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Abstract: The construction industry has a considerable environmental impact in societies, which
must be controlled to achieve adequate sustainability levels. In particular, cement production
contributes 5–8% of CO2 emissions worldwide, mainly from the utilization of clinker. This study
applied Life Cycle Assessment (LCA) methodology to investigate the environmental impact of
cement production and explore environmental improvements obtained by adding marble waste
sludges in the manufacture of Portland cement. It was considered that 6–35% of the limestone
required for its production could be supplied by marble waste sludge (mainly calcite), meeting
the EN 197-1:2011 norm. Energy consumption and greenhouse gas (GHG) emission data were
obtained from the Ecovent database using commercial LCA software. All life cycle impact assessment
indicators were lower for the proposed “eco-cement” than for conventional cement, attributable to
changes in the utilization of limestone and clinker. The most favorable results were achieved when
marble waste sludge completely replaced limestone and was added to clinker at 35%. In comparison
to conventional Portland cement production, this process reduced GHG emissions by 34%, the use
of turbine waters by 60%, and the emission of particles into the atmosphere by 50%. Application of
LCA methodology allowed evaluation of the environmental impact and improvements obtained
with the production of a type of functional eco-cement. This approach is indispensable for evaluating
the environmental benefits of using marble waste sludges in the production of cement.

Keywords: marble waste sludge; life cycle assessment (LCA); CO2; emissions; greenhouse gases
(GHG); cement; limestone; environment

1. Introduction

Worldwide cement production has remained constant since the crisis in 2008, reaching
4100 million metric tons in 2019 [1] (Figure S1). According to the latest International Energy
Agency report, global cement production is expected to be 12% higher by 2050, with an
increase of 4% in direct CO2 emissions [2].

The cement industry has been reported to contribute 5–8% of global CO2 emis-
sions [3,4], estimated at 1.50 ± 0.12 gigatons of CO2 in 2018 [5]. The calcination process
contributes half of the CO2 emitted [6,7], with the emission of 850 kg CO2 per ton of clinker
produced [8].

The CO2 emitted during clinker production derives from the combustion of fossil
fuels to generate thermal energy and includes CO2 from the decomposition of CaCO3 into
CaO and from the calcination process (limestone decarbonation) [9]. The latest update of
the Cement Sustainability Initiative (CSI) database estimates the emission of 836 kg·CO2/t
clinker in 2018, based on data from 21% of the world’s cement plants, lower than the rate of
844 kg·CO2/t clinker recorded in 2015 [10]. It was reported that 12,700,000 tons of clinker
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were produced in Spain in 2018, based on data from 63% of cement production plants,
with the emission of 11,100,000 tons of CO2 [11]. Indirect CO2 emissions attributable to
cement production result from the production of electric energy and from transportation
and logistics.

According to Schneider [12], the greatest potential CO2 reduction potential can be
achieved by replacing clinker with supplementary cementitious materials that deliver the
appropriate performance and durability, which need to be readily available. Efforts to
reduce CO2 emissions from cement production should focus not only on the calcination
process but also on the processes responsible for the other 50% of emissions. Account
should also be taken of the impact on the consumption of raw materials (limestone, clay,
etc.), with 1.7 tons being needed to produce 1 ton of clinker [8]. The substitution of 40%
of the clinker used in cement production could theoretically reduce the annual global
emission of CO2 by up to 400 million tons.

In the 2015 Paris Agreement, the European Union (EU) committed to a 40% reduction
in greenhouse gas (GHG) emissions versus 1990 levels by 2030 [13]. The European cement
industry is governed by Directive 2003/87/CE, which assigns maximum CO2 emissions
by sector and calculation method (emission rights) and sets out the instruments available
to comply with the reductions agreed by each member State.

Potential environmental improvements investigated include reductions in the con-
sumption of fossil fuels and raw materials, atmospheric emissions, effluent discharges, and
solid waste associated with conventional Portland cement production.

Researchers have frequently characterized and studied the properties of cements and
mortars with marble waste sludge over the past few years [14–23]. However, they have
centered on the fulfillment of norms for mechanical composition and resistance (AENOR,
2005; AENOR, 2011) and have not addressed the issue of marble waste utilization from
the perspective of environmental improvements. Some have referred to reductions in the
carbon footprint achieved with additives [24,25] through a lesser consumption of cement
clinker, but they have not presented the environmental argument.

