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Abstract: The risks associated with landslides are increasing the personal losses and material damages
in more and more areas of the world. These natural disasters are related to geological and extreme
meteorological phenomena (e.g., earthquakes, hurricanes) occurring in regions that have already
suffered similar previous natural catastrophes. Therefore, to effectively mitigate the landslide risks,
new methodologies must better identify and understand all these landslide hazards through proper
management. Within these methodologies, those based on assessing the landslide susceptibility
increase the predictability of the areas where one of these disasters is most likely to occur. In the last
years, much research has used machine learning algorithms to assess susceptibility using different
sources of information, such as remote sensing data, spatial databases, or geological catalogues. This
study presents the first attempt to develop a methodology based on an automatic machine learning
(AutoML) framework. These frameworks are intended to facilitate the development of machine
learning models, with the aim to enable researchers focus on data analysis. The area to test/validate
this study is the center and southern region of Guerrero (Mexico), where we compare the performance
of 16 machine learning algorithms. The best result achieved is the extra trees with an area under the
curve (AUC) of 0.983. This methodology yields better results than other similar methods because
using an AutoML framework allows to focus on the treatment of the data, to better understand input
variables and to acquire greater knowledge about the processes involved in the landslides.

Keywords: landslide; hazard assessment; susceptibility; automatic machine learning

1. Introduction

Landslides involve 5% of natural disasters globally [1], which poses great risks as they
are associated with other natural disasters, such as hurricanes, earthquakes or eruptions [2].
Besides, in recent times this natural risk has increased on a global scale due to urban devel-
opment in areas prone to landslides, deforestation and increased regional or local rainfall
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caused by climate change [3,4]. For these reasons, landslides have negative consequences
on the environment, material goods and human lives [5].

To reduce and mitigate the risk associated with this natural phenomenon, the processes
of identifying and understanding the causes of landslides must be improved to promote
prevention policies, early warning systems and recovery programs [6]. We define risk as
the combination of the physics probability of an event happening (hazard) and the potential
damage that this event might generate (vulnerability) [7]. For this reason, we must address
the evaluation of the landslide risk into a framework, combining danger and vulnerability.

Regarding landslide hazard assessment, one of the most effective tools are suscep-
tibility maps [8], which are understood as the spatial distribution of the probability of
occurrence of a landslide [9]. These maps allow us to exploit the spatial relationship be-
tween the conditioning and triggers factors and their occurrences, thereby identifying areas
where future events can occur [10]. Furthermore, landslides are strongly associated with
topographic, geologic, meteorological and environmental factors [11,12]. Therefore, data
sources containing spatial information related to these factors can determine the suscepti-
bility of an area to these natural disasters [13]. In recent years, the use of methodologies
based on geographic information systems (GIS) has intensified landslide susceptibility
analysis. However, to choose the most accurate assessment of landslide susceptibility in a
study area, comparing and testing different models is essential [14,15].

Methods used to develop susceptibility maps can be divided into three types: heuris-
tic, classical statistics and machine learning methods [16]. Firstly, heuristic methods are
based on the development of susceptibility index starting from landslide inventories, clas-
sifying the conditional factors according to a hierarchy [17], which introduces a subjective
appreciation of the importance of each factor [18]. Secondly, methods based on classical
statistics analyze the linear correlation between landslide and their conditional factors [19].
Into this category, we find models based on the value of information [20], the weight of
evidence (WOE) [21] or the general linear models (GLM) [22]. Finally, machine learning
methods utilize linear and non-linear relationships between landslides and the condition-
ing factors [23]. The latter are increasingly used to produce susceptibility maps due to the
good results in environments where conditions are dynamic and complex processes [24].

Among the machine learning models used to calculate susceptibility, we find logistic
regression, support vector machines (SVM), decision trees, k nearest neighbors (KNN),
neural networks [25], Bayesian network [26], naive bayes [27] or fuzzy logic [28]. Although
in recent times, research has also been focused on the use of assembler techniques, such
as bagging, dagging, boosting [29], the use of deep neural networks (deep learning) [30]
or the application of hybrid computational intelligence models [10,31]. Currently, studies
focus on: (i) hybrid applications of various algorithms [5,10,21,31] (ii) comparison between
algorithms belonging to different typologies [29,32,33], (iii) comparison of different models
based on a single algorithm typology such as SVM [13,34], random forest [22,27,35–37] or
neural network techniques [30,38,39], (iv) demonstrate the sensitivity of the models to how
the data are sampled, how the hyperparameters of the models are configured or how the
information is parameterized [40–42].

