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Abstract: The Experience Sampling Method (ESM) is gaining ground for collecting self-reported
data from human participants during daily routines. An important methodological challenge is to
sustain sufficient response rates, especially when studies last longer than a few days. An obvious
strategy is to deliver the experiential questions on a device that study participants can access easily
at different times and contexts (e.g., a smartwatch). However, responses may still be hampered if
the prompts are delivered at an inconvenient moment. Advances in context sensing create new
opportunities for improving the timing of ESM prompts. Specifically, we explore how physiological
sensing on commodity-level smartwatches can be utilized in triggering ESM prompts. We have
created Experiencer, a novel ESM smartwatch platform that allows studying different prompting
strategies. We ran a controlled experiment (N = 71) on Experiencer to study the strengths and
weaknesses of two sampling regimes. One group (N = 34) received incoming notifications while
resting (e.g., sedentary), and another group (N = 37) received similar notifications while being
active (e.g., running). We hypothesized that response rates would be higher when experiential
questions are delivered during lower levels of physical activity. Contrary to our hypothesis, the
response rates were found significantly higher in the active group, which demonstrates the relevance
of studying dynamic forms of experience sampling that leverage better context-sensitive sampling
regimes. Future research will seek to identify more refined strategies for context-sensitive ESM using
smartwatches and further develop mechanisms that will enable researchers to easily adapt their
prompting strategy to different contextual factors.

Keywords: experience sampling method; ecological momentary assessment; context sensing; re-
sponse rate; compliance; personalization; smartwatch application; wearables; physical activity

1. Introduction

In this study, we aim to motivate the relevance of adapting the time of delivering
experiential questions during experience sampling studies. Specifically, we assessed the
influence of physical activity on response rates during an experience sampling study
that utilized commodity-level smartwatches. However, firstly, we introduce what the
experience sampling method is and why finding the opportune moment of delivering the
questions is crucial. The experience sampling method (ESM) was developed to collect
data about behaviors, thoughts, or feelings in day-to-day activities in scientific studies
involving human participants, addressing some of the shortcomings that characterize
diary studies and retrospective surveys [1]. In these studies, participants are engaged for
sustained periods of time during which they can be prompted at several moments of a day
to provide a self-report regarding their emotions, thoughts, or experiences. Although ESM
enables detailed examination of the phenomena under investigation [2], the compliance
of participants in such studies is a long-standing challenge, hampering the effectiveness
of the method [3]. Compliance to ESM studies is characterized by the volunteering rate
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(i.e., whether people accepts to participate in a study), the delay of a response (i.e., the
time elapsing between a signal and the participant’s response), the amount of information
presented, and the response rate. Compliance may be affected by response fatigue [4–
6] caused by changes in motivation [7], attachment of participants to the outcome of
the study [2], technical difficulties [8], and the extent to which participants experience
the prompts as intrusive [3]. Earlier research already identified a variety of strategies
for improving compliance that takes into account various factors including the age of
participants, their education level, the timing of the prompt, the amount of information
requested, and the weekly schedule of participants [9–12]. In this study, we focus on the
response rate of participants, and we look for ways to improve it by tuning the timing of
the prompt through utilizing contemporary wearable technology.

Advances in mobile and internet technologies enabled several innovations that aimed
at improving the effectiveness of ESM protocols in general, and specifically, response rates.
For example, Intille et al. proposed the use of response contingent sampling, manual
specification of query times, flexible recurrence patterns (by weeks, days, hours, minutes),
and bounded randomization (max/min times to next query) [13]. Hsieh et al. proposed
the use of visualizations to increase compliance [14]. Another study showed that higher
response rates can be achieved when participants can be allowed to specify the timing of
the daily sampling [15]. Furthermore, the omnipresence of mobile devices, such as smart-
phones, created new opportunities for researchers to develop ESM software applications
compatible with mobile devices [16]. By leveraging the capabilities of such devices, like
detecting smartphone unlock [17–20], changes in location, using the microphone to detect
silence or noise, and tracking calendar events, it is possible to detect sampling moments
that are more convenient for the participants [21].