Life cycle assessment (LCA) methodology was internationally formalized and stan-
dardized within the family of ISO 14,040 standards in the 1990s, with a broad revision in
2006. It is widely accepted by researchers and institutions and used by public administra-
tions to formulate policies [26]. LCA offers the quantification of environmental pressures
related to goods and services throughout their life cycle, including the acquisition, treat-
ment, configuration, production, and use of raw materials and their recycling or final
disposal, i.e., “from the cradle to the grave”.

The regulations establish four phases of LCA development: (i) definition of the
objective and scope, including limits of the system and levels of detail; (ii) life cycle
inventory (LCI) analysis, compiling and quantifying inputs and outputs throughout the
life cycle of the product [27,28]; (iii) life cycle impact assessment (LCIA), determining and
evaluating the magnitude and significance of the potential environmental impact of the
product [29]; and (iv) interpretation of LCI and/or/LCIA findings, establishing conclusions
and making recommendations.

Besides LCA, other environmental management techniques include risk evaluation,
environmental performance evaluation, system dynamics, environmental audit, ecological
footprint, GHG protocol, and LCIA. LCA is considered to provide the optimal framework
for evaluating the potential environmental effects of products, and it has been used in
research on waste, demonstrating that its environmental impact is a key question to be
addressed [30,31].

Introduced by Jay Forrester in the 1960s, system dynamics is useful to understand
complex large-scale management problems in accordance with the principles of systemic
thinking [32]. The difference between LCA and system dynamics lies in their scope. Thus,
LCA has a more limited scope, focusing on very specific environmental indicators, which
should not be perceived as a drawback but rather as a mark of its specificity. An et al. [33]
used LCA to compare various scenarios of cement production and CO2 capture. Although
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they found that some technological changes only minimally reduce the environmental
impact of each ton of cement, they can have a major effect if applied throughout the cement
sector, as noted by multiple researchers. The review by Wu et al. [34] concluded that
LCA prevails over system dynamics. Nicoara et al. [35] evaluated the contribution of
industrial waste, including marble powder, as supplementary cementitious material in
cement manufacturing. After a wide review, they emphasized the importance of LCA
alongside investigation of the mechanical and physicochemical properties of the material
in order to establish the environmental feasibility of its utilization.

Table 1 lists the most recent investigations that used LCA methodology in relation
to cement, mortar, and concrete products, either directly or within research on waste
from construction and demolition. Few published studies have used LCA to assess the
contribution of industrial additives or byproducts to cement and/or concrete, presented as
complementary to technical evaluations. The table shows wide variations in the utilization
and applicability of LCA among researchers. The method is frequently adapted to the
aims of the investigation, which is a valid approach, although its principles, requirements,
and guidelines have sometimes been followed in a rather relaxed manner. The review by
Gursel et al. [27] highlights the need to continue quantitative research on the utilization of
industrial additives and byproducts in concrete production, while Brito and Kurda 2021 [23]
reviewed a series of potential strategies to reduce the negative impact of cement-based
materials production.

The Global Warming Potential (GWP) of these processes is frequently evaluated
in the aforementioned studies. It has been estimated that Portland cement production
generates an average of 842 kg·CO2/ton of clinker produced and that around 6–7% of total
anthropogenic GHG emissions derive from cement production. In order to achieve the
agreed objective of a 50% reduction in total CO2 emissions by 2050, CO2 emissions from
the cement industry need to be reduced by at least 18% [36].

The present study addresses the reduction of CO2 emissions in cement manufacturing
by the utilization of marble waste byproducts and is therefore within the framework
of Mechanisms of Clean Development, alongside different publications from a business
management perspective [25]. LCA methodology is used in the present manuscript to
evaluate environmental improvements in conventional Portland cement manufacturing
that can be achieved by introducing marble waste sludge into its production. Account
is also taken of the environmental benefit of eliminating marble waste from the mining
industry, which is currently deposited in decantation pools as inert material, representing
an environmental hazard.

