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Abstract: Assistive motion for sit-to-stand causes lower back pain (LBP) among caregivers. Consid-
ering previous studies that showed that foot position adjustment could reduce lumbar load during
assistive motion for sit-to-stand, quantitative monitoring of and instructions on foot position could
contribute toward reducing LBP among caregivers. The present study proposes and evaluates a new
method for the quantitative measurement of foot position during assistive motion for sit-to-stand
using a few wearable sensors that are not limited to the measurement area. The proposed method
measures quantitative foot position (anteroposterior and mediolateral distance between both feet)
through a machine learning technique using features obtained from only a single inertial sensor
on the trunk and shoe-type force sensors. During the experiment, the accuracy of the proposed
method was investigated by comparing the obtained values with those from an optical motion
capture system. The results showed that the proposed method produced only minor errors (less
than 6.5% of body height) when measuring foot position during assistive motion for sit-to-stand.
Furthermore, Bland–Altman plots suggested no fixed errors between the proposed method and the
optical motion capture system. These results suggest that the proposed method could be utilized for
measuring foot position during assistive motion for sit-to-stand.

Keywords: foot position; assistive motion; sit-to-stand; wearable sensor; force sensor; inertial sensor;
machine learning technique

1. Introduction
1.1. Lower Back Pain due to Assistive Motion for Sit-to-Stand

Assistive motion for sit-to-stand causes lower back pain (LBP) among caregivers due
to heavy manual lifting [1,2]. Smedley et al. reported that 69% of nurses experienced
LBP caused by patient handling tasks, including assistive motion for sit-to-stand [1].
Furthermore, our investigation on occupational injury revealed that caregivers experience
LBP caused by manual lifting for assistive motion [2]. Although stationary lifting devices
can be used to prevent LBP, several devices cause upper limb discomfort during the sitting
up process [3]. Moreover, these stationary devices cannot be used in all workspaces
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owing to several limitations such as cost, time, efficiency, and space. Thus, ergonomic
interventions to reduce lumbar load without stationary devices such as posture adjustment
are necessary to prevent LBP during manual lifting.

1.2. Related Works to Prevent LBP due to Assistive Motion for Sit-to-Stand

Manual lifting is considered to be an assistive motion for sit-to-stand. Posture ad-
justment based on ergonomics has been found to be effective for reducing lumbar load
during manual lifting [4]. Trunk angle and foot position have been considered important
posture parameters for reducing the lumbar load during manual lifting [5–8]. Hoogen-
doorn et al. reported that trunk flexion and rotation are risk factors for the development of
LBP [5], whereas Delisle et al. found that strategic foot placement might improve lumbar
load during manual handling [6,7]. Our previous studies suggest that the adjustment of
the quantitative foot position could reduce the lumbar load during assistive motion for
sit-to-stand [8,9]. A previous investigation using computational musculoskeletal simu-
lation revealed that foot position with long anteroposterior foot distance can reduce the
compression stress in the L4–L5 joint [9]. Furthermore, a previous study that used elec-
tromyography revealed that the optimal foot position (foot distances in the anteroposterior
and lateromedial directions at 55% and 20% of the body height, respectively) provided
the use of the lower limb instead of the lumbar spine during assistive motion for sit-to-
stand. [8]. Foot position is considered an effective posture parameter because it can be
easily adjusted in the initial posture [8,9].

The aforementioned investigations therefore suggest that trunk angle and foot position
monitoring and guidance can contribute to the prevention of LBP during manual handling.
Previous studies have developed monitoring systems for trunk angle during manual
handling [10–12]. The PostureCoach can measure and provide feedback on trunk angle
during manual handling using wearable inertial sensors [10,11]. Training programs using
this system can improve the trunk angle of caregivers during manual care activities [11].
Moreover, Cerqueira et al. developed a smart vest for real-time feedback to prevent work-
related musculoskeletal disorders [12]. This smart vest can measure and provide feedback
regarding trunk, neck, and arm postures using inertial sensors and haptic motors [12]. As
mentioned earlier, several trunk angle monitoring systems using wearable sensors are
available. On the other hand, a previous study showed that posture adjustment to prevent
LBP requires both a real-time feedback system for trunk angle and verbal instruction from
a personal trainer that is related to lower limb use such as “use legs instead of back” [13].
This study indicates that lower limb status should be also monitored as well as trunk
angle to realize posture adjustment using a wearable system alone. However, no wearable
monitoring system has focused on foot position during manual lifting.