Modern ESM software solutions benefit researchers with their dynamic nature, giving
them the flexibility to adjust study parameters such as notification schedules or incorporat-
ing complex logic in the questionnaires [22]. Markedly, the influence of different notifica-
tion schedules, be it signal-contingent (random), interval-contingent or event-contingent is
shown on the response accuracy and recall of the participants [23]. Arguably, choosing op-
portune moments to prompt (also known as a beep) participants may potentially decrease
response fatigue, resulting in fewer dropouts, or even increase response quality.

In the past two decades, smartphones have accelerated the development of smarter
ESM solutions that can run on study participants’ own devices which they carry anyway,
rather than having to provide them with an extra dedicated device (as in early solutions
using personal digital assistants like the Palm Pilot [24,25]). However, there can be nu-
merous situations when individuals do not have their smartphones at hand. Furthermore,
while recent smartphones support advanced physiological measurements (like electrocar-
diograms), such measurements can be obtrusive requiring participants to interrupt their
activities, e.g., to put a finger on a specific part of the phone. In recent years, smartwatches
have emerged as commodity devices that support less obtrusive and continuous sensing.
Some smartwatches also enable the execution of third-party software and offer sufficient
screen estate to support custom user interactions (e.g., Samsung Galaxy, and Apple Watch).
These elements suggest the potential of supporting ESM through custom smartwatch appli-
cations. Additionally, these devices that are wrist-worn, easy to carry, and rich with sensors
could be leveraged to facilitate reachability as well as understanding human behavior.
More specifically, in the context of mHealth, novel means could be developed to tackle
nowadays health problems (e.g., noncommunicative diseases, unexpected behavior during
pandemics, inactivity among the populations, etc.). Accordingly, a promising direction is
the development of ESM on wrist-worn devices. Via developing our custom ESM platform,
Experiencer, we studied a dynamic form of experience sampling on smartwatches which
makes use of sensors embedded in the smartwatch for choosing appropriate moments to
sample user experiences. To demonstrate the potential of this approach we compared the
compliance between (1) a group of ESM participants that was prompted when they were
physically inactive (e.g., not moving or standing still), with (2) a group that was prompted
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while being physically active (i.e., walking, running, or doing any other activity such as
householding). Assuming that people who are physically active are not as able to respond
to prompts as those that are resting, we expected that the active group would have a lower
response rate. Contrary to our expectations, active participants were more responsive. This
result demonstrates the relevance of context-adaptive experience sampling.

The rest of the paper comprises the related works, materials and methods, results,
discussion, and conclusions sections. We briefly review notable relevant works illustrating
the use of commercially available wearable devices for experience sampling, their poten-
tials, and limitations in the related work section. In the methods section, we introduce
Experiencer, our prototype, and its distinctive features that benefited our ESM study and
the study design. The results section includes the analysis of response rates during the
study period. In the discussion section, we highlight our challenges, the limitations of our
study, and we suggest interesting directions for future work and conclude by synthesizing
and summarizing the insights gained with this study.

2. Related Work

The ubiquity of smartphones, along with their rich functionality, led to their widespread
use in the context of ESM [26,27]. Advantages of in situ data collection using smartphones
such as timestamping compared to that of conventional media like paper diaries [28] made
them a favored choice for ESM studies and encouraged developments of ESM software
solutions (e.g., [29–32]). Even though these technology-packed devices equipped with com-
plex software help studies in many ways, the compliance of participants to long-running
studies remains low [33]. In other words, response rates decline over time, especially when
participants are required to respond frequently (e.g., 8 times a day) [34]. Choosing the
opportune moments to prompt participants while adhering to the overall study protocol
can be a way to mitigate these challenges. Numerous works examined how to do this by
leveraging the capabilities of smartphones to gather contextual information [18,35–38].

Besides smartphones, newer mobile devices such as wearables offer new opportunities
to support experience sampling studies [27,39,40]. Compared to smartphones, wearables
can be more comfortable [41], with quicker accessibility [42], and can provide tactile
feedback effectively as they are worn against the user’s body [40]. Researchers have
argued that among wearables, smartwatches provide higher ecological validity [43], and
are more appreciated by study participants compared to more bulky and sensor intensive
wearables [44] such as Actiwatch or Shimmer. These devices provide dedicated sensing,
but do not support functionalities that users typically need (e.g., reading email, receiving
notifications, etc.). Hence, they are deemed as additional burden. Although, mainstream
smartwatches have less accurate sensors compared to high-end sensor-focused wearables,
their performance in recognition of physiological signals is acceptable for context sensing
(such as physical activity [45], and emotion recognition [46]). Such commodity devices are
promising to scale up to large ESM studies with hundreds of participants, without excessive
budget requirements. To the best of our knowledge, recent studies with high-end sensory
devices typically have sample sizes with less than 50 participants (N = 19, M = 20.15,
SD = 10.61) due to natural budget constraints. In addition to their usage in the ESM
context, these devices are emerging as convenient and applicable tools for data collection
and intervention in other domains such as in health (see [47–50]) and in cyber security
(see [44,51]) as well.