Table 1. Applications of LCA for materials used in the production of cement, mortar, and concrete.

Material Parameters Analyzed * GHG ** Functional Unit Stages Considered Ref.

Cement production in
Spain

ADP, GWP, ODP, HTP,
TETP, POCP, AP, EP,

MEP, LUP
21.6% 1 ton of grey cement Cement production.

CO2 capture [37]

Cement with
cementitious powder

waste
GWP Variable - Cement production [38]

Cement production in
China

GWP, AP, EP, POCP,
HTP - 1 ton of cement and

with 42.5 MPa

Material acquisition.
Processing and

transportation to plant.
Cement production

[39]

Substitution of cement
in concrete with
supplementary

cementing materials

GWP Variable 1 m3 of concrete

Material acquisition.
Transportation to plant.

Concrete production.
Final transportation

[40]



Int. J. Environ. Res. Public Health 2021, 18, 10968 4 of 15

Table 1. Cont.

Material Parameters Analyzed * GHG ** Functional Unit Stages Considered Ref.

Mixtures of concrete
with blast furnace fly

ash and slag
GWP 32%

62% 1 m3 of concrete

Material acquisition.
Transportation to plant.

Concrete production.
Final transportation

[41]

Self-compacting
concrete GWP - 1 m3 of premixed

concrete
Premixed [42]

Cement with additives GWP, EC 12% 1 ton of cement

Material acquisition.
Processing and

transportation to plant.
Cement production.

[43]

Construction product
recycling GWP -

Cement production
demand. Reference

flow

Landfill. Downstream
recycling. Recycling.

Recycling after selective
demolition

[44]

Concrete with ash
from wastewater
treatment plant

sludges

ADP, GWP, ODP, HTP,
TETP, POCP, AP, EP 9% 1 m3 of premixed

concrete
Transportation and

premixing [45]

Cement with granite
sludges EC - - Test tube preparation [46]

Cement mortars with
plastic waste and

carbon fibers
GWP, EC 13.69% 1 m3 of cement paste Cement production [47]

Self-compacting
concrete reducing
binding material

GWP 16% 1 m3 of premixed
concrete

Concrete production [48]

Cement mortar with
glass powder

GWP, ODP, AP, EP,
POCP 20% 100 bags of cement Cement production [49]

Concrete reducing
cement, adding

metakaolin and steel
fibers

GWP Variable 1 m3 of premixed
concrete

Obtaining raw material
Fresh concrete production.

Transportation
[50]

Ornamental stone
waste added to cement GWP, EC 9% 1 kg of product

Additive drying.
Cement production.

Transportation
[51]

* ADP: antibiotic depletion potential. GWP: global warming potential. ODP: ozone layer depletion potential, R11–CCl3 F. HTP: human
toxicity potential, DCB–1,4- dichlorobenzene. TETP: terrestrial ecotoxicity potential. POCP: Photochemical ozone creation potential.
AP: Acidification potential. EC: Energy consumption. EP: Eutrophication potential. MEP: Marine Eutrophication potential. LUP: Land-use
potential. ** GHG = greenhouse gas emissions. The researchers use different terms for the same concept, e.g.,: KgCO2, carbon footprint,
climate change, GWP, etc.

2. Materials and Methods
2.1. Marble Waste Sludges

The waste used in this study is sludge from the marble processing industry in the
province of Almeria (Spain). It derives from the refrigeration process applied in the
cutting and polishing of marble blocks and slabs, with the water being extracted by
centrifugation and the remaining sludge deposited in a public decantation pool. The
sludge is an inert waste, largely comprising calcite, with alkaline pH and particle size
<1 µm. Sludge samples were gathered at a distance of 100 km from the factory where the
clinker and cement was prepared. The technological validity of this proposal was examined
by using the sludge samples to prepare six CEM II cements that fulfill European norm EN
197-1, increasing the proportion of sludge and reducing the percentage of clinker. Studies
have confirmed the viability of this approach for the production of mixed cement [52].
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The simultaneous adoption of these strategies in the concrete industry would reduce its
environmental impact.