Due to the proliferation of different techniques, the burden of research is falling
on the generation of models and therefore risk assessment lost sight of. Thus, the new
automatic machine learning frameworks (AutoML), which facilitate models’ development,
adjustment and evaluation, allow analysts, developers and scientists to focus on reflection,
discussion and analysis of the results [43]. AutoML frameworks based on open-source
libraries, such as Scikit-learn, bridge the different machine learning models design levels,
boosting the data science process [44].

The main objective of this study is to assess the danger of a landslide, based on the
development of a susceptibility measurement methodology, focus on the understanding of
the data and deep knowledge about the causes and characteristics of the landslide, using
for modelling an AutoML framework, comparing the performance of 16 machine learning
algorithms. This automatic comparison of models places the burden of research on the
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causes of landslides and on the study of their conditioning variables, which means that
there are better susceptibility predictions.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

Guerrero is one of the Mexican federative entities. It is located in the southern region
of the Mexican Republic, forming part of the South Pacific region [45]. The state of Guerrero
is crossed from northwest to the southeast by the Sierra Madre del Sur [46]. In this state
is found the tectonostratigraphic complex of Xolapa and Guerrero, which are in tectonic
contact. The first presents a composition of metamorphic rocks and the second a sequence
of metavolcanic rocks and slates [47]. Finally, this state is located on the Guerrero-Morelos
old marine platform, consisting of a series of extensive limestone outcrops [48]. This state
is frequently affected by hurricanes from the Pacific Ocean (the most common) and the
Atlantic Ocean [49]. For example, in September of 2013, the area was affected by a serious
stormy episode due to the conjunction of hurricanes Ingrid (formed in the Gulf of Mexico)
and Manuel (from the Pacific), which caused floods and landslides [49].

2.1.2. Landslide Inventory

The landslide inventory makes digitizing a Google Earth image obtained on 12 August
2014. Three different photo interpreters do the work. This inventory has 518 identified land-
slides, whose areas range from 21 square meters to 1.14 square kilometers, with 10,672 square
meters being the average area. The precipitation caused by the hurricanes is the main trigger
of the landslides, mostly earth slides type based on Cruden and Varnes classification [50,51].

This inventory has allowed us to develop the variable to be explained, the presence
or absence of landslides. Rasterization of the landslide polygons performs to achieve this,
based on the Landsat 8 resolution (30 m), obtaining a sample of 13,610 landslide points,
which are the records of the dataset. On the other hand, we developed a random subset
where we do not identify landslides. Join these two slides is used as a train-test dataset of
26,021 records. Regarding the generation phase of the susceptibility map, the total area
was used, which represented a demonstration set.

2.1.3. Data Sources and Explanatory Variables

Table 1 summarizes the variables used as conditional factors when predicting the pres-
ence or absence of landslides. Thirteen variables were selected based on the variables most
used in the literature to develop susceptibility evaluations of landslides [21,33,52–54]. Based
on these studies analyzed in previous works [52,55], these variables evaluated their effect on
the generation of landslides. Selecting the variables for this study following two conditions,
the availability of the information and the a priori effect these variables have on landslides.

Table 1. Explanatory variables used in the study.

Type Variable Source Resolution (m)

Topography

Slope SRTM 30
Aspect SRTM 30

Standard curvature SRTM 30
Distance to drainage network SRTM 30
Density of drainage network SRTM 30

Climatic Average annual precipitation Daymet 1000

Geology
Lithology INEGI geological vector data 1:250,000

Distance to lineaments INEGI geological vector data 30
Lineament density INEGI geological vector data 30

Anthropologic Distance to road infrastructure INEGI roads vector data 30
Density of road infrastructure INEGI roads vector data 30

Vegetation NDVI Landsat 8 30
Land cover Copernicus Global Land Service 100
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Conditional factors constitute the passive elements that depend on the local charac-
teristics of the landslide [56]. These factors correspond with the mechanisms within the
landslide produce a reduction in the resistance to breakage [57]. The graphic representation
of these variables appears in Figure 1. We used ArcGIS Pro 2.8 software tools to calculate
distances and densities, Euclidean distance and Kernel density [58].