1.3. Related Studies for Foot Position Measurement

Generally, foot position is measured using vision-based systems, such as optical mo-
tion capture systems and video cameras [14–16], which cannot be used in actual workspaces
due to the large spaces occupied by these systems and the limited measurement areas that
are available. Therefore, the measurement of foot position for the prevention of LBP during
assistive motion for sit-to-stand must be achieved using a small number of wearable sen-
sors. During gait analysis, the foot trajectory is often measured using an inertial sensor on
the shoe [17]. However, integral errors have been a concern when directly calculating long-
term foot trajectories using inertial data obtained from the inertial sensor [17]. To reduce
integral errors of the inertial sensor, more than 10 algorithms have been developed [17].
However, these algorithms cannot be applied to assistive motion for sit-to-stand given that
they are based on specific and frequent gait events [17]. Although an ultrasonic sensor can
also be used to measure foot position, these sensors cannot measure foot position when
obstacles are present between both feet [18].
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1.4. Potential of Inertial Sensor and Shoe-Type Force Sensors

To address the aforementioned concerns, we have been developing a method for mea-
suring foot position using a single inertial sensor on trunk and shoe-type force sensors [19].
Previous studies have shown that the use of an inertial sensor on the trunk and shoe-type
force sensors can be considered an effective method for measuring foot position given the
relationship between trunk movement and foot position during manual handling [9,20–23].
Wagner et al. found that a wide-footed stance is related to trunk rotation during man-
ual lifting tasks [20]. Kingma et al. reported that a wide-footed stance increased trunk
bending [21]. Our previous study indicated that foot position with a long anteroposterior
distance reduced trunk bending [9]. From these relationships, we hypothesized that foot
position can be estimated using inertial data obtained from the inertial sensor on the trunk.

Furthermore, Jeong et al. suggested that the foot position during manual lifting
affects the ground reaction forces on the toe and heel and the trajectory of the center of
pressure (COP) [22]. Lee et al. revealed that the COP shifted to the left side when the
right foot was placed forward [23]. Moreover, previous studies have shown that shoe-type
force sensors could be used to recognize occupational postures, including different foot
positions [24,25], and to monitor trunk movement, lumbar load, and arm movement during
manual handling [19,25–27]. From these findings, we hypothesized that foot position can
be estimated on the basis of the distribution of the ground reaction force on the foot that
is obtained from shoe-type force sensors. Therefore, a single inertial sensor on the trunk
and shoe-type force sensors were selected as suitable wearable sensors to estimate the
foot position.

1.5. Potential of Machine Learning-Based Regression

A single inertial sensor on the trunk and shoe-type force sensors could not measure
the quantitative foot position [19]. Thus, the current study utilized machine learning-based
regression algorithms for the indirect wearable measurement of quantitative foot position.
Machine learning-based regression algorithms have previously been applied for indirect
measurements using a small number of wearable sensors [28]. Furthermore, machine
learning can be applied to estimate nonlinear relationships [28]. Moreover, machine
learning can be used in applications using wearable sensors that require indirect estimations
for joint movement, muscle activity, and position [28]. Recent studies have shown that
the combination of wearable sensors and machine learning could be used to estimate
kinematic values during lifting and squatting [25,26,29]. Antwi-Afari et al. reported that
several lifting postures could be identified using machine learning and that foot pressure
distributions could be obtained from insole force sensors [25]. Matijevich et al. found
that lumbar load during manual lifting could be predicted by a machine learning-based
regression model with an inertial sensor and shoe-type force sensors [26]. Choffin et al.
estimated foot angle while squatting using machine learning and insole force sensors [29].
These previous studies focused on tasks that are similar to our current research, and thereby
provided insight into the potential usefulness of the combination of wearable sensors and
machine learning for estimating foot position during manual lifting [25,26,29]. From these
findings, we hypothesized that machine learning is the most suitable method for the
indirect estimation of foot position.

1.6. Objective of This Paper

The present study therefore aimed to propose and evaluate a new method for mea-
suring foot position during manual lifting using a machine learning technique and only a
single inertial sensor on the trunk and shoe-type force sensors.

1.7. Contribution of This Paper

Previous wearable systems to prevent LBP could monitor and provide feedback for
injury risks such as lumbar loads and trunk angles during manual lifting [10–12]; moreover,
other previous studies have also shown that providing feedback regarding trunk angle
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and lower limb posture can also help to reduce the risk of LBP [13]. However, even though
feedback about the trunk angle was completed in real time, lower limb posture feedback
was performed by a personal trainer giving verbal instructions such as “use legs instead
of back”. Thus, a system that could monitor the posture of the lower limbs without the
need for a personal trainer was considered here. Particularly, we focused on foot position
as an effective parameter for posture adjustment that can be easily adjusted [8,9]. However,
despite the benefits of being able to monitor the position of the feet during manual lifting,
no such monitoring system has been developed in the past.

Therefore, this study contributes to assessing foot position measurement using wear-
able sensors for the prevention of lower back pain during assistive motion for sit-to-stand.
The highlight of this study is that a combination of few wearable sensors and machine
learning can estimate foot position during manual lifting. The proposed foot position
estimation method can be easily realized because it can be implemented through the use of
only a single inertial sensor and shoe-type force sensors. Therefore, the proposed method
could be applied for suitable assistive motion training to prevent LBP in nursing schools.