2.2. Study Strategies for Reducing Environmental Impacts

This study proposes three strategies to reduce the environmental impact of the cement
industry based on the utilization of alternative raw materials and the application of LCA
methodology, as described below and summarized in Figure 1:

I. Utilization of carbonated sludge as substitute for raw materials used to produce
cement clinker, maintaining composition percentages.

II. Utilization of carbonated sludge as additive, reducing the percentage clinker in
cement (by weight) to obtain CEM-II cement.

III. Utilization of carbonated sludge to replace the raw materials that form the clinker,
obtaining CEM-II cements with different proportions of carbonated sludge.

We have found no other published environmental and cost-benefit analyses of the use
of waste powders in large-scale production, as also reported by other authors [53]. Besides
replacing limestone with marble waste powder, other stages of conventional Portland
cement manufacturing are affected by the present proposal, including the obtaining and
transformation of raw materials and the preparation of the raw cement and cement. Schnei-
der et al. [54] described different strategies for promoting sustainability in the cement
industry, including the utilization of alternative fuels and raw materials. The present study
focuses on the substitution of raw materials and the reduction in clinker.
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using carbonated sludge waste.

2.3. Scope, System Boundary, and LCA Methodology
2.3.1. Scope of the Study

The present study aims to assess and compare the environmental impact of Portland
cement production and the derived “eco-cement” produced with marble wastes, applying
LCA methodology focusing on the category of environmental impact of Climate Change or
Global Warming Potential (GWP).

2.3.2. Functional Unit

The functional unit is defined as 1 kg of cement at the factory gate. This study adopts
a “cradle-to-gate” approach, so that the inventory includes processes associated with the
production of these services. Sludge is generated in a process that classifies it as waste and
does not therefore take account of its environmental burden. The problem with adopting a
“cradle-to-grave” or “cradle-to-cradle” perspective is the lack of representative data related
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to the phases of use and end of useful life. The database for the life cycle inventory in
the construction industry includes cement, aggregates, and water as examples of primary
input materials, but it does not specifically include data on supplementary cementitious
materials or recycled waste [55].

The setting of the functional unit is established, defining the quantification of the
identified functions (performance characteristics) of the product [56]. This is important
because it limits the concepts considered and quantified, it provides input and output
data for the process, and, more importantly, it allows comparisons of LCA results among
processes or products with the same functional performance. ISO 14,040 standard and
14,044 methodology were used for the purposes of this evaluation, which aimed to establish
a framework rather than detailed guidelines. LCA studies need to use the same parameters
for their functional units to permit their comparison. In this way, the ISO standard organizes
the LCA into four main phases:

I. Definition of the objectives and scope, making key decisions on the configuration
and definition of the system under study.

II. Inventory analysis, identifying and quantifying the energy, water, and materials used
and environmental emissions, including solid waste, gas emissions, and wastewater
discharge.

III. Evaluation of the LCIA to identify and assess the amount and importance of po-
tential environmental impacts. Inputs and outputs are first assigned to impact
categories, and their potential impacts are quantified according to characterization
factors. This step provides details on the indicators resulting from all impact cate-
gories; the importance of each impact category is evaluated by normalization and,
finally, by weighting.

IV. The last phase comprises the interpretation and review of results, determination of
data sensitivity, and presentation of conclusions.

2.3.3. System Boundary

Figure 2 summarizes the system limits, including all of the supplies necessary for
cement production. They cover the extraction of each raw material, its preparation and
homogenization for producing raw cement, and its transportation. The raw cement is
burned to obtain clinker, followed by milling and the addition of plaster. The final product
is stored in bulk in the plant facilities.

Industrial machinery and equipment are not considered, because of the difficulty of
inventorying all goods involved and because the environmental impact per product unit is
considered low in the LCA framework in comparison to the other processes, being used
over a prolonged time period and also in other processes.

The Portland cement production process and associated norms need to be summarized,
taking EN 197-1 regulation as reference, in order to develop a strategy to reduce the
environmental impact by using marble waste in powder form.