Figure 1. Graphical representation of the explanatory variables. Slope (a), aspect (b), standard curvature (c), distance to
drainage network (d), density of drainage network (e), average annual precipitation (f), lithology (g), distance to lineaments (h),
lineament density (i), distance to road infrastructure (j), road infrastructure density (k), NDVI (l), land cover (m).

Shuttle Radar Topography Mission (SRTM)

SRTM is a near-global scale digital elevation model, which using radar interferom-
etry. NASA JPL provides this product with a resolution of 1 arc-second (approximately
30 m) [59].
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From this data source, we measured the slope, aspect, drainage network and standard
curvature of the terrain, used ArcGIS software tools [60]. The aspect is categorized in
accordance with the cardinal points, including a category for flat areas. This categorization
performs according to Table 2.

Table 2. Aspect categorization.

Degree Cardinal Points Category

0◦–45◦ North-East 1
45◦–90◦ East-North 2
90◦–135◦ East-South 3

135◦–180◦ South-East 4
180◦–225◦ South-West 5
225◦–270◦ West-South 6
270◦–315◦ West-North 7
315◦–360◦ North-West 8

<0◦ Flat 9

Daily Surface Weather and Climatological Summaries (Daymet)

Daymet is a dataset with estimated daily meteorological parameters for North Amer-
ica, Hawaii, and Puerto Rico, with a resolution of 1 kilometer. Estimation algorithms
and data processing are described in Thornton et al. [61]. This study used this dataset to
measure the average annual precipitation between 1 January and 31 December of 2012,
using a script in Google Earth Engine [62].

INEGI Geological Vector Data

Susceptibility assessment is very sensitive to geological variables, and the main spatial
geological sources are the geological maps. Some studies use directedly (without further
elaborations) the geological units from the geological maps, mainly based on the age of the
rocks and sedimentation ages [63,64]. However, the geological maps are not elaborated for
the specific purposes of landslide studies.

The geological information provided by the National Institute of Geography and
Informatics Statistics of Mexico (INEGI) collects data about the origin, classification, and
age of the rocks, including information about faults, fractures, volcanoes, mines, etc., at
a scale of 1:250,000 [65]. This information was used to develop lithotechnical variable
and those variables related to the lineaments. Geological information of the study area
encompasses 47 different geological units. In this work, they were reclassified into broader
units according to lithological criteria, genetic process (igneous and sedimentary), and
among them, the geotechnical processes suffered (cohesion), which are potentially related to
landslide susceptibility [22,40,47,66]. The best prediction is obtained when all the geological
parameters are used together [40]. The provided multilevel information was reclassified
and guided by expert decision. As a result, the geological formations were clustered into
seven categories. Thus, sedimentary lithologies such as sands, silts, and conglomerates
are the materials most susceptible to sliding. Conversely, the least susceptible materials
are plutonic igneous rocks (granites, granodiorites, syenites), metamorphic lithologies
(quartzites) and chemical sedimentary rocks (limestones and carbonates) (Table 3).

Table 3. Lithotechnical group categorization.

Category Lithotechnicall Groups

1 Sedimentary materials (sands, silts and/or conglomerates)
2 Volcanic-sedimentary igneous materials (tuffs, breaches, volcanoclastic)
3 Volcanic igneous materials (andesites, basalts, dacites)
4 Plutonic igneous materials (granites, granodiorites, syenites)
5 Metamorphic materials (quartzites)
6 Sedimentary materials (limestones)
7 Sedimentary materials (gypsum and carbonates)
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INEGI Roads Vector Data

Road infrastructure is related to landslides because of their destabilizing upper slopes
through slope cutting, concentrating surface water, and hydro-logical patterns changes [67],
overall in poorly constructed roads [68].