2. Materials and Methods
2.1. Proposed Method for Foot Position Measurement
2.1.1. Architecture

The architecture of the proposed method is shown in Figure 1. Wearable sensors
are mounted on the trunk and both feet. These wearable sensors were selected based on
aforementioned potentials and hypotheses in previous section. The inertial sensor on the
trunk measures 3-axes accelerations and 3-axes angular velocities during assistive motion
for sit-to-stand, whereas the shoe-type force sensors measure the front and rear force
on both feet during manual handling. These sensor data are used for machine learning-
based regression algorithms to estimate quantitative foot position. Anteroposterior and
mediolateral distances between both feet are outputted quantitatively as the foot position.
Components of this architecture are described in Figure 1.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 18 
 

 

Previous wearable systems to prevent LBP could monitor and provide feedback for 
injury risks such as lumbar loads and trunk angles during manual lifting [10–12]; moreo-
ver, other previous studies have also shown that providing feedback regarding trunk an-
gle and lower limb posture can also help to reduce the risk of LBP [13]. However, even 
though feedback about the trunk angle was completed in real time, lower limb posture 
feedback was performed by a personal trainer giving verbal instructions such as “use legs 
instead of back”. Thus, a system that could monitor the posture of the lower limbs without 
the need for a personal trainer was considered here. Particularly, we focused on foot po-
sition as an effective parameter for posture adjustment that can be easily adjusted [8,9]. 
However, despite the benefits of being able to monitor the position of the feet during man-
ual lifting, no such monitoring system has been developed in the past. 

Therefore, this study contributes to assessing foot position measurement using wear-
able sensors for the prevention of lower back pain during assistive motion for sit-to-stand. 
The highlight of this study is that a combination of few wearable sensors and machine 
learning can estimate foot position during manual lifting. The proposed foot position es-
timation method can be easily realized because it can be implemented through the use of 
only a single inertial sensor and shoe-type force sensors. Therefore, the proposed method 
could be applied for suitable assistive motion training to prevent LBP in nursing schools. 

2. Materials and Methods 
2.1. Proposed Method for Foot Position Measurement 
2.1.1. Architecture 

The architecture of the proposed method is shown in Figure 1. Wearable sensors are 
mounted on the trunk and both feet. These wearable sensors were selected based on afore-
mentioned potentials and hypotheses in previous section. The inertial sensor on the trunk 
measures 3-axes accelerations and 3-axes angular velocities during assistive motion for 
sit-to-stand, whereas the shoe-type force sensors measure the front and rear force on both 
feet during manual handling. These sensor data are used for machine learning-based re-
gression algorithms to estimate quantitative foot position. Anteroposterior and mediola-
teral distances between both feet are outputted quantitatively as the foot position. Com-
ponents of this architecture are described in Figure 1. 

 
 

Figure 1. Architecture of the proposed method. 

2.1.2. Wearable Sensors 
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2.1.2. Wearable Sensors

The inertial sensor (LP-WS1104, Logical Product Co., Fukuoka, Japan) attached on the
trunk measures the three-axis acceleration and angular velocity of the trunk and is used for
the machine learning algorithm. The specifications of the inertial sensor were as follows:
full range of sensor output in acceleration, ±5 G; acceleration sensitivity, 191.4 mV/g;
full range of sensor output in gyro, 1500 degrees per second (dps); and gyro sensitivity,
0.8 mv/dps.
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The shoe-type force sensors consisted of eight force sensors on each insole. Four
sensors were located on the forefoot, and the other four sensors were located from the
midfoot to the hindfoot, as shown in Figure 1. The sum of the output values for each of
the four sensors were calculated as the front and rear force on each foot (four total values).
FlexiForce sensors (Tekscan Inc., South Boston, MA, USA) were selected for the proposed
method given their thinness and flexibility [30,31]. The specifications of the force sensor
were as follows: full range of sensor output, 445 N for one sensor; linearity, <±3% of full
range of sensor output; and hysteresis, <4.5% of full range of sensor output. The noise of
the force data was reduced via an amplifier circuit (FlexiForce Adapter 1120, Phidgets Inc.
Calgary, AB, Canada).

The inertial sensor and data logger for the force sensors were synchronized using
2.4-GHz wireless communication in an IEEE802.15.4-based protocol and antenna (Logical
Product Co., Fukuoka, Japan). The shoe-type force sensors measured front and rear vertical
forces on each foot during manual handling. The sampling rates for these wearable sensors
were set at 100 Hz. The inertial data were saved in a flash memory drive installed in the
inertial sensor. Force data were saved in the flash memory drive installed in the data logger
(Logical Product Co., Japan). These saved data were exported to a personal laptop personal
computer via a USB cable.

2.1.3. Machine Learning-Based Regression Algorithm

A machine learning regression model estimated the quantitative foot position from the
wearable sensor data. For this purpose, several parameters were calculated from the time
series data of each sensor signal to be used as input for the machine learning model. The ex-
tracted parameters included the mean, standard deviation, skewness, kurtosis, maximum,
minimum, and root mean square of the data in each measurement. These parameters were
determined based on previous studies using machine learning algorithm and wearable
sensors [19,24,25]. These seven parameters were calculated for 3-axes accelerations, 3-axes
gyro, and four force values (front and rear of each foot); thus, a total of 70 features were
calculated for each trial. The proposed method estimates foot position based on an entire
motion; thus, these parameters were extracted from an entire motion.

