on the typical days during the study
period. The 24-h FEM PM2.5 averages (range) at Kensington Park, Clark Drive, and
YVR were 4.8 (1.0–17.6), 7.1 (1.5–46.2), and 4.5 (0.9–14.3) µg/m3, respectively (Figure 3).
Higher concentrations at Clark Drive reflect its roadside location on a heavily trafficked
trucking route. In comparison, the calibrated 24-h PM2.5 average at the facility rooftop
was 7.5 (0.0–46.8) µg/m3 (Figure 4). During the wildfire smoke episode, the rooftop EGG
at the facility had a 24-h average of 72.0 (7.7–141.6) µg/m3. In comparison, the FEM
monitors at Kensington Park, Clark Drive, and YVR had 24-h averages of 76.1 (7.7–172.4),
75.8 (11.1–161.4), and 69.1 (9.5–144.9) µg/m3, respectively, during the smoke episode.

On average, the indoor PM2.5 concentrations at the facility were substantially higher
during the wildfire smoke episode than on the typical days, with an average 24-h value
of 29.6 µg/m3 compared with 2.4 µg/m3, respectively. The indoor PM2.5 concentrations
varied by location, with higher concentrations observed near entrances and exits (Table 3
and Figure 5). During both the smoke episode and the typical days, indoor PM2.5 concen-
trations were, on average, lower than the outdoor concentration on the rooftop, which is
consistent with other studies conducted in large buildings [12,37].

Table 3. The 24-h mean and range of PM2.5 concentrations during the smoke episode and typical days. Vancouver
International Airport (YVR), Clark Drive, and Kensington Park are ambient air quality monitoring stations in the National
Air Pollution Surveillance (NAPS) network (Figure 2). At the rehabilitation facility, the rooftop sensor was outdoors while
the other seven were indoors. Completeness of datasets is shown as percentages out of 103,680 expected 1-min data points
from 00:00 21 August to 23:59 31 October.

Location

Smoke Episode Typical Days
Data

Completeness (%)24-h Mean
(µg/m3) Range (µg/m3)

24-h Mean
(µg/m3) Range (µg/m3)

Greater
Vancouver

YVR 69.1 9.5–144.9 4.5 0.9–14.3 96.7
Clark Drive 75.8 11.1–161.4 7.1 1.5–46.2 96.1

Kensington Park 76.1 7.7–172.4 4.8 1.0–17.6 97.2
The facility

Rooftop 72.0 7.7–141.6 7.5 0.0–46.8 62.5
Fourth floor
patient room 31.8 2.9–55.1 3.5 0.2–14.2 98.4

Fourth floor office 23.9 1.2–44.6 1.1 0.0–8.6 99.8
Fourth floor

elevator 28.3 2.0–50.2 1.6 0.0–11.0 98.6

Ground floor lobby 34.0 1.5–63.4 2.0 0.1–13.5 97.0
Ground floor
therapy room 24.5 4.0–45.5 3.4 0.3–19.3 99.1

Basement office 28.4 2.6–52.5 1.9 0.0–11.2 99.8
Basement elevator 36.5 2.6–71.8 3.0 0.0–16.2 99.2
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Figure 3. Time series of raw 1-min PM2.5 concentrations from the low-cost sensors located outdoors on the rehabilitation
facility rooftop and from beta attenuation monitors at three national air pollution surveillance (NAPS) monitoring stations
at Kensington Park, Vancouver International Airport (YVR) and Clark Drive in greater Vancouver, Canada (Figure 2).

3.4. Indoor Infiltration of Outdoor PM2.5

Infiltration of outdoor PM2.5 was generally higher during the wildfire smoke episode
than on typical days, but it varied by location (Table 2). On typical days, the mean (range)
infiltration was 0.32 (0.22–0.39) across all indoor locations, and infiltration was highest
at the basement elevator and lowest in the ground floor therapy room (Table 2). During
the smoke episode, the mean infiltration increased to 0.37 (0.31–0.47), an average increase
of 19%, ranging from a decrease of 3% in the fourth-floor patient to an increase of 41%
ground floor therapy room. Although the average infiltration was higher during the smoke
episode than on typical days, the patient room on the fourth floor observed no substantial
change in infiltration during the smoke episode, after censoring indoor-generated peaks
(Table 2). The higher infiltration in the patient room during typical days could be due to
occupants opening the windows.
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Figure 4. Time series of calibrated 1-min PM2.5 concentrations from the low-cost sensors located outdoors (blue) and indoors
(grey). Indoor peaks have not been removed from these data. The cause of the short peak on October 15 is unknown.