The cartography of roads, paths and elements associated with the communication
network includes towns, places of interest and transport services, among others [69]. This
cartography uses to develop the density and distance to the road infrastructure.

Landsat 8

The Landsat program, developed jointly by the United States National Aeronau-
tics and Space Administration (NASA) and the United States Geological Survey (USGS),
provides images of the Earth continuously since 1972, at a resolution of 30 m, including
multispectral and thermal information [70].

Orthorectified scenes calculated in the upper part of the atmosphere (TOA) are devel-
oped from Landsat 8 Collection 1 Tier 1 images [71]. These images measure the normalized
difference vegetation index (NDVI) from all scenes over eight days. In our study, the
average of the scenes of the summer months (rainy season) of 2013 corresponding to the
months with the highest photosynthetic activity.

Copernicus Global Land. Moderate Dynamic Land Cover

The global land cover service of the Copernicus initiative provides bio-geophysical
information products to know the status and evolution of land cover on a global scale. These
services include a global land cover product at 100 m resolution generated annually, using
the PROBA-V satellite vegetation instrument. This product uses a three-level classification
according to the land cover classification system (LCCS) class scheme [72].

2.2. Methods

Figure 2 includes the workflow followed in this study. The methodology used is
divided into three phases. Firstly, we developed the variables for the study from the
information sources to build the raw dataset. Secondly, we developed an exploratory data
analysis, in which two datasets were generated, one for train and test and the other for
make the susceptibility map. Finally, we made an automatic model selection based on the
results of train and test data. With the best model identified, we develop a probabilistic
prediction to make a landslide susceptibility map in the entire area of study.

Figure 2. Workflow chart of the methodology perform to make the susceptibility map in this study.
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2.2.1. Exploratory Data Analysis

Exploratory data analysis identifies the structure of the data [73]. This analysis is
divided into three parts: the study of the data structure, cleaning and filtering the data,
and finally, a graphic study of the elements of interest [74]. In the first phase, we studied
the size of the data, identifying if it is balanced, the types of the variables and finally, the
missing data. In the second phase, an imputation and cleaning of the missing data and
quantifying the categorical variables included in the data set are performed. On the one
hand, in the last phase, perform a univariate analysis of each variable, including a graphical
analysis of the distributions concerning the variable to be explained. On the other hand,
conducted a multivariate analysis of Pearson’s correlation coefficient.

Concern about the imputation of missing data for average precipitation, an imputation
by close neighbors (knn) was used because there is a spatial correlation between the
different records [75]. Regarding lithology, we used an imputation based on the most
frequent value of this variable. We only used record elimination on missing data for slope
and aspect variables.

Related to the treatment of categorical variables are not ordered, we used a target
encoder. This encoder replaces categories with a combination of probability as a function
of the variable to be explained, based on the Bayesian empirical framework [76].

Finally, we made a standardization (z-score) of the dataset in algorithms not based on
decision trees. This standardization minimizes the bias of those variables whose numerical
contribution is greater in the classes segregation pattern [77].

2.2.2. Model Comparison

The open-source Pycaret library [78] use in the model generation phase to be able to
make a comparison of different machine learning models. However, the great diversity
of models and techniques used to perform susceptibility model studies [79–82] makes it
difficult to know which model will have the best performance. Therefore, the autoML
framework is utilized in the search spaces process. This process facilitates: (i) finding the
model that obtains the best results from a dataset, (ii) the optimization process of the model,
(iii) the adjustment of the hyperparameters of the selected model and (iv) the evaluation of
the results with the test set [43]. Besides, we used a cross-validation methodology (k-folds)
of ten subsets to ensure that the results were independent of the partition of train and test
data [83].

The 16 models compared in this study were: da boost classifier, catboost classifier,
decision tree classifier, extra trees classifier, extreme gradient boosting, gradient boost-
ing classifier, k neighbors classifier, light gradient boosting machine, linear discriminant
analysis, logistic regression, MLP classifier, naive Bayes, quadratic discriminant analysis,
random forest classifier, ridge classifier, SVM—radial kernel.