The process is divided into four phases (Figure 2): (I) Preparation and transport
of raw materials, obtaining the limestone, clay, sand, and iron mineral in the quarry,
grinding them, and then transporting them to the plant; (II) Raw material processing,
homogenizing components by selective grinding and mixing, producing raw cement;
(III) Clinker production; burning the raw cement, which is usually preheated; and (IV)
Milling of clinker and additives; after cooling, plaster and other additives are added to the
clinker, and the resulting mixture is milled. The final product, ordinary Portland cement, is
then stored for subsequent distribution.

Finally, it should also be considered that the system suggested is for full-scale produc-
tion and that cement is an essential component of two products heavily used in construction
worldwide, i.e., concrete and mortar. Some studies report that Portland cement is the main
source of CO2 emissions in concrete mixtures, reaching 81% of total CO2 emissions [57], and
concrete has become the second most widely used substance in the world after water [58].
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The designations of ordinary Portland cements and those with additives are listed in
supplementary information (Table S1).
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2.3.4. Life Cycle Inventory Analysis and Impact Assessment

LCA methodology requires definition of the environmental impact categories in
cement production, which are GWP and primary energy demand. The former is quantified
as kg of equivalent CO2, using the global protocol for Community-scale GHG emissions
(GPC) of the international plant protection convention (IPPC) [59], while the latter is
expressed as cumulative energy demand (CED) in MJ-equivalents. The CED of a product
represents the direct and indirect energy consumption over its life cycle, including the
energy consumed during the extraction, manufacturing, and removal of raw and auxiliary
materials [60]. It has been reported that the main environmental burden of concrete
production and the highest GHG emissions over its life cycle result from the manufacture of
cement [61]. It has been proposed that the combined utilization of waste fuels and cements
with additives alongside technological improvements in energy efficiency could reduce
GHG emissions from cement manufacturing by 11% [6,62]. The addition of limestone to
Portland cement (during concrete production) has been estimated to reduce GHG emissions
by 4% [63]. On the other hand, it has been found that improvements in transportation and
the end-of-life of processes have relatively little impact on global GHG emissions from
cement and concrete manufacturing, reducing them by less than 2% [64].

Emissions to the atmosphere of the clinker production system largely depend on the
system design and on the nature and composition of the raw materials and fuels [65]. The
base scheme of this research was the synthesis of processes performed in the reference
cement factory (Figure 2), which uses a dry process. Based on the contribution of inputs
and emissions, we obtained four stages: supply and preparation of raw materials; mixing
and homogenization; clinkering; and grinding and mixing of clinker and additive.

The study hypothesis was that negative environmental impacts will be reduced
when larger amounts of marble waste powder sludge are used to replace limestone in
the production of raw cement and as a replacement for cement clinker. As observed in
Table 2, the composition of the mixture follows Spanish norms for the reception of cement
(RC-16) [66]. The percentage of plaster, used as setting retardant, remains constant and
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within the limit established by the EN 197-1 norm for sulfate (SO3) content (<3.5% of the
final cement weight).

The primary data on energy consumption and GHG emissions during marble cutting
and cement transportation and manufacturing were complemented with average data
from Europe in the Ecoinvent V3.7, Industry data library v.2017, Agri-footprint v5.0,
US Life Cycle Inventory Database v2021, European and Danish Input/Output database,
Environmental Footprint (EF.v2.0) and EXIOBASE v3.3 databases, using the commercial
software SimaPro LCA version 9.1.1 (PRé Sustainability, Amersfoort, Netherlands), one of
the most widely accepted methodologies in Europe [67].

The impacts were assessed by SimaPro version 9.1.1 software using the ReCiPe2016
method, since it provides harmonized implementation of the cause-and-effect pathways
for the calculation of the characterization factors of the midpoint and the end point. This
methodology is framed in the European level and is considered as the successor of previous
methodologies (CML2001 and ECO-Indicator99). It integrates the approach oriented to the
environmental problem and the approach oriented to the damage.

Life Cycle Impact Assessment (LCIA) translates emissions and resource extractions
into a limited number of environmental impact results through the characterization factors.
Each substance, resource and extraction belonging to the manufacturing process was
classified and accounted for according to its group of resources, air, and soil compartments.
Those groups are the emissions that contribute to the levels of toxicity of the manufacturing
process. Its classification is based on the ISO 14,044 operational guide of the LCA manual
and the SimaPro software was used for accounting.