Optimal machine learning algorithms depend on target movement and sensors. Thus,
this study compared the outcomes of artificial neural network (ANN), Gaussian process,
k-nearest neighbor (kNN), linear regression, and support vector regression (SVR) for
the proposed method. These five machine learning algorithms were selected given their
frequent use for wearable systems in previous studies [32–36]. In addition, ANN, Gaussian
process, kNN, and SVR were expected to build regression models for nonlinear and
complex data distribution [37–40]. These findings are more informative than the fact that
these algorithms were simply tested. Furthermore, linear regression was expected to build
a simple model for implementation advantages. The details of these machine learning
algorithms are descripted in a later section.

2.1.4. Foot Position

Our previous study found that both the anteroposterior and mediolateral distances
are important for foot position adjustment aimed at reducing LBP during assistive motion
for sit-to-stand [8]. Therefore, the proposed method outputs the anteroposterior and
mediolateral distances between both left and right feet. Actual foot positions for the
training and validation of the machine learning algorithm were measured using an optical
motion capture system (OptiTrack, Corvallis, OR, USA) and optical makers on the both left
and right heels. This study defined heel position as actual foot position without considering
foot rotation and the center of the foot because our previous study found that changing
heel position could reduce lumbar load during assistive motion for sit-to-stand [8]. The
data from the optical motion capture system were sampled at 100 Hz to match the sampling
rate of the wearable sensors. In addition, the optical motion capture system measured foot
positions by means of a marker on each heel in the global frame coordinate.
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2.1.5. Expected Intervention

The proposed method will be applied for assistive motion training in each nursing
school. The collection of the data to be used for machine learning can be collected from
nursing students because nursing students repeat assistive motion during their lessons and
during self-training [41]. Furthermore, previous studies have mentioned that improving
assistive motion training for nursing students might be best approach for the long-term
prevention for LBP because it is difficult to improve the assistive motion of experienced
nurses [13]. The proposed method will be used by nursing students during assistive motion
training. While undergoing assistive motion training, immediate feedback regarding foot
position will be given immediately after one motion. If the foot position is unsuitable,
the nursing students will be able to improve their foot position starting from the next
motion. Nursing students will be able to acquire a suitable foot position via training with
these processes.

2.2. Experiment for Evaluation of the Proposed Method

This study evaluated whether the proposed method could accurately measure quanti-
tative foot position during actual manual handling. Moreover, we compared five common
machine learning algorithms (ANN, Gaussian process, kNN, linear regression, and SVR)
to determine the optimal algorithm for the proposed method. Details regarding this
experiment are described below.

2.2.1. Participants

Ten young male students (age 23.2 ± 1.03 years, height 171 ± 6.35 cm, weight
59.8 ± 5.14 kg, mean ± standard deviation) at the Kyushu Institute of Technology were
recruited. The experiment was explained to all of the participants before participation,
after which all participants signed an informed consent form before experimentation began.
This study considered the idea that the proposed system could be implemented in nursing
schools. In this intervention, training data would be collected at the same nursing school
because different conditions such as the sizes or heights of beds and wheelchairs. Therefore,
the training data size could be limited because of the number of students in each school.
Thus, the use of only ten participants was allowed because this study did not expect to col-
lect a large training dataset for generalization. Note that the participants had no experience
as caregivers. All of the experimental procedures were conducted in accordance with the
Declaration of Helsinki and the Ethics Committee for Human Research of the Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology (approval
number: 19-05).

2.2.2. Experimental Procedure

After putting on the wearable sensors (inertial sensor and shoe-type force sensors) for
the proposed method, the participants were asked to lift the lower back of a doll (height
145 cm, weight 10.0 kg) from a wheelchair (height 45.0 cm). This assistive motion for sit-to-
stand is shown in Figure 2. This motion, which entails the patient being picked up from
the lower back, is common assistive motion [41]. The participants executed a sit-to-stand
movement with the doll (simulated patient). The doll was lighter than an actual human
due to concerns about the patients placing substantial stress on their lumbar area. After
practicing this manual lifting motion (10 min before measurement), measurements were
obtained while the participants performed manual lifting using nine different foot position
patterns, which are presented in Figure 2 and Table 1. Foot distances were normalized to the
body height of each participant (unit: %height) in order to avoid the effect of the different
body heights between the participants. The left foot was fixed to the anterior, whereas the
right foot moved to adjust the foot distances for each foot position pattern. Previous studies
indicate that caregivers should stand close to the patient to reduce the lumbar load [42].
Thus, the left foot was always fixed to the same spot between the footrests of the wheelchair
during each trial. As shown in Table 1, these foot patterns included different combinations
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of anteroposterior (10–25, 26–40, and 41–55 %height) and mediolateral (10–20, 21–30, and
31–40 %height) foot distances. These foot positions were defined for collecting various foot
position data. The participants repeated the manual lifting technique for over five trials
for each foot position (a total of 45 trials for each participant), changing the foot distances
for each trial in range of each foot position pattern by themselves. Wearable sensors and
optical motion capture systems (eight cameras, OptiTrack, Corvallis, OR, USA) measured
the assistive motion for sit-to-stand with a 100-Hz sampling rate. The optical markers for
the motion capture system were mounted on the heels of both shoe-type force sensors.
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Table 1. Foot distances of the nine foot positions during manual lifting.