2.2.3. Extra Trees Classifier

The extra trees algorithm was proposed by Gurts et al. [84] as a new tree-based
assembly method to solve supervised classification and regression problems. This algo-
rithm consists of applying strong randomization of both the attributes and selecting the
cut-off point to divide the nodes of each tree. This algorithm consists of using strong
randomization of the attributes and selecting the cut-off point to separate the nodes of each
tree [84].

The model trained and evaluated with the train-test dataset has subsequently been
used with the demonstration dataset to develop a probabilistic prediction of the entire
study area, used to generate a landslide susceptibility map. The susceptibility is categorized
into five levels (from areas with a very low probability of landslides to areas with a very
high probability of landslides) used the natural cuts method (Jenks) [15].
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3. Results
3.1. Exploratory Data Analysis
3.1.1. Treatment of Missing Data

The train-test dataset contains 115 missing data distributed in the variables of average
annual precipitation (37), lithology (70), aspect and slope (8). These missing data represent
0.44% of the total data. Therefore, these 115 records could be removed without affecting the
dataset’s structure. Still, for maintenance, the higher number of registers in the dataset in-
cludes an imputation by close neighbors (knn) for annual precipitation and most frequency
value imputer for lithology missing data. Therefore, we only used record elimination on
missing data for slope and aspect variables.

We found 555,428 missing data regarding the demo dataset, which represented 1.35%
of the total records. The same treatments performed in the train-test dataset to maintain
consistency using the knn imputation for average annual precipitation and most frequency
value for lithology. Thus, removing the rest of the missing data, which represents 0.07% of
the records.

3.1.2. Treatment of Categorical Variables

The dataset contains three categorical variables, aspect, lithology, and land cover. The
aspect is divided into 9 categories, the lithology is divided into 7 lithological groups, and
the land cover is divided into 17 covers. Concerning the treatment of these variables. In the
case of lithology, whose categorization was ordered, an ordinal coding is done. However, a
coding based on the objective was used for aspect and land cover, whose categories do not
have an ordinal sense.

3.1.3. Univariate Analysis

Figure 3 shows the different distributions of the variables depending on the variable
to be explained. In addition, it is shown how some explanatory variables have other distri-
butions depending on the variable to be explained. For example, we observe how average
annual precipitation (precipitat) for the non-landslide class has a shifted distribution to
the left, finding a maximum between 500 and 1000 millimeters. While in the case of the
landslide class, two relative maximums recorded 500 and 1700 millimeters, which gives us
an idea that there are two different patterns between the probability of landslide and the
average annual precipitation.

Regarding lithology (lithology), in category 1, those areas with sedimentary materials
have a differentiated maximum between the landslide and non-landslide classes. On
the other hand, differences were observed in class 5, areas with metamorphic materials,
contrary to those surveyed in category 1.

Concern to the density of lineaments (den_line), it is shown for the category of non-
landslides that it has a distribution like the normal. In contrast, an irregular distribution is
observed in the case of the landslides class. The density of road infrastructure (den_vial)
describes in the variable density of lineaments observed.

Finally, for the rest of the explanatory variables, minor differences were observed
between the two categories of the variable to be explained.
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Figure 3. Graphs of distributions of the explanatory variables according to the variable to be explained (see text for explanation).

3.1.4. Multivariate Analysis

Figure 4 includes the pairwise correlation study (Pearson) results of the different
variables of the train-test dataset. In general, there are no high correlations between the
variables.

The variable to be explained (des) did not observe a striking correlation with any
explanatory variables. Instead, the highest correlations were observed between the distance
(dis_vial) and density (den_vial) of the road infrastructure (−0.71). In the same way, these
correlation values are repeated between the distance (dis_line) and density (den_line) of
the lineaments (−0.43). However, for the case of the distance (dis_drain) and density
(den_drain) of the drainage network, this correlation did not appreciate. Finally, we
propose to drop the distance to road infrastructure (dis_vial) due to the high correlation
with the density of the road infrastructure (den_vial).



Int. J. Environ. Res. Public Health 2021, 18, 10971 10 of 20

Figure 4. Pearson’s correlation plot includes explanatory variables and the variable to be explained.