Researchers begun to explore the use of wearable devices (e.g., smartwatches) for
beeping, delivering questionnaires, and context sensing. These devices suffer from battery-
life constraints and limited screen estate, which reduces usability and limits the possibility
of both user input and content presentation [52,53]. Regardless, earlier studies showed that
the time between an incoming notification (beep) and initial user interaction is significantly
shorter with wearables compared to that of smartphones [54]. Additionally, as technology
advances, newer generations of smartwatches provide improved usability and battery life,
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and improved content presentation, which makes them more attractive as a platform for
supporting ESM.

3. Materials and Methods

To demonstrate how smartwatch sensors can be utilized in ESM studies and, more
generally, to demonstrate the relevance of context-sensitive prompting in ESM, we set out
to compare two sampling strategies that make use of physical activity sensors embedded in
smartwatches. We assumed that participants will be more responsive during lower levels
of physical activity. More specifically, we hypothesized that the response rate would be
higher for beeps received when ESM participants are not moving compared to when they
are physically more active. While many contextual factors may play a role in whether a
participant will respond to an experience sampling beep (such as social context, or the
tasks they are engaged in), we assumed that walking, running, or doing any other activity
such as householding would impede user’s ability to respond and this would be reflected
in response rates. The rest of this section introduces our prototyped software, study design
choices, and data analysis steps.

3.1. Materials

Software We created Experiencer [55], a GDPR-compliant ESM platform. The software is
implemented in JavaScript, using Web API of Tizen OS suitable for Samsung smart-
watches. In our experiments, we used the Samsung Galaxy Watch Active 2 devices.
To ensure seamless data collection, our prototype is integrated with GameBus [56]
(an mHealth platform developed for supporting the design, implementation, and
evaluation of various health promotion campaigns [57,58]) (Figure 1).

access study
data

receive
configurations

GameBus
API

ESM software
application send data

recordings

GameBus server

Participant

receive beepsrespond to
questionnaires

Researcher

create/update
configurations

Figure 1. Overview of Experiencer and its integration with GameBus.

Experiencer was designed to support (1) dynamic configurabilty that facilities re-
searchers with on-the-fly adjustments applied to the ESM parameters. (2) stand-alone
operation to collect data in situ, and syncing the data upon detecting reliable network
connectivity. (3) a user interface compliant with wearable usability standards so that
participants can easily answer the questionnaires on the smartwatch screen (Figure 2).
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(a) Notification popup in-
terface

(b) Questionnaire asking
for emotion type

(c) Questionnaire asking
for emotion intensity

Figure 2. User interfaces of main interactions in ESM software application.

3.2. Methods
3.2.1. Study Design

Recruitment Our study was conducted in the context of the TU/e Samen Gezond pro-
gram, an online program designed to promote healthy activities for the students
and staff members of the Eindhoven University of Technology. During the program,
participants received a set of healthy suggestions in a web application and were re-
warded points in return for acting upon those suggestions. To enhance the experience
of participants in the lifestyle program (by providing a steps tracker built on top of
our ESM application), they also received Samsung Galaxy Watch Active 2 equipped
with our prototyped ESM application.

Duration The duration of the study was 5 weeks, which is as long as the TU/e Samen
Gezond program lasted.

Number of participants Constrained by the number of available smartwatches at the time
of the study, and the recruitment process described, we could ultimately recruit
N = 71 participants.

Treatment groups The participants were randomly assigned to two treatment groups
which we called ’resting’ and ’active’: Half were assigned to the resting group who
received beeps while not moving, and the other half to the active group who received
beeps while being physically active (e.g., walking). Due to some early dropouts, ulti-
mately the active group consisted N = 37 and the resting group N = 34 participants.

