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Abstract: Controlling soil erosion is beneficial to the conservation of soil resources and ecological
restoration. Understanding the spatial distribution characteristics of soil erosion helps find the key
areas for soil control projects and optimal scale for investing in a soil and water conservation project at
the lowest cost. This study aims to answer the question of how the spatial distribution of soil erosion
in Hubei Province changed between 2000 and 2020. Moreover, how do the effects of natural factors
and human activities on soil erosion vary over the years? What are the differences in landscape
pattern characteristics and the spatial cluster of soil erosion at multiple administrative scales? We
simulated the spatial distribution of soil erosion in Hubei province from 2000 to 2020 by the Chinese
Soil Loss Equation model at three administrative scales. We investigated the relationship between
soil erosion and driving factors by Geodector. We explored the landscape pattern and hotspots of
land at different levels of soil erosion by Fragstat and hotspot analysis. The results show that: (1) The
average soil erosion rate decreased from 2000 to 2020. Soil erosion is severe in the mountainous
areas of western Hubei province, while it is less severe in the central plains. (2) Land-cover type,
precipitation, and normalized difference vegetation index are the most influencing factors of soil
erosion in 2000–2010, 2015, and 2020, respectively. (3) The aggregation index values at the town scale
are higher than those at the city and county scales, while the fractal dimension index values at the
town scale are lower, which indicates that soil erosion projects are most efficient when the project unit
is ‘town’. (4) At the town scale, if the hotspot area (6.84% of the total area) is treated as the protection
target, it can reduce 50.42% of the total soil erosion of Hubei province. Hotspots of soil erosion
overlap with high erosion zones, mainly in the northwestern, northeastern, and southwestern parts of
Hubei province in 2000, while the hotspots in northwestern Hubei disappear in 2020. In conclusion,
land managers in Hubei should optimize the land-use structure, soil and water conservation in slope
land, and eco-engineering controls at the town scale.

Keywords: landscape pattern analysis; multi-scale; hotspot analysis; geodetector; Chinese soil
loss equation

1. Introduction

Soil erosion is one of the biggest ecological problems in the world, as it leads to water
pollution, reduced land productivity and water storage capacity, and deterioration of the
ecological environment, which ultimately threatens human survival [1]. According to the
National Soil and Water Conservation Plan (2015–2030) approved by the State Council of
China, the funds will be allocated to those areas where soil erosion is severe and clustered,

Int. J. Environ. Res. Public Health 2021, 18, 11044. https://doi.org/10.3390/ijerph182111044 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-0412-5295
https://orcid.org/0000-0002-2338-1761
https://orcid.org/0000-0001-7055-3645
https://orcid.org/0000-0003-4681-6817
https://doi.org/10.3390/ijerph182111044
https://doi.org/10.3390/ijerph182111044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182111044
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182111044?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 11044 2 of 16

where a soil conservation project is urgently needed, and where the implementation of the
large-scale ecological restoration project is possible [2]. To formulate land-management
policies that meet local conditions and alleviate regional soil erosion, land managers and
policymakers need to understand the spatial distribution characteristics of regional soil
erosion and determine where soil erosion is more serious and where land with serious
soil erosion is more clustered to determine the key areas for soil restoration projects. They
need to understand what factors affect local soil erosion and develop targeted treatments
to reduce the cost of ecological restoration [3–5].

Soil erosion is influenced by both natural factors and human activities, including
regional topography and geomorphology, non-linearly varying rainfall erosion, soil erodi-
bility, vegetation cover, and artificial protection measures [6,7]. Humans can influence soil
erosion by changing land use and land cover [8,9]. Compared with natural influencing fac-
tors, human interference is more controllable, and understanding the main factors affecting
regional soil erosion can help in developing effective ecological restoration measures [10].
Therefore, a systematic understanding of the factors influencing soil erosion over time,
especially the interaction between human disturbance factors and soil erosion rates, is
needed to improve soil protection and control measures [4,5,9].