3.2. Model Comparison

Table 4 shows the results of the 16 models adjusted according to the train-test dataset.
These results are ordered according to the performance obtained. Table 4 shows how the
models that got the best results for the dataset were those based on decision trees, both
those of the bagging class (random forest, extra trees) and those of the boosting class
(extreme gradient, catboost).

Table 4. Results of the model comparison carried out in this study on the test data.

Model Accuracy AUC Recall Prec. F1 Kappa TT (s)

Extra Trees Classifier 0.977 0.983 0.983 0.973 0.978 0.954 0.772
Random Forest Classifier 0.976 0.980 0.985 0.971 0.978 0.953 1.397

Extreme Gradient Boosting 0.975 0.979 0.988 0.964 0.976 0.949 1.938
Catboost Classifier 0.972 0.977 0.989 0.959 0.974 0.945 10.964

Light Gradient Boosting Machine 0.964 0.967 0.981 0.951 0.966 0.928 0.522
Decision Tree Classifier 0.944 0.949 0.959 0.937 0.947 0.889 0.145

MLP Classifier * 0.937 0.943 0.959 0.923 0.941 0.874 35.988
Gradient Boosting Classifier 0.892 0.902 0.915 0.882 0.898 0.783 2.68

SVM—Radial Kernel * 0.894 0.900 0.935 0.871 0.902 0.787 19.744
K Neighbors Classifier * 0.899 0.898 0.972 0.854 0.909 0.796 0.746

Ada Boost Classifier 0.821 0.830 0.823 0.831 0.827 0.640 0.946
Quadratic Discriminant Analysis * 0.799 0.797 0.858 0.779 0.816 0.594 0.045

Logistic Regression * 0.780 0.792 0.812 0.777 0.794 0.559 2.786
Linear Discriminant Analysis * 0.775 0.788 0.818 0.766 0.791 0.547 0.058

Naive Bayes * 0.748 0.756 0.860 0.715 0.781 0.491 0.031
Ridge Classifier * 0.775 0.818 0.766 0.791 0.547 0.025

* Algorithms in which the data set is standardized.

Regarding the results of the main statistics (Table 4), it is not observed remarkable
discrepancies between model values. The models were able to correctly discriminate where
there is a landslide from where there is not. In general, the results of the Kappa statistic
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show that the results of the last seven models can have a large random effect because their
Kappa values are far from the results obtained in the other statistics. Finally, in terms of
computation time, it is seen that the models based on bagging are faster than those based
on boosting.

Figure 5 includes the ROC curve of the results, except for the Ridge classifier model,
which does not provide information on the area under the curve (AUC) due to its charac-
teristics. It is not observed great differences between the results obtained for the first four
models (Figure 5). However, for these four models, we observe certain discrepancies in
other statistics values.

Figure 5. ROC curve of the comparison of the models used based on the test dataset. The dotted line
corresponds to random results.

On the one hand, it is observed how the two models based on bagging (extra trees
and random forest) have very similar values in all statistics, except in computing time, in
which the extra trees model is twice as fast as the model random forest. On the other hand,
we observe that two models based on boosting (extreme gradient boosting and catboost
classifier) have very similar statistics, except for the computation time. However, there are
discrepancies between the statistics of the models based on bagging. These discrepancies
are mainly observed in the recall and precision values. Firstly, it is observed how the
models based on boosting have a higher recall than those based on bagging but have lower
precision values. Secondly, the recall and precision values differences are higher in the
boosting models than the bagging ones. These discrepancies can have consequences on the
landslide predictions of these two different types of models. For these reasons, the extra
trees classifier was selected as a model to be evaluated.

3.3. Extra Trees Classifier

Figure 6 shows the confusion matrix of the extra trees model trained in the previ-
ous section (Section 3.2). It observed how the results were good for the four categories,
underlining the high degree of success for the landslide category (1.1).
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Figure 6. Confusion matrix of the extra trees model on the test dataset.