Mediolateral Distance [%Height]

10–20 21–30 31–40

Anteroposterior
Distance

[%height]

10–25 Position 1 Position 2 Position 3
26–40 Position 4 Position 5 Position 6
41–55 Position 7 Position 8 Position 9

%height is feet distance normalized to body height of each participant. Nine foot positions have different
combination of anteroposterior and mediolateral distance. Each anteroposterior and mediolateral distance has
range of value..

2.2.3. Data Analysis

The proposed method was evaluated after obtaining all of the measurement data from
450 trials. The input parameters for the machine learning model (mean, standard deviation,
skewness, kurtosis, maximum, minimum, and root mean square) were calculated for all
wearable sensor signals (front and rear force of each foot, 3-axes acceleration, and 3-axes
angular velocity) using MATLAB R2020b (MathWorks, Natick, MA, USA). The actual foot
position values (anteroposterior and mediolateral feet distances) were calculated using
optical motion capture data and the 3D analysis software VENUS 3D R (Nobby Tech. Ltd.,
Tokyo, Japan). Foot position data were normalized to the body height of each participant.

Five machine learning algorithms (ANN, Gaussian process, kNN, linear regression,
and SVR) were implemented and were verified using the data mining software WEKA 3.6
(University of Waikato, Hamilton, New Zealand) [43]. The specifications and parameters
of each machine learning algorithm are shown in Tables 2–6. The radial basis function
(RBF) kernel was applied for Gaussian processes and SVR given that this kernel was used
in previous studies related to wearable sensing [44,45].
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Table 2. Specifications and parameters of artificial neural network (ANN).

Specification/Parameter Status/Value

Number of Layer
Input Layer 1

Hidden Layer 1
Output Layer 1

Number of Neuron / Node
Input Layer At most 70 (based on features)

Hidden Layer At most 70 (based on features)
Output Layer 1

Activation
Hidden Layer Sigmoid
Output Layer Linear

Learning Rate 0.3
Momentum 0.2

Training Method Back Propagation

Table 3. Specifications and parameters of Gaussian process.

Specification/Parameter Status/Value

Kernel RBF Kernel
Hyperparameter γ 1.0

Table 4. Specifications and parameters of k-nearest neighbor (kNN).

Specification/Parameter Status/Value

Weight Uniform
Distance Euclidean Distance

Hyperparameter K 1

Table 5. Specifications and parameters of linear regression.

Specification/Parameter Status/Value

Feature Selection M5 Method
Ridge Parameter R 1.0 × e−8

Table 6. Specifications and parameters of support vector regression (SVR).

Specification/Parameter Status/Value

Training Sequential Minimal Optimization
Kernel RBF Kernel

Hyperparameter γ 0.01

The accuracy of the proposed method was evaluated from 450 trial data obtained
from 10 participants. The accuracies of each machine learning algorithm for the proposed
method were calculated using 10-fold cross validation. In the 10-fold cross validation, the
dataset was randomly divided into 10 subgroups. Nine subgroups were used as training
data, and one subgroup was used as test data. This process was repeated 10 times, and
each subsample was used in turn as the test data. As mentioned previously, this study did
not expect to prepare a big training dataset for generalization because we considered the
fact that the proposed method would be used in different nursing schools. Because of this,
it is important that the training data be collected in school that the method is being used
in because each school has different conditions. Thus, we considered that these data size
and validation processes were suitable. All of the estimated foot positions were obtained
from the 10 calculations based on the 10-fold cross validation. The root mean square error
(RMSE) between the estimated and actual foot positions was calculated as the error of the
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proposed method, selecting the machine learning algorithm with the smallest RMSE value
as the optimal algorithm. Furthermore, the RMSE values were compared for three feature
patterns (only inertial sensor, only shoe-type force sensors, and all wearable sensors) to
select the optimal wearable sensors. Through such processes, the optimal combination of
wearable sensors and machine learning algorithms can be determined.

Statistical analyses were performed to determine the optimal combination of wearable
sensors and machine learning algorithms using EZR 1.32 (Division of Hematology, Saitama
Medical Center, Jichi Medical University, Saitama, Japan) [46]. Significant differences
between the error of the proposed method and zero were evaluated using the paired t-test
(significance level: p < 0.05). In addition, power analyses were performed for the paired
t-test (α = 0.05). Pearson’s correlation between the proposed method and actual values was
calculated as the accuracy of the proposed method (significance level: p < 0.05).

The Bland–Altman plot, which represents the mean (horizontal axis) and difference
(vertical axis) between estimated and actual values, was used to evaluate fixed and propor-
tional errors of the proposed method using the optimal algorithm [47]. The limitation of
agreement (LOA) of the vertical axis in the Bland–Altman plot was used to evaluate the
fixed errors. Accordingly, an LOA that does not include zero indicates a fixed error [47].
Pearson’s correlation between the mean (horizontal axis) and difference (vertical axis) of
the Bland–Altman plot was calculated to evaluate the proportional error (significance level:
p < 0.05). Significant correlations between the mean and difference indicates a proportional
error [48].