Empirical models have been used to analyze the spatial distribution of soil erosion [11],
with the Universal Soil Loss Equation (USLE) model or the Revised Universal Soil Loss
Equation (RUSLE) model being the most widely used [12]. The modeling results can
show the spatial variability of soil erosion, but the landscape heterogeneity of the spatial
distribution of soil erosion should be further quantified [13]. The landscape pattern analysis
method developed for landscape ecology can effectively reveal the complexity of soil
erosion patterns [14]. Due to the influence of landforms on precipitation distribution and
the nonlinear and stochastic nature of climate change accelerating extreme precipitation, the
spatial distribution pattern of soil erosion tends to change at different scales of observation,
thereby affecting the mechanism of soil erosion and its spatial and temporal variability
characteristics [15–17].

Therefore, measuring multi-scale landscape pattern indices has important scientific
significance for the rational allocation of land resources [16,18]. Some scholars have used
landscape pattern indices to analyze the dynamic evolution characteristics of soil erosion
areas at different scales, and an increasing number of scholars have begun to explore
the multi-scale evaluation and scale effects of soil erosion [19,20]. However, most of the
current studies on scale changes lack consideration of actual administrative divisions and
only consider the changes of soil erosion under different scales of grid changes, while
in reality, the management of human activities is based on administrative divisions and
soil conservation projects are usually funded and implemented by the government on an
administrative unit [21]. The results of studies based on different grid scales cannot be
directly applied to land-use management planning, and few studies have been conducted
to understand the spatial and temporal characteristics of soil erosion based on different
administrative scales.

Identifying critical areas of soil erosion and implementing targeted management
interventions can help control erosion effectively and economically [22]. Recently, hotspot
analysis has been used to identify the most important areas of soil erosion and provide
optimized and cost-effective management options to reduce soil erosion [23]. As soil
erosion processes vary with scale, the amount of soil erosion in hotspot areas fluctuates [3].
However, the current hotspot analysis research mainly focuses on the distribution of
hotspots at a single grid scale and the indication of ecosystem service protection [23]. How
does the spatial distribution of soil erosion hotspot areas at different administrative scales
differ? At what scales and in which areas can soil and water conservation projects be
carried out at low cost and high efficiency? Few studies have answered these questions.

To address the abovementioned issues, this study assessed the multi-scale spatial and
temporal variation of soil erosion losses in Hubei Province in 2000, 2005, 2010, 2015, and
2020 using the Chinese version of the RUSLE model, Chinese Soil Loss Equation (Figure 1).
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Compared with previous studies, this study innovatively examined the scale effects of soil
erosion based on different administrative scales and identified effective control types and
areas by integrating landscape patterns and hotspot analysis to suggest effective erosion
control in regional landscape planning. The main objectives of this study were to: (1)
Reveal the spatial characteristics of soil erosion; (2) Quantify the contributions of different
influencing factors; (3) Identify the optimal control units and key areas.

Figure 1. Workflow of this study.

2. Study Area and Data Sources
2.1. Study Area

Hubei province is located in central China (Figure 2). Of the total area of the province,
mountains account for 56%, hills for 24%, and plains and lakes for 20%. Except for the high
mountain areas, most of the province has a humid subtropical monsoon climate and is the
most serious area in China in terms of soil erosion, which is mainly located in northwest
Hubei, southwest Hubei, northeast Hubei, and southeast Hubei. Severe soil erosion has led
to the siltation of rivers, lakes, and reservoirs in Hubei, aggravating flooding, destroying
land resources, reducing the productivity of arable land, deteriorating the production and
living conditions of rural people, restricting economic development, increasing poverty,
and making it difficult to grow land, obtain water, and increase income [24].

Figure 2. Location and altitude of Hubei province.

2.2. Data Sources

The data sources of this paper are described in Table 1. All the data were resampled at
a 1 km × 1 km resolution.
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Table 1. Data description.

Data Name Data Source Time Units/Resolution

Depth to bedrock map of China Scientific data [25] 2018 100 m × 100 m

Soil types Harmonized World Soil
Database (HWSD) [26] 2012 1:1,000,000

Land-use/land cover data Resource and Environment
Science and Data Center [27]

2000; 2005; 2010; 2015; 2020
30 m × 30 m

Normalized difference vegetation
index (NDVI) 1000 m × 1000 m

Meteorological data
Meteorological Data Center of

China Meteorological
Administration [28]

2000–2020 Daily

Digital elevation model (DEM) Shuttle Radar Topography
Mission (SRTM) [29] 2008 30 m × 30 m

3. Method
3.1. Chinese Soil Loss Equation (CSLE)

We used the CSLE as the following equation:

A = R · K · L · S · B · E · T (1)

where A is soil loss in t·ha−1·yr−1. The calculation steps of other factors in this for-
mula are as follows. R is rainfall erosivity in MJ·mm·ha−1·yr−1. K is soil erodibility in
t·h·MJ−1·mm−1. L and S are dimensionless topographic factors of the slope length and
the slope steepness. B is the dimensionless vegetation cover factor of biological practices
for trees, shrubs, and grasslands. E is the dimensionless factor of engineering practices.
T is the dimensionless factor of tillage practices. The major difference between CSLE
and USLE is that soil conservation practice factors of crop management (C-factor) and
erosion-control (P-factor) used in the USLE are described by three erosion-control factors:
biological (B-factor), engineering (E-factor), and tillage (T-factor) according to Chinese soil
and water conservation classifications. Based on the modeling results, the national soil
erosion classification standard table [2], and a similar study [30], the soil erosion zones with
different erosion levels were classified into six categories (Table 2). See Appendices A–F
for details of CSLE.

Table 2. The standard for soil erosion level.

Soil Erosion Level Slight Light Moderate High Very High Severe

Soil erosion rate
(t·ha−1·yr−1) <200 200–2500 2500–5000 5000–8000 8000–15,000 >15,000

3.2. Geodetector

Geodetector is a statistical tool to measure the spatial stratified heterogeneity (SSH)
and to explore the determinants of the spatial heterogeneity (SH). The q value of Geode-
tector was used to detect how much of the SH of the soil erosion value was explained by a
given factor or by two factors [31,32]. The formula of the q value is as follows:

q = 1−

l
∑

h=1
Nhσ2

h

Nσ2 = 1−

L
∑

h=1

Nh
∑

i=1
(Yhi −Yh)

2

N
∑

i=1
(Yi −Yh)

2
(2)

where N means the number of units that composed the study area; the study area is
stratified into h = 1, 2, . . . , L stratum; stratum h is composed of Nh units; Yi and Yhi denote
the value of unit in the population and in stratum, respectively; the value range of q is [0,1].
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A larger value of q indicates a stronger explanatory power of the independent variable X
for attribute Y, and vice versa.

The input data for Geodetector for Y (dependent variable) are as follows: the soil
erosion value, the input data for Geodetector for X (influencing factor) are as follows:
altitude, lithology, rainfall, slope, NDVI, land-use type. We classified the continuous
datasets based on the requirement of Geodetector and previous research. The altitude,
rainfall, and NDVI are divided into nine strata using the natural break method. The
slope was divided into grades from first to sixth: <5, 5–10, 10–15, 15–20, 20–35, and >35,
respectively.

3.3. Landscape Pattern Analysis

We used the aggregation index (AI) to measure aggregation levels of soil erosion spatial
patterns. AI is class-specific and independent of landscape composition, and has better
performance than other landscape indices when measuring clusters of spatial patterns [33].
We used fractal dimension (FRAC) to represent shape aspects of patches at different soil
erosion levels. In landscape ecological research, patch shapes are frequently characterized
via the fractal dimension of the object. The fractal dimension index is appealing because
it reflects shape complexity across a range of spatial scales [34]. We analyze landscape
patterns at the class level by Fragstats 4.2 software. A brief description of the two indicators
is as follows.

3.3.1. Aggregation Index (AI)

AI =

[
gjj

max→ gjj

]
(100) (3)

where gjj is the number of like adjacencies (joins) between pixels of patch type (class) i
based on the single count method. max-gjj is the maximum number of like adjacencies
(joins) between pixels of patch type (class) i based on the single-count method (0 ≤ AI ≤
100). Given any patch, AI equals 0 when the focal patch type is maximally disaggregated;
AI increases as the focal patch type is increasingly aggregated and equals 100 when the
patch type is maximally aggregated into a single, compact patch [33].

3.3.2. Fractal Dimension Index (FRAC)

FRAC =
2 ln(0.25pij)

Inaij
(4)

where pij is perimeter (m) of patch ij, aij is area (m) of patch ij, 1≤ FRAC ≤ 2. FRAC
approaches 1 for shapes with very simple perimeters such as squares and approaches 2 for
shapes with highly convoluted, plane-filling perimeters [34].