Related to the importance of the explanatory variables in the model (Figure 7), it is
observed that four variables are over 10% of importance, two related to the geological
characteristics, lineament density (den_line) and lithology (lithology), the average annual
precipitation (precipitat) and the related to road infrastructure (den_vial). A second group
can be identified, with the variables that have importance greater than 7.5%. In this group
found a topographic variable, the density of the drainage network (den_drain) and one
variable related to vegetation, the type of cover (land_cover_enc). Finally, a third group
can be identified, with those variables of importance greater than 5%, in which we find
a variable related to vegetation (the NDVI, two topographic variables (the slope, (slope),
and the aspect (aspect_enc)) and a geological variable (the distance to lineaments, dis_line).
The other two variables are of minor importance in the model. These are the distance
to the drainage network (dis_drain) and the standard curvature (curv_std). In all cases,
the kernel density variables are more important than their counterparts of Euclidean
distances, observing large differences, as in the case of variables related to lineaments and
drainage networks.

Figure 7. Importance of the explanatory variables, according to the extra trees trained model.

Figure 8 shows the partial dependence of the variable to be explained by the different
values taken by explanatory variables. It is observed in cases where the partial dependence
describes more linear curves, the less importance of these variables.
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Figure 8. Partial dependencies between the explanatory variables and the variable to be explained (see text for explanation).

About lineament density (den_line), the curve describes an irregular rise up to a
maximum close to the value 0.00045. The average annual precipitation (precipitat) ob-
served how up to values somewhat greater than 1000 millimeters. The partial dependence
describes a flat curve, with irregularities, relating a convex curve from that point, reaching
its maximum at values close to 1700 millimeters.

Regarding the lithology variable (lithology), which is a categorical variable, the partial
dependence is maximum in categories 1 and 4, results like those shown in Figure 3. In this
case, it did not keep a relationship between the model and category 5, which seemed like it
would give the model a lot of information based on the distribution chart.

3.4. Demonstration

Figure 9 shows the landslide susceptibility map of the entire study area from the four
best models. In all cases, it is observed that the areas with the high and high probability
of landslides are concentrated in the west of the study area and run through the Sierra
Madre del Sur. Furthermore, the areas of greatest susceptibility coincide with those areas
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where the density of lineaments are high, on lithologies susceptible to landslides. However,
exists discrepancies between the predictions of moderate and low classes between bagging
models (Figure 9a,b) and boosting models (Figure 9c,d). These differences are based on
an overestimation of the very low category in the boosting models. Figure 10 shows the
percentage representation of each type of probability to susceptibility developed from the
probabilistic prediction of the four best trained models. The classes are ordered from least
probable to most probable, finding a range between 56.6% to 87.63% of the study area
in zones of very low susceptibility and a range between 1.1% to 1.6% in zones of very
high susceptibility.

Figure 9. Landslide susceptibility map based on the probabilistic prediction of the (a) extra trees,
(b) random forest, (c) extreme gradient boosting, (d) catboost classifier. At the bottom, the figures
show the study area location.

Figure 10. Area percentage of each susceptibility category.
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4. Discussion

We compare the results obtained in a sample of current studies developed on mod-
elling susceptibility to landslides. This sample is selected to follow a criterion of relevance,
based on the topic of the articles, the number of citations, innovativeness of methods or
approach and their availability. In these studies, we observed that the performance of
the models when predicting landslides oscillates between 0.602 and 0.958. Regarding the
number of explanatory variables used, the ranges oscillate between 10 and 20 variables.
The number of landslides identified ranges between 79 and 816, and the study area is
between 238.7 and 81,250 square kilometers. Regarding performance, it is observed that
the research consulted in the bibliography has not obtained better performance than the
present study.