3. Results
3.1. Data Specification

The anteroposterior and mediolateral foot distances measured by the optical motion
capture system are shown in Figure 3. Measured foot distances (Figure 3) were satisfied for
the nine different foot positions defined in Table 1 and Figure 2. Figure 4 shows vertical
acceleration and sagittal angular velocity obtained from the inertial sensor. Figure 5 shows
the front force of the foot obtained from the shoe-type force sensor. The results of the inertial
data show that vertical accelerations were increased by a longer foot distance (Figure 4).
On the other hand, the sagittal angular velocities were decreased by a shorter foot distance
(Figure 4). The results of the force data show that the forces of the left (anterior) foot were
increased by a longer foot distance. On the other hand, the forces of the right (posterior)
foot were decreased by a shorter foot distance. These results indicate that inertial and force
data were affected by the foot position changing.
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3.2. RMSE Values

The RMSE values of the anteroposterior and mediolateral foot distances between the
proposed method and actual foot position are shown in Tables 7 and 8. Accordingly, the
RMSE values of the proposed method using all wearable sensors (inertial sensor and shoe-
type wearable sensors) were the smallest for both anteroposterior and mediolateral foot
distances in three feature patterns. Moreover, the RMSE values of the proposed method
using Gaussian process were the smallest for both anteroposterior and mediolateral foot
distances in the five algorithms. Based on the aforementioned results, the combination of
all of the wearable sensors and the Gaussian processes was determined to be the optimal
combination of features and algorithms for the proposed method. The proposed method
using the optimal combination of features and algorithm could measure the anteropos-
terior and mediolateral foot distances with less than 6.5 %height RMSE (anteroposterior:
6.06 %height; mediolateral: 6.30 %height).
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Table 7. Root mean square error values of anteroposterior foot distances.

Feature Pattern Algorithm RMSE [%Height]

Only Inertial Sensor

ANN 11.5
Gaussian process 7.20

kNN 8.43
Linear regression 8.40

SVR 9.69

Only Shoe-type Force Sensors

ANN 10.6
Gaussian process 7.10

kNN 9.14
Linear regression 7.85

SVR 8.02

All Wearable Sensors

ANN 7.93
Gaussian process 6.06

kNN 6.89
Linear regression 6.62

SVR 7.30
%height is feet distance normalized by body height of each participant. RMSE: root mean square error; ANN:
artificial neural network; kNN: k-nearest neighbor; SVR: support vector regression.

Table 8. Root mean square error values of mediolateral foot distances.

Feature Pattern Algorithm RMSE [%Height]

Only Inertial Sensor

ANN 11.0
Gaussian process 7.16

kNN 8.72
Linear regression 7.72

SVR 8.03

Only Shoe-type Force Sensors

ANN 10.9
Gaussian process 6.50

kNN 8.80
Linear regression 6.88

SVR 7.39

All Wearable Sensors

ANN 9.77
Gaussian process 6.30

kNN 8.01
Linear regression 6.80

SVR 7.00
%height is feet distance normalized by body height of each participant. RMSE: root mean square error; ANN:
artificial neural network; kNN: k-nearest neighbor; SVR: support vector regression.

3.3. Statistical Results

The results of the statistical analyses are summarized in Table 9. The errors of the
proposed method (Mean ± S.D.) are shown in Table 9. Accordingly, no significant differ-
ences in both the anteroposterior and mediolateral foot distances were observed between
the error of the proposed method and zero (p > 0.05). Moreover, significant correlations
between the proposed method and actual values were observed for both the anteroposterior
and mediolateral foot distances (p < 0.05).
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Table 9. Statistical results.

Foot Position Paired t-Test (Error vs. Zero) Correlation
(Estimated vs.

Actual)Significant Difference Power

Anteroposterior N.S. 0.0284 0.891 *

Mediolateral N.S. 0.0289 0.692 *
%height is feet distance normalized to the body height of each participant. S.D.: standard deviations. Significant
differences were evaluated using paired t-tests. Correlation was calculated using Pearson’s correlation. N.S.: not
significant (p > 0.05); *: significant (p < 0.05).

3.4. Bland–Altman Plot

Bland–Altman plots, which are presented in Figure 6, were used to evaluate the
proposed method using all of the wearable sensors and Gaussian process. The statistical
results for the Bland–Altman plots are detailed in Table 10. The LOA of the Bland–Altman
plot included zero for both the anteroposterior and mediolateral foot distances, suggesting
the absence of fixed errors in the proposed method. However, significant correlations were
noted between the difference and mean of the Bland–Altman plots for both the anteropos-
terior and mediolateral foot distances (anteroposterior: r = 0.682 and p < 0.05; mediolateral:
r = 0.758 and p < 0.05), suggesting proportional errors in the proposed method.
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Table 10. Statistical results for the Bland–Altman plots.