Compensation Depending on the allocated treatment group in the TU/e Samen Gezond
program, participants could be rewarded with a giveaway voucher of €25 in exchange
for their points. Note that the participants were not rewarded for wearing the
smartwatch neither for any other interactions with it (e.g., checking the smartwatch
for notifications, replying to the questions they received, etc.). Rather they were
rewarded for doing healthy activities that they could register via a separate web
application dedicated to the TU/e Samen Gezond program or via unobtrusive sensing
by the smartwatch.

Schedule Following our hypothesis, the schedule of choice was event-contingent. The
monitored event was the level of physical activity. As soon as a physical activity
event was detected via our prototype, a beep was delivered to the participant’s
smartwatch. The beeps were administered depending on the type of physical activity
(e.g., walking, running, not moving), the treatment group a participant was in, and
the defined inter notification time.

Inquiry limit In our study, being event-contingent, sensible limits could reduce burden.
According to the literature, around 7 beeps per day may yield an optimal balance of
recall and annoyance [59]. Since we instructed participants to wear the smartwatch
when they were awake, assuming one wears the smartwatch ∼12 h per day, an
internotification time of 105 min (1.75 h) would result in 12

1.75 < 7 inquiries per day,
compliant with the literature.
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Inter notification time This notion is defined as the time in-between two consecutive no-
tifications. In our case, since the schedule was event-contingent, there might be a
situation that one is rarely or frequently beeped based on their level of physical activ-
ity and their treatment group. As as we described above, to prevent overwhelming
the participants, we set a 105 min internotification time.

Notification expiry There are many heuristics and hypotheses in the literature depending
on different scenarios to determine notification expiry time (or lifetime) such as 5-min
[60] or 3-min [61]. In this study, the notifications remained in the notifications area of
the smartwatch, unless a participant cleared it, or the next beep from our prototyped
ESM software arrived (our beeps did not stack up). This could also act as a reminder
to the participant in case of an occasional visit to the notification area.

Questionnaire To assess the impact of the event contingent strategy upon response rates,
we chose to survey user emotions which is a typical case of ESM applications. Fur-
thermore, we were motivated by earlier research that aims to infer emotions from
wearable sensors (see [37,46,62]). Thus, at sampling moments, participants were
requested to complete the Positive and Negative Affect Schedule (PANAS), which
is a standard scale that consists of different words that describe feelings and emo-
tions [63].

3.2.2. Data Analysis and Cleaning

Physical activity recognition To detect the physical activity levels of participants, we
utilized the built-in Samsung pedometer API that applies its proprietary algorithm
for physical activity detection. We adopted such an API to capture changes in
physical activity in real-time and to manage sending beeps based on the physical
activity levels of our participants across the active and resting treatment groups. More
specifically, the pedometer API of the smartwatch is able to detect and distinguish
not moving, walking, and running activities [64]. In the case that the algorithm fails
to categorize a physical activity, it marks it as unknown. In our study, in the active
group, the beeps were sent as soon as either walking, or running were detected and
only if the internotification time was passed. In contrast, in the resting group, the
beeps were sent when the not moving activity was detected in accordance with the
inter notification time constraint. The internotification time was set to control the
number of notifications sent to the participants. That is to avoid overwhelming
the participants by sending a beep at any moment that the pedometer detects a
physical activity. By setting such constraints, the participants received at most about
7 bees per day. Additionally, to capture a wider range of physical activities, we also
leveraged detection of activities that fell under the unknown category. The details of
such inclusion are described below in the Analysis section.

Analysis The response rate is calculated as the ratio of the number of self-reports over
the total number of received beeps. In the results section, we do so at the treatment
group level both for the whole study period and on each week:

response_rateGt =
|sel f _reportsGt |
|beepsGt |

Where G refers to a collection of participants containing either all members of a
treatment group or a single participant. Also, the time window is referred to as t.

The built-in physical activity monitor API of our smartwatch could detect walking,
running, and not-moving activities. Additionally, to capture other physical activities
(such as householding) we also enabled the detection of the built-in unknown physical
activity [64]. By doing so, we were able to capture a wider range of physical activities
(other than just walking and running) in line with our methodological decisions. The
unknown event includes a spectrum of physical activities from subtle to vigorous
and is triggered whenever the built-in activity monitor in the smartwatch fails to
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categorize a physical activity into either not moving, walking, or running. The
unknown event may be detected both in lower (resting) or higher (active) levels of
physical activity. Accordingly, we also checked the speed property of unknown events
so that beeps were only delivered at intended levels of physical activity (e.g., for a
participant in the active group, if an unknown activity of high speed were detected, a
beep could be delivered).