Overall, the coefficients suggest that there is more infiltration of PM2.5 when the
outdoor concentrations are very high. However, the mean infiltration into the facility
during the wildfire smoke episode was considerably lower than reported mean wildfire
smoke infiltration for residential homes, which has ranged from 0.56 to 0.79 in previous
studies [13,34,38]. This could suggest that the facility building is more protected against
infiltration than private residences, or that management of the building during the COVID-
19 pandemic helped to protect it. Even so, indoor concentrations at the facility were high
compared with benchmarks such as the air quality objective for Metro Vancouver, which
is a 24-h average PM2.5 concentration less than 25 µg/m3. If the provincial Air Quality



Int. J. Environ. Res. Public Health 2021, 18, 9811 12 of 17

Health Index (AHQI) is applied, any 1 h concentration greater than 60 µg/m3 is in the
high risk category [39], including: 50 h near the basement elevator during the 264 h smoke
episode; 48 h in the lobby; 14 h in the fourth floor patient room; 11 h in the basement office;
and 3 h in the ground floor therapy room.
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Figure 5. Heat maps of 2-h averaged PM2.5 concentrations at the rehabilitation facility during the
wildfire smoke episode. The low cost sensor on the rooftop is shown at the top, and those located
indoors are shown below. The y-axis of each plot indicates the time of day. Indoor peaks have not
been removed from these data. Data from the morning of September 11 show that smoke moved
rapidly indoors as the rooftop concentration started to increase, and overnight data from September
18–19 show that smoke cleared rapidly out of the building as rooftop concentration decreased.
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The infiltration coefficients calculated for the facility are more consistent with results
from previous studies conducted in similar large buildings during an extreme wildfire
episode. For example, Pantelic et al. reported a value of 0.27 for a large commercial building
with HVAC in Berkeley, California when the median hourly outdoor concentration was
21 µg/m3. Similarly, Wheeler et al. reported a value of 0.31 for a public library in Port
Macquarie, Australia when the mean outdoor concentration was 30.7 µg/m3 [12,37]. Our
infiltration coefficients are also consistent with another study that calculated a median
infiltration of 0.45 among commercial buildings in Oregon and California during the
September 2020 smoke episode [40]. However, the mean outdoor PM2.5 concentration was
not reported for this study. Guidelines from the Canadian Standards Association (CSA)
suggests that occupational therapy and physiotherapy health facilities should maintain
6–9 total air changes per hour (ACH) [41], which might make them more susceptible to
smoke infiltration if the incoming air is not effectively filtered. The ACH for the building
with HVAC in the Berkley study was below 0.30 [12], making it very airtight in comparison.
We were not able to measure ACH for this study.

Infiltration of PM2.5 was non-uniform across locations in the facility during both the
wildfire smoke episode and typical days. Certain locations, such as the basement elevator
and the lobby, were more susceptible to infiltration, resulting in higher coefficients during
both periods (Table 2). These differences between locations were not associated with the
floor on which the EGGs were located, as there were higher and lower values in the base-
ment, on the main floor, and on the fourth floor. Very few studies have reported on PM2.5
infiltration into multi-story buildings, so it is difficult to evaluate whether these findings
are typical. Another study with indoor and outdoor pairs of light-scattering sensors placed
at different heights on an 8-story building found differences in concentrations by height,
but strong correlation between indoor and outdoor values regardless of height [42]. We
would have been able to do more similar analyses if the outdoor EGG on the second story
had not failed.

We believe higher infiltration values near the basement elevator and in the lobby are
best explained by activities occurring in these two locations. The elevators in the basement
are near to the loading bay doors and another service door frequently used by cleaners
and staff to access the outside of the building. The EGG by the elevators in the lobby was
near the main entrance, which includes two sets of double sliding doors and a 12-foot
vestibule between. Both sets of doors are often open at the same time to accommodate
patients using mobility aids. Other locations, such as the ground floor therapy room, were
better protected against infiltration. While the ground floor therapy room is affected by
indoor generation of PM2.5, it also has a dedicated air handling unit that may help to
dilute the air more quickly than in other areas of the building. When indoor locations were
ranked by infiltration coefficient during the smoke episode and typical days, the orders
were similar (Table 2), possibly because they always have relatively similar rates of airflow.
These results suggest that indoor infiltration of outdoor particles varies consistently by
location within the building, and that infiltration on typical days can help to assess potential
infiltration during smoke episodes, to help prioritize occupied locations for additional
measures such as deploying sufficiently sized portable air cleaners. This finding also has
implications for space design and functional programming developed for new construction
of healthcare facilities.

Infiltration of PM2.5 during the smoke episode at the facility may have been mitigated
by smoke-specific protocols and restrictions implemented for the COVID-19 pandemic.
The pre-filters in the air handling units were changed more frequently during the smoke
episode, the cooling system was operational, and building occupants were asked to keep
the windows closed. In addition, the COVID-19 safety plan limited building entrances
to two doors instead of the usual eight. All patients used the sliding double doors in the
ground floor lobby and staff used a different, smaller door at the side of the building. In
general, local-level interventions such as portable air cleaners for areas that have higher
infiltration might improve conditions without the need for a larger-scale intervention.



Int. J. Environ. Res. Public Health 2021, 18, 9811 14 of 17

For example, enforced use of the double door vestibule during smoky conditions could
further limit infiltration into the main lobby. Likewise, those without mobility aids could
be directed through smaller doors.