Foot Position Limitation of Agreement
[%Height]

Correlation
(as Proportional Error)

Anteroposterior −10.9 to 10.9 0.682 *
Mediolateral −11.4 to 11.3 0.758 *

%height is feet distance normalized to the body height of each participant. Correlation was determined us-
ing Pearson’s correlation. Correlation between Bland–Altman plots was calculated as the proportional error.
*: significant (p < 0.05).

4. Discussion
4.1. Validity of the Proposed Method

Our results showed that the proposed method using the optimal combination of
wearable sensors and machine learning algorithm could accurately measure anteroposterior
foot distances with an RMSE of 6.06 %height (Table 7). One previous study showed that
the number of steps can be a useful measurement unit to provide feedback regarding
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foot position during manual handling [20]. In addition, the number of steps has enough
resolution because our previous study showed that lumbar load might be affected by
changing the foot position with at least 10 to 15 %height [8]. Thus, since the anteroposterior
RMSE value is shorter than the foot length (foot or shoe size) [49,50], the proposed method
could be applied to provide feedback about the anteroposterior foot position using the
number of steps (foot or shoe). For example, when the measured anteroposterior foot
distance is shorter by approximately 10 %height than the optimal distance, the system can
provide feedback that says, "please back your rearfoot up by one step”. On the other hand,
the RMSE of the proposed method for the mediolateral foot distance was 6.30 %height
(Table 8), which was longer than the foot width [50]. Thus, future studies should attempt
to minimize measurement errors in the mediolateral foot distances.

Our statistical analyses showed a significant correlation between the proposed method
and the actual foot position in both the anteroposterior and the mediolateral feet distances
(Table 9). In addition, there were no significant differences that were seen for the errors of
the proposed method and zero (Table 9). These results indicate that the proposed method
involving the use of wearable sensors and a machine learning technique can effectively
measure foot positions. Moreover, a significant correlation between the proposed method
and the actual foot position in the mediolateral foot distance suggests the possibility of
improving errors in the mediolateral foot distance of the proposed method.

The LOA of the Bland–Altman plots showed no fixed error in both the anteroposterior
and mediolateral foot distances (Figure 6 and Table 10), suggesting that the proposed
method could be used to measure foot position during manual lifting without bias or
systematic errors. Nonetheless, correlations between the Bland–Altman plots showed
proportional errors in both the anteroposterior and mediolateral foot distances (Figure 6 and
Table 10), indicating the need to focus on proportional errors for the future improvement
of the proposed method.

The aforementioned results therefore suggest that the proposed method can be utilized
for the monitoring of and giving instructions on quantitative foot positions during assistive
motion for sit-to-stand to prevent LBP among caregivers. Furthermore, these results
highlight the direction of future improvements in the proposed method.

4.2. Wearable Sensors

The RMSE values showed that both the inertial sensor and the shoe-type force sensor
were useful for the proposed method (Tables 7 and 8). In addition, inertial and force
data were affected by the changing foot position (Figures 4 and 5). The inertial sensor on
the trunk could perceive differences in the foot position given that trunk movement is
affected by foot position during manual handling [19,51]. Moreover, the shoe-type force
sensors could measure the force changes caused by the foot position given that the force
distribution on the insole changes based on the foot position during manual handling [25].
Therefore, both an inertial sensor and the shoe-type force sensors were considered for
the proposed method. Additionally, these wearable sensors can be combined to measure
lumbar load and arm movement during manual handling [19,26], thereby making them
useful for various measurements aimed at preventing LBP for occupational health.

Nonetheless, using only both inertial sensor and shoe-type sensors for the proposed
method allowed us to be able to measure the anteroposterior and mediolateral foot dis-
tances with less than 7.5 %height RMSE by means of Gaussian process (Tables 7 and 8).
Improving on such errors by modifying features or algorithms could perhaps allow the
use of only either an inertial sensor or shoe-type force sensors for the proposed method.
Indeed, reducing the number of sensors would increase user comfort. Furthermore, using
only a single inertial sensor for the proposed method can be viable through the use of
smartphones given the reliable and valid inertial sensors in current smartphones [52,53].
According to the current fixation condition for the inertial sensor, smartphones would
need to be attached to the users back with a belt. If smartphones are able to be placed in
a chest pocket, then the method would be more user friendly. However, the accuracy of
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the proposed method when placing a smartphone in a chest pocket should be investigated.
Such combinations and applications for wearable sensors would ultimately be based on
the usability and accuracy required by each user.

4.3. Machine Learning Algorithms

The proposed method using Gaussian process was able to measure both the antero-
posterior and mediolateral foot distances with the smallest RMSE (Tables 7 and 8). The
reason for these results is that Gaussian process are suitable for machine learning with a
small dataset, such as that used in this study. This is because Gaussian process can change
the margin of fitting based on the number of data points [37]. Machine learning algorithms
that allow the use of small datasets can be useful for actual workspaces given the ease
of data acquisition. Therefore, Gaussian process can be considered the optimal machine
learning algorithm for the proposed method. On the other hand, the RMSE values of
several algorithms were similar. Therefore, there is a possibility that several algorithms
other than Gaussian process could also be applied for the proposed method. Future work
should continue to explore the optimal algorithm by considering other factors such as
implementation or calculation speed.