Commonly, in the literature, the burden of research falls on the model generation
phase and does not pay enough attention to the data. However, this study highlights the
importance of understanding the database and the preparation model phases. In our case,
using an automatic machine learning framework, the time is significantly reduced in the
model generation phase. At the same time, it makes the supervised learning phase more
flexible, giving us the option of using the best possible model based on the data from the
entrance, study area or triggers. Furthermore, the automatic selection of models makes it
possible to identify patterns in algorithms that will work best with the different datasets.
These advantages mean that the weight of our research has also fallen on the phase of
understanding and preparing the data, allowing highlight the importance of having a
detailed and extensive knowledge of the study area, landslides, and a better selection
of variables. In this study, it has been revealed the need of having experts in different
disciplines who can better understand how landslides work, the regional knowledge (what
happened in the study area during 2013) or give the variables a meaning more related to the
objective of the study. In this way, we have participated in a multidisciplinary project with
researchers from the Universidad Autónoma de Guerrero (Mexico) and the Rey Juan Carlos
University (Spain), with a wide knowledge on the region and the processes [52,55,85].

The comparison of the different models (Table 4) shows that the algorithms based on
decision trees are the ones which have obtained the best performance. In the same way,
the previous studies with the best results have also used algorithms based on decision
trees [22,29,33,36], with some exceptions like [13,30]. However, only one identified study
had used a model based on extremely randomized trees (extra trees) [25]. Furthermore,
being able to know which models achieve the best performance can be useful to carry
out advanced techniques of landslide susceptibility mapping based on “blending” or
“ensembling” different models [86–88].

In the landslides identification, it is important to generate predictions about suscep-
tibility since the greater number of examples results in a greater number of data and,
therefore, a more robust model. In the literature review, only one study has identified
greater landslides number but reporting no good results due to a selection of inadequate
models [21]. Regarding the study area, a study with a larger covered area has been iden-
tified in the literature [36], which has good results based on the good selection of the
variables and the models used based on decision trees. On the other hand, no satisfying
results are observed in the previous studies with smaller study areas and/or a number of
identified landslides [37].

In summary, for the comprehensive management of landslide hazards, it is necessary
to advance both in modelling susceptibility and identifying landslides in an automated or
semi-automated way. Relying on a complete and updated landslide database will play an
important role in evaluating and managing landslide risks [89,90].

The inclusion of variables based on Kernel density, instead of only on distance, in
addition to the adequate selection and treatment of geological variables, such as lineaments
or lithology, has been key to achieving these results. In the same way, studies that have
included variables based on density have obtained good results [13,33,34,36,39]. The
results obtained could be improved by using the density of the lineaments instead of the
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proximity to them, as is the case of [13,30], the only two articles included the lineaments as
an explanatory variable.

Finally, in-depth knowledge of the landslides triggering processes and the regional
knowledge is essential to obtain good results. In this way, it is necessary to improve
data sources, for example, precipitation, to capture the triggering processes of landslides.
Currently, multi-source frameworks based on multi-satellite, atmospheric reanalysis and
gauge precipitation products are being developed to simultaneously correct precipitation
occurrence and intensity producing daily precipitation products [91].

5. Conclusions

Methods based on machine learning or deep learning in geosciences have been widely
used in recent times. Furthermore, the increasing number of natural disasters are causing
that more and more research groups combine these two research lines. However, due
to the importance of publishing a novel method instead of focusing on measuring the
danger to landslides, sometimes the analysis of the susceptibility results is not addressed
enough. This study presents a methodology based on the in-depth knowledge and analysis
of the causes of landslides and the variables used to predict areas susceptible to landslides
that have allowed us obtained good results. Using for modelling an AutoML framework,
comparing the performance of 16 machine learning algorithms, the best model obtained
(extra trees classifier) reached an AUC of 0.983 and a kappa of 0.954. In this study is
observed that models based on decision trees get better results with less time consumed in
their adjustment.

Moreover, having large inventories of landslides help models to generalise better and
using variables based on kernel densities instead of distances improves the prediction of the
models. Our work highlights the importance of understanding the database and processing
phases in data science projects. In our case, having a team of multidisciplinary experts in
the field has allowed us to have in-depth knowledge of the different dimensions related
to landslide phenomena and regional characteristics. In sum, the present susceptibility
measurement methodology has proved useful for managing and evaluating the landslides
susceptibility in a scenario in which the recurrence of extreme phenomena is increasing.
For future works, we will advance in semi-automatic and automatic landslide detection,
improve susceptibility mapping through advanced techniques such as “blending” or
“ensembling”, and start work in landslide vulnerability assessment.
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