The values of characterization factors for each issued substance are listed in the ACV
manual: Operational Annex [68]. The calculations to perform the characterization, that is,
to obtain the environmental impacts, were calculated with the SimaPro software.

Table 2. Study of cases as a function of the common cement classification of the norm for the reception
of cements (RC-16) and the contribution of marble waste powder.

Materials
Type of Cement (RC-16)

CEM I CEM II/A-LL CEM II/B-LL
Clinker 95–100% 80–94% 65–79%
Plaster <5% <5% <5%

Limestone - <20% <35%

Materials
Type of Cement

CEM I * CEM II/A-LL * CEM II/B-LL *
Clinker 95–100% 80–94% 65–79%
Plaster <5% <5% <5%

Carbonated sludge 80% of raw cement 80% of raw + <20% 80% of raw + <35%
* The asterisk sign was used to differentiate the derived eco-cements from the original class of cements.

3. Results

Among the scenarios examined in the LCA (Figure 3), the first is the total substitution
of limestone by waste marble powder sludge to form raw cement that is then burned,
yielding the Clinker* to produce cement CEM I* after the addition of plaster as retardant.
This approach avoids the extraction of limestone from the quarry and its grinding, trans-
portation, milling, and pre-homogenization. Given that the percentage CaCO3 is 98.52% for
waste marble powder sludge versus 95% for limestone, a lower amount of waste is required
to produce raw cement (0.698 kg/kg of waste vs. 0.705 kg/kg of limestone), as shown
in Table 3. In addition, the waste is dried outdoors and requires no electricity to reduce
its humidity. Emissions from this material in cement production are therefore considered
negligible and are not included in the system limits, only taking account of emissions from
its processing and transportation.

As part of the scenario of total limestone substitution in raw cement to obtain clinker*,
two maximum percentages of waste marble powder sludge were used, in accordance
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with technical norm RC-16 (options 2 and 3, Figure 3), reducing the amount of clinker*
required. In alternative 2, the waste is added with clinker* and plaster in the final milling
phase, obtaining CEM II/A-LL* with a maximum addition of 20% waste and proportional
reduction in clinker*. The letter A is included in this designation because the percentage
addition is ≤20%, and LL because the total organic carbon content in the waste marble
powder sludge is <0.2%.

LCA alternative 3, using the percentages permitted by EN 197-1, includes the highest
percentage of waste marble powder sludge and should therefore deliver the greatest
reduction in environmental impact. Limestone is replaced by the waste in the formation
of raw cement and the production of clinker*, which is milled to produce cement CEM
II/B-LL*, containing <65% clinker with plaster and 35% waste.
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The inventory (Table 3) was based on data provided by the factory and complemented
by the Ecoinvent database and published corrections [28]. High-quality data are essential
for the evaluation of environmental performance, especially for comparative ratings [69].

Table 3 shows that the marble waste sludge has a higher purity (CaCO3 content of
98.52% vs. 95.00%), indicating that a smaller amount is required to substitute limestone,
although its CO2 emissions are slightly higher (0.008 kg/kg). One advantage of using
marble waste sludge is that it does not require grinding, and its mixture with clinker
requires much less energy to prepare raw cement, with 75% less energy being used in the
milling process (0.012 kWh/kg vs. 0.048 kWh/kg). Finally, total material transportation
costs are lower when limestone is replaced with waste sludge, which is taken to the factory
by truck, with no transportation by boat.
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Table 3. Basic inventory and process with limestone substitution and 35% additives.