4.4. Limitation and Future Works

The proposed method was evaluated by performing assistive motion for sit-to-stand
in a laboratory setup. Future studies should evaluate the proposed method in various
motions in actual nursing students. An additional limitation is that the foot positions were
measured using the heel marker of a global coordinate frame. A single marker on the
heel does not approximate a centroid on the foot, and the foot rotation might change the
center position of the foot. Moreover, another limitation of this experiment was that the
left foot was fixed between the footrests of a wheelchair. There is the possibility that an
actual caregiver cannot fix their footing during an assistive motion. The accuracy of the
proposed method might be affected by this unstable foot position. Thus, the proposed
method should be tested for unstable foot positions during assistive motion. In this study,
was another limitation was that the 10 kg doll used in this experiment is lighter than actual
patients. This creates a problem, as the method is less reliable due to the difference between
the doll used in the experiment and actual patients. According to previous studies, the
COP velocity is affected by changing weight [54]. Thus, patient weight might affect the
force data obtained from the shoe-type force sensors. Thus, the effect of patient weight on
the proposed method should be investigated in future work. In the experiment, each data
included the start and end points. The start and end points of assistive motion should be
extracted automatically in order for the system to be useful. Previous studies developed an
automatic recognition method for patient handling tasks including assistive motion for sit-
to-stand using footwear sensors, which were similar to our shoe-type force sensors [55,56].
In future work, these previous methods might be combined with our proposed method for
automatic foot position estimation.

As mentioned previously, errors regarding the mediolateral foot width should be
improved. Future studies must examine feature selection methods [57,58] and other
machine learning algorithms [59,60] to improve the accuracy of the proposed method.
Moreover, linear-based solutions to reduce the proportional error of the proposed method
must be developed. The regression model of this study could only be applied for a specific
learned task. In future work, a new generalized regression model that learns various
patient handling tasks should be considered. Furthermore, readable models such as a
biomechanical link model [61,62] should be combined to improve accuracy. The proposed
method estimates foot position from an entire motion. In this case, our future system will
give feedback regarding foot position immediately after assistive motion. When the system
gives feedback indicating that the foot position is not suitable, the caregiver will be able to
modify their foot position for the next motion. However, it is desirable that measurements
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and feedback be made prior to completing an assistive motion. Thus, future work should
focus on foot position measurement in the initial posture.

After improvements and further evaluation, monitoring and instruction systems for
foot position during manual lifting must be implemented. However, problems remain for
system integration using a wireless sensor network. This study could not consider real-time
processing, transmission time, and network lifetime. In future work, the proposed method
should be implemented for real-time processing based on recent frameworks [63,64]. For
example, Coviello et al. proposed a framework for wireless synchronization based on
sending and transmission times [63]. Moreover, Sakuru et al. suggested that sink node
selection algorithms based on network lifetime could be applied for wireless sensor net-
works [64]. Our proposed system will be implemented using a wireless sensor network
with these frameworks [63,64]. Furthermore, a feedback method for foot position using
the proposed method should be developed. Foot position might be corrected by means of
audio or using a haptic device as well as previous feedback methods used to correct the
trunk angle [10–13].

Our previous study found that foot position adjustment could reduce lumbar loads
during assistive motion for sit-to-stand by using lower limb muscles [8]. In this previous
study, the participants performed lifting with the legs and not the back without other
instructions [8]. Thus, we considered that a feedback system for foot position would be
useful to realize assistive motion using the lower limbs. However, there is a possibility
that the best instruction to generate optimal assistive motion to prevent lower back pain
requires feedback for another postural parameter, such as the trunk angle. Thus, future
studies should consider a combination of both foot position and trunk angle for more
effective intervention.

5. Conclusions

This study proposed and evaluated a new method for measuring foot position during
assistive motion for sit-to-stand in order to prevent LBP among caregivers. The proposed
method can be utilized for occupational health for caregivers given that it only uses a few
wearable sensors. The following are the contributions of the current study:

• The proposed method can measure quantitative foot positions using a single inertial
sensor, shoe-type force sensors, and a machine learning algorithm.

• The proposed method was evaluated using RMSE values, statistical analysis, and
Bland–Altman plots.

• Optimal combinations of wearable sensors and machine learning algorithm were
explored for the proposed method.

• The experimental results showed that a combination of both inertial and shoe-type
force sensors and Gaussian process is the optimal combination for the proposed method.

• The RMSE values and statistical results indicated that the proposed method could
measure foot position during assistive motion for sit-to-stand.

• Bland–Altman plots showed that the proportional error should be improved in the
proposed method.

The proposed method will certainly contribute to wearable monitoring and instruction
systems for manual lifting to prevent LBP among caregivers. We believe that the proposed
method can be applied in nursing schools that require training for assistive motion for
sit-to-stand.
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