Cleaning The gathered data consisted of beep-related information, self-reports, and sensor
data. The beep-related information consisted of timestamps of when a beep was
received and when a beep was read. The self-report data included the timestamps
of when the self-report was submitted, and the selected emotion from the PANAS
scale along with its corresponding intensity (the different intensity levels are “very
slightly or not at all”, “a little”, “moderately”, “quite a bit”, or “extremely”). The
sensor recordings included the physiological data monitored to detect interesting
events. i.e., active and resting states.

As discussed in previous sections, the internotification time and the inquiry limit
were set to specific values congruent with the common strategies in the literature
(see [3,65]). However, at the beginning of our experiment, a technical malfunction in
our first version of the prototype caused some constraint violations concerning the
inquiry limits and inter notification times. That led to receiving beeps sooner than
the intended inter notification time and more than the inquiry limit. In other words,
participants received more beeps than intended. Although the issue was fixed during
the first week of the study, some noisy data was generated. To clean such noises,
in our analysis, for each participant, we only considered the first 7 beeps that were
delivered on each day. Having cleaned data, we tested our hypothesis by calculating
and then comparing the response rates of our treatment groups.

4. Results

Our 71 participants were divided into two treatment groups (resting and active).
N = 34 in the group notified at rest, and N = 37 in the group notified while active.
Although efforts were made to balance sample sizes, the number of participants in each
group was not the same due to some early dropouts. Based on our study parameters, a
maximum number of 17,393 beeps were possible to be delivered (71 participants, maximum
7 beeps per day, in 5 weeks). In practice, a total of 10,709 beeps were administered in our
study, compliant with the calculated maximum possible beeps.

4.1. Response Rate

We compared the response rates in each treatment group for the whole study period
and also on a weekly basis. The normality of response rates obtained from our treatment
groups was assessed. The Shapiro–Wilk test indicated that the data were not normally
distributed, W = 0.815, p = 0.00004. According to the result of the normality test, and our
intention to compare the means of two treatment groups, we adopted the Mann–Whitney
U test (two-tailed, with alpha = 0.05) to assess the difference. Based on our calculations
we were able to reject our hypothesis. i.e., contrary to our expectations, not only was the
descriptive mean response rate of the active group higher than the resting group, but also
their difference was statistically significant. Our statistical test compared active group
(M = 0.227, SD = 0.222) with resting group (M = 0.085, SD = 0.069), and resulted in
p = 0.001352, which supports its significance (Figure 3).
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Figure 3. Comparison of response rates in treatment groups for whole study period.

Furthermore, we compared the differences in mean response rates of each group week-
by-week. Based on our hypothesis, we expected higher response rates in the resting group,
however, we observed otherwise. Meaning the descriptive means were in an unexpected
direction for every week. However, we could only show statistical significance in the
second and third weeks. Figure 4 illustrates the mean response rates of the active group in
each week compared with that of the resting group.
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Figure 4. Comparison of response rates in treatment groups week-by-week.

By applying the Mann-Whitney U test, two-tailed, with alpha = 0.05, we found
significant difference in week 2 (i.e., p = 0.0.015), and week 3 (i.e., p = 0.033).

4.2. Dropouts

As a complementary step, we also analyzed how involved our participants were
throughout the study period and whether our event-contingent approach had any effect
on the dropout rate. Based on our logs collected from the smartwatches, we accumulated
the number of unique participants that used our prototype on each day. Ultimately, we
failed to find any significant difference between the dropout rates of our treatment groups
(M = 13.5, SD = 7.2 in the active group, and M = 13.3, SD = 6.2 in the resting group for
the whole study period). In addition, we found a coefficient value of high degree (r = −0.8)
in both groups with respect to time. That means the dropouts significantly increased as
time passed. Figure 5 shows the mean of the total participating members in each treatment
group every week. Nevertheless, we believe that our context-adaptive approach did retain
a sufficient number of participants for roughly 4 weeks.
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5. Discussion