Component Basic Process Limestone Substitution and
35% Additives Data Source

Clinker Clinker *
Coal 4.90 × 10−2 kg/kg 4.90 × 10−2 kg/kg Factory

Petroleum coke 6.50 × 10−2 kg/kg 6.50 × 10−2 kg/kg Factory
Fuel oil 0.0122 kg/kg 0.0122 kg/kg Factory
Diesel 0.001 kg/kg 0.001 kg/kg Factory

Natural gas 1.06 × 10−4 MJ/kg 1.06 × 10−4 MJ/kg Factory
CO2 from fuels 0.390 kg/kg 0.390 kg/kg Ecoinvent

CO2 from limestone 0.295 kg/kg 0.303 kg/kg Ecoinvent
Slag 0.213 kg/kg 0.218 kg/kg Factory

Sandstone 0.071 kg/kg 0.072 kg/kg Factory
Lamellae 0.012 kg/kg 0.012 kg/kg Factory

Limestone/Marble waste sludge powder 0.705 kg/kg 0.698 kg/kg Factory
EE in clinker 0.0476 KWh/kg 0.0476 KWh/kg Ecoinvent

EE in raw cement milling 0.048 KWh/kg 0.012 KWh/kg Ecoinvent
Process water 0.00059 m3/kg 0.00059 m3/kg Factory

Drinking water 0.000447 ton/kg 0.000447 ton/kg Factory
Transport by truck 0.188 tkm/kg 0.224 tkm/kg Ecoinvent
Transport by boat 0.17 tkm/kg - Ecoinvent

CEMENT CEM I CEM II/B-LL *

Transport by truck 0.0606 tkm/kg 0.1225 tkm/kg Ecoinvent
Total clinker consumed 0.950 kg/kg 0.603 kg/kg Factory

Plaster 0.050 kg/kg 0.041 kg/kg Factory
Marble waste sludge powder 0 kg/kg 0.355 kg/kg -

Electrical energy 0.052 KWh/kg 0.0338 KWh/kg Ecoinvent

EE = Electrical energy. * The asterisk sign was used to differentiate the derived eco-cements from the original class of cements.

The most relevant factor explaining the more favorable environmental impact of
preparing eco-cement CEM II/B-LL* is the lesser amount of clinker consumed when
marble waste sludge is added. Given that CEM I is an additive-free cement, the truck
transportation it requires is half that needed for CEM II/B-LL*.

After carrying out the inventory, an LCIA was performed, assigning inventory inputs
and outputs to the different impact categories. Based on the characterization factors, indi-
cators were obtained for the conventional process and for the process using 35% additives
with total limestone substitution, as the environmental strategy with greatest impact
(Table 4).

Table 4. Results of LCIA indicators, conventional process, and process with limestone substitution and 35% additives.

Substance Section Unit Normal Process Process with Limestone
Substitution and 35% Additives

Coal, brown, in soil Raw kg 2.6018 × 10−2 1.4320 × 10−2

Coal, hard, not specified, in soil Raw kg 8.1269 × 10−2 5.0780 × 10−2

Gas, natural, in soil Raw m3 1.6506 × 10−2 1.0564 × 10−2

Oil, crude, in soil Raw kg 1.1691 × 10−1 8.1591 × 10−2

Water, cooling, natural origin not
specified/m3 Raw m3 3.1323 × 10−3 1.8084 × 10−3

Water, turbine use, natural origin not
specified Raw m3 1.3589 4.5948 × 10−1

Carbon dioxide, fossil Air kg 8.4230 × 10−1 5.5511 × 10−1

Dinitrogen monoxide Air kg 7.0630 × 10−6 4.4983 × 10−6

Methane, fossil Air kg 4.7811 × 10−4 3.2678 × 10−4

GHG Air kg 8.5636 × 10−1 5.6462 × 10−1

Nitrogen oxide Air kg 1.5937 × 10−3 1.2070 × 10−3
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Table 4. Cont.

Substance Section Unit Normal Process Process with Limestone
Substitution and 35% Additives