3.5. Meteorology during Smoke Episode and Typical Days

There was little to no precipitation during both the smoke episode and the typical
days (Table 4). Outdoors, the wind speed and relative humidity were, on average, lower
during the smoke episode than during the typical days, though the temperatures were
somewhat higher. The average wind direction was consistent across both periods and
typical for the coastal region. Indoors, both temperature and relative humidity were higher
during the smoke episode than during the typical days. These small differences in outdoor
and indoor conditions may have had small effects on the infiltration coefficients based on
prior literature [17–20,23].

Table 4. The 24-h average of meteorological conditions during the smoke episode and typical days.
All indoor sensors were aggregated in the indoor facility calculations. Outdoor sensors are the
rooftop air quality egg, Clark Drive, Kensington Park, and Vancouver International Airport (YVR)
which are part of the National Air Pollution Surveillance (NAPS) network.

Location and Parameter Smoke Episode Typical Days

Facility indoors
Temperature (◦C) 22.2 21.9

Relative Humidity (%) 48.3 44.4

Facility rooftop
Temperature (◦C) 17.9 15.8

Relative Humidity (%) 66.0 69.8

Clark Drive
Temperature (◦C) 17.7 11.3

Relative Humidity (%) 77.5 84.4
Wind Speed (km/h) 2.7 4.0

Wind Direction (Degree) 153.3 150.1
Precipitation (mm) 0.0 0.0

Kensington Park
Temperature (◦C) 17.8 11.0

Relative Humidity (%) 76.1 84.9
Wind Speed (km/h) 5.7 7.0

Wind Direction (Degree) 149.6 132.2
Precipitation (mm) 0.0 0.0

YVR
Temperature (◦C) 16.8 11.0

Relative Humidity (%) 80.1 82.5
Wind Speed (km/h) 7.8 10.0

Wind Direction (Degree) 165.4 160.6
Precipitation (mm) 0.0 0.0

3.6. Indoor PM2.5 Patterns

The daily heat map (Figure 5) shows the overall pattern of the smoke episode. We
found that the lag between rooftop PM2.5 concentration changes and subsequent indoor
changes was short, occurring within 1–2 h. When outdoor PM2.5 concentrations increased
sharply at the facility rooftop on the morning of September 11, indoor PM2.5 concentrations
across all locations increased within the same time frame, though the impact varied by
location. This is consistent with recent reports of rapid outdoor PM2.5 infiltration, where
approximately half of the total penetration occurred within the first hour [43]. When
rooftop PM2.5 concentrations decreased, indoor levels also changed quickly to reflect
outdoor conditions. Indoor PM2.5 concentrations began to decrease quickly after the
rooftop PM2.5 concentrations began to drop at approximately 18:00 on September 18. This
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suggests that outdoor PM2.5 changes, whether increases or decreases, affected indoor air
quality almost immediately, but not uniformly (Figure 5). This highlights the utility of air
quality advisories and wildfire smoke forecasting as triggers to implement building-specific
smoke readiness plans, as recently recommended by ASHRAE [44].

3.7. Limitations

This study has several limitations. First, it was conducted during the COVID-19 pan-
demic and its associated building restrictions, such as reduced points of entry, suspension
of outpatient programs, and no inpatient visitations. These restrictions may have lowered
infiltration, and we do not know how smoke would have infiltrated during an extreme
episode under normal circumstances. Even so, some of these restrictions may provide
insight into protecting large buildings from wildfire smoke infiltration through simple
measures such as limiting the number of entrances. Second, the indoor EGGs were not
co-located with indoor FEM monitors, and we had to calibrate them with outdoor data,
which are not representative of conditions inside the facility. Third, we may not have
removed all indoor peaks, and there may be some remaining indoor contribution that is
not captured by the algorithm that identified peaks. The relative contribution of indoor
sources may have been higher during the typical periods, potentially reducing estimates of
infiltration compared with the wildfire smoke episode. During the wildfire smoke episode,
both indoor and outdoor concentrations were much higher, and any indoor background
concentrations would have made a smaller relative contribution to total indoor PM2.5, so
the infiltration coefficient may have been attenuated.

4. Conclusions

This study is the first to evaluate wildfire smoke infiltration into a healthcare facility,
where people with compromised health status reside. We found that infiltration during an
extreme wildfire smoke episode at the facility was, on average, 19% higher than infiltration
during typical days. Indoor concentrations increased across all locations during a smoke
episode, suggesting that no locations were completely protected from smoke, though
infiltration was higher in areas near to the limited entrances and exits in use during the
COVID-19 pandemic. Restricting entrances and using double doors with vestibules may
help minimize overall smoke infiltration. Additionally, the indoor air at the facility quickly
reflected outdoor changes measured by the rooftop EGG, whether PM2.5 concentrations
were increasing or decreasing. We also demonstrated the application of multiple low-cost
sensors in evaluating indoor air quality during an extreme wildfire smoke episode. We
suggest that long-term use of low-cost sensors can aid facility operators in testing and
optimizing actions aimed at protecting occupants from wildfire smoke infiltration. These
findings could inform the development of building guidelines by local health authorities
for both new construction and renovation of healthcare facilities. As wildfire seasons
become longer and more intense, understanding smoke infiltration in healthcare facilities
is important to reduce indoor exposure for more susceptible populations.
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