Our research leveraged novel ESM software that exploits the capabilities of commercial
wrist-worn devices for in situ context sensing. We prototyped Experiencer, our custom ESM
platform compatible with smartwatches, and then successfully showed the effectiveness
of an event-contingent experience sampling based on physical activity monitor data on
response rate. However, a technical malfunction in our first delivered version of the
prototype resulted in more beeps than intended, which possibly had an adverse impact
on user experience and possibly caused dropouts. Our focus in this study was on finding
the opportune moment to beep. To find such a moment, we modeled the user by a single
piece of information, i.e., the level of physical activity. Including more contextual elements
(e.g., current activity on the smartphone, prior responses, etc.) are interesting directions
that could be studied in the future. Moreover, we considered response rate as the only
determinant of compliance. Meanwhile, literature proposes other characteristics (e.g., delay
of a response) to define compliance as well. Although the focus of our 5-week-long study
was to find opportune interruption moments, long-term engagement and sustainability of
such context-aware ESM regimes remain to be assessed for studies that last months or even
years. Additionally, following the recent focus of the ESM literature on wearables, we only
utilized smartwatches. Although the literature suggests that such devices will take over
more conventional tools (e.g., smartphones) in the future and presents the superiority of
smartwatches over smartphones in a variety of ESM studies, the inclusion of smartphones
as well as smartwatches in future ESM studies would still enrich the obtained results.

Furthermore, information such as age and gender could provide more insights. Even
though such information was asked during our discharge survey, they were not disclosed
by most of our participants. The discharge survey also included a User Experience Ques-
tionnaire (UEQ) regarding the developed application and also the experience with the
smartwatch itself. Such data could complement the analysis of response rates. However,
the limited number of survey submissions made them inconclusive.

In addition, using a propriety algorithm to detect physical activity imposes some
limitations (e.g., inability to set a level of reference regarding the degree of physical activity
to distinguish different activity types). On the other hand, devices that incorporate such
algorithms and are tested by millions of retail customers indicate their robustness in the
market and their potential in research settings. Respectively, context sensing via the ample
sensors on the smartwatches requires further assessments by designing new studies that
analyze the collected data against ground truth to understand the relationship between
subjective self-reports and objective sensor data.

This study was part of the TU/e Samen Gezond program in which participants were
given the chance to win a monetary reward in return for virtual points. The virtual points
could be acquired if one followed the healthy suggestions throughout the campaign. We
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speculated that the participants who were more engaged and physically active in the
program may be centered in one treatment group. However, we discovered that the
participants who gained virtual points and monetary rewards were evenly distributed
across our ‘resting‘ and ‘active‘ treatment groups. Thus, our treatment groups were not
biased. Additionally, perceiving the participants’ mindset and goal setting regarding
physical activity could add more value to the results. We identified and investigated
the effect of personalized goal setting on engagement levels in our previous work [66].
Accordingly, the current study could be further complemented by evaluating individuals’
experiences and habits in terms of their day-to-day physical activity level upon the study
inclusion stage.

6. Conclusions

In this paper, we investigated an event-contingent sampling schedule based on physi-
cal activity monitor data of commodity smartwatches to see how it influences the response
rates in an experience sampling method (ESM) study. The experience sampling method
addresses the issues of diary and retrospective study methods (such as retrospective bias),
by distributing the sampling moments throughout the study period. However, ESM still
suffers from declining response rates and increasing dropouts, especially in long-running
studies. To specifically overcome the challenge of decreasing response rates, we prototyped
our custom ESM platform, Experiencer, compatible with the Samsung smartwatches. To
find the opportune moment to beep, we hypothesized that the level of physical activity
at the moment of delivering beeps affects the response rates. More specifically, we ex-
pected that participants who were physically more active would have lower response
rates and vice versa. Thus, we compared two treatment groups: resting against active.
In the former, the beeps were delivered during lower levels of physical activity such as
sedentary, and in the latter, the beeps were delivered in opposite situations. Contrary
to our intuition, we rejected our hypothesis. i.e., the response rates in the active group
were significantly higher than the ones in the resting group. Such results highlight the
relevance of studying dynamic forms of experience sampling that leverage better context
sensing and more intelligent sampling regimes, especially via commodity wearables such
as smartwatches that are becoming widespread. Additionally, we discourage ESM tool
builders from just implementing strategies based on intuition. On the other hand, we
encourage scholars to conduct more fine-grained follow-up studies to better understand
the optimal personalization settings concerning compliance in ESM studies.
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