NMVOC Air kg 2.9612 × 10−4 2.2172 × 10−4

Particles, <2.5 um Air kg 8.9508 × 10−5 6.1561 × 10−5

Particles, >10 um Air kg 3.5062 × 10−4 1.8458 × 10−4

Particles, >2.5 um and <10 um Air kg 1.0298 × 10−4 5.4322 × 10−5

Sulfur dioxide Air kg 3.3898 × 10−3 2.1530 × 10−3

BOD5, biological oxygen demand Water kg 1.3404 × 10−3 9.0632 × 10−4

COD, chemical oxygen demand Water kg 1.5508 × 10−3 1.1052 × 10−3

DOC, dissolved organic carbon Water kg 4.2541 × 10−4 2.8977 × 10−4

Nitrate Water kg 2.5444 × 10−6 1.7342 × 10−6

PAH (Polycyclic Aromatic Hydrocarbons) Water kg 3.9898 × 10−8 2.7401 × 10−8

Phosphate Water kg 5.2351 × 10−6 3.9545 × 10−6

Sulfate Water kg 4.9035 × 10−4 2.8335 × 10−4

TOC, total organic carbon Water kg 4.2604 × 10−4 2.9025 × 10−4

Arsenic Soil kg 1.2491 × 10−9 8.4610 × 10−10

Cadmium Soil kg 1.6440 × 10−10 1.6072 × 10−10

Chromium VI Soil kg 3.8321 × 10−8 2.1789 × 10−8

Mercury Soil kg 1.1348 × 10−12 8.2473 × 10−13

Nickel Soil kg 1.5667 × 10−9 1.7566 × 10−9

Vanadium Soil kg 1.5897 × 10−10 8.5736 × 10−11

Zinc Soil kg 3.3479 × 10−7 3.8050 × 10−7

The final LCA phase is the interpretation of LCIA results, highlighting the values of
the most relevant substances (Figure 4). All of these values are lower in the eco-cement
proposal than in conventional production because of the action taken on limestone and
clinker contents. Given that limestone is a primary element in cement production, it
has a higher limestone kg/clinker kg ratio than the products that comprise it. In the
case of clinker, reducing the amount necessary to produce 1 kg of cement directly and
proportionally yields a reduction in supplies and emissions.
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Importantly, the LCIA reveals that GHG levels are around 34% lower for the produc-
tion of CEM II/B-LL* versus CEM I cement. In addition, 60% less water is used for turbines
and a lower amount of particles is emitted into the air. Future LCA studies of eco-cement or
“green concrete” should address specific functional concrete measures and exposure condi-
tions expected [70]. Likewise, an aspect of increasing scientific interest in LCA analyses is
the need to model rebound or recovery effects [71], given that the environmental impact of
efficiency measures is not necessarily in the same direction, sometimes producing indirect
effects that are not always positive.

4. Conclusions

This study uses LCA methodology to present an example of sustainability improve-
ment in industry. It was applied to evaluate a reduction in the environmental impact of
cement production. The results allow a priori assessment by industries of the effects of
adding marble powder in cement production.

All LCIA indicators are lower for the proposed eco-cement than for conventionally
produced cement. The actions on limestone and clinker, two key elements in cement
production, directly and proportionally reduce inputs and emissions.

GHG emissions are around 34% lower with the production of CEM II/B-LL* cement
than with the production of CEM I cement.

The replacement of limestone with marble powder sludge in raw cement avoids three
stages in the production process: extraction, transportation from the quarry, and roll milling.
The addition of marble sludge to clinker in cement production avoids ball milling, reducing
GHG emissions and energy consumption. The higher percentage addition of sledge, the
less clinker is required, which also reduces the GHG emitted in the clinkering process.

The system limits considered in this study covers the extraction of raw materials,
preparation and production of cement and transportation. However, industrial machinery
and equipment might be considered for a more in detailed future LCA analysis, even
though they are involved and shared with other industrial processes. An analysis of LCA
for eco-cement production is given, considering Spanish regional set-up following national
and European standards and norms. Nevertheless, it could be generalized and extended to
other similar processes adopting their constrains, specifications, and regulations.

It is worth mentioning that, for example, one of the strategies in the present study is to
replace 6–35% of the limestone with marble waste powder in “green” cements, obtaining a
product that meets European Norm EN 197-1:2011. It is not a question of merely presenting
an option but rather evaluating the technological validity of its real-world application in
the market, given that the scientific literature has long addressed the possibility of using
limestone additives for cement and concrete.

It would be also interesting to analyze model rebounds or recovery effects given that
the environmental impact of efficiency measures is not necessarily in the same direction,
sometimes producing indirect effects that are not always positive. In addition, Future
LCA studies of eco-cement or “green concrete” should address specific functional concrete
measures and exposure conditions expected.
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