3.4. Hotspot Analysis

In this paper, we used Getis–Ord G∗i statistic to find out where soil erosion with either
high or low values clusters spatially. A significant hotspot is a highly soil-eroded area
surrounded by other highly soil-eroded areas. The cold spot indicates a low soil erosion
area surrounded by a low soil erosion area. The formula of G∗i statistic is as follows:

G∗i =
∑n

j wijaj

∑n
j aj

(5)

Z =
G∗i − E

(
G∗i
)√

Var
(
G∗i
) (6)
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where G∗i is the cluster index of cell i; Z is the significance of G∗; wij is the spatial weight;
aj is the soil erosion value of cell j. E(G∗i ) is the expectation value of G∗i and Var(G∗i ) is the
variance of G∗i . The absolute value of z-score is positively correlated with the degree of
cluster of cold and hotspots.

4. Results

The CSLE model estimated that the average soil erosion rate in Hubei was
3301.81 t·ha−1·yr−1 from 2000 to 2020 (Figure 3). Land with slight and light soil ero-
sion levels accounted for 77% of the total area of Hubei Province. At the same time, land
with severe and very high soil erosion levels covered 8.63% of Hubei and was mainly
concentrated in mountainous areas. The total amount of soil erosion on severely eroded
land was high, although the area of land with severe erosion was relatively small. The year
with the highest average soil erosion was 2010, followed by 2020. The year with the lowest
average soil erosion was 2005, followed by 2015. Spatially, from 2000 to 2020, the high,
very high, and severely eroded areas in the northwestern, southwestern and northeastern
regions of Hubei Province showed fluctuating trends, with the largest area in 2010.

1 
 

 

Figure 3. The average soil erosion rate at the (a–e) gird scale, (f–j) town scale, (k–o) county scale, and (p–t) city scale from
2000 to 2020.

From 2000 to 2020, soil erosion rates showed fluctuations, with the highest soil erosion
in 2010 and the lowest soil erosion in 2005; the highest value was 302% of the lowest value,
and the area of slight erosion increased from 42.78% in 2000 (Figure 3a) to 64.80% in 2020
(Figure 3e), and the most severely eroded area increasing from 1.52% of the total area in
2000 to 2.05%, but severe erosion declining from 8.94% of the total area to 5.17% in 2020.
They all showed fluctuating changes rather than linear increases or decreases, and the area
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of slight erosion was the erosion class that fluctuated the most during the study pe-riod. In
addition, soil erosion rates did not show dynamic changes corresponding to dif-ferences
in scale. At the city, county, and grid scales, the severe, very high, and high soil erosion
areas have increased from 2000 to 2010 and decreased from 2010 to 2020. The town scale
(Figure 3f–j) showed a fluctuating decreasing trend from 2000 to 2005, an increasing trend
from 2005 to 2010, a decreasing trend from 2010 to 2015, and then an increasing trend from
2015 to 2020.

The area of land with severe soil erosion in the plains decreased gradually, and these
lands are dispersed as the scale decreased. At the city scale (Figure 3p–t), the high erosion
rate areas were mainly located in the mountainous areas of western Hu-bei, of which the
Shennongjia Forest Area had the highest soil erosion among the cities in Hubei Province
from 2000 to 2020. In addition, the soil erosion in Shiyan city was more severe over time,
mainly because the city is located in a mountainous area with steeper topographic slopes
and weaker soil conservation capacity. In contrast, cities in the central and southern
parts of Hubei Province have lower erosion rates than those in the northern, eastern, and
western parts.

From 2000 to 2020, severe erosion zones were clustered in the southwest and northwest
Hubei, mainly including Shiyan city, Enshi city, and Shennongjia Forestry District (Figure 3).
Overall, soil erosion in Hubei province has shown a decreasing trend, with the emergence of
various traditional and modern conservation structures leading to an increase in vegetation
cover and a significant reduction in soil loss. During this period, a series of national policy
measures have been taken to reduce soil erosion, one of which is the return of cultivated
land to forests program. The Grain for Green project has achieved significant effects in soil
erosion management. In 1999, Hubei Province started a pilot project to return farmland to
forest, and in 2002, it was fully rolled out. Since 1999, Hubei has returned a total of over
1.33 × 104 km2 of farmland to forest, including 4193.33 km2 of reforestation of sloping
farmland and 7240 km2 of reforestation of barren mountains and wastelands. The project
areas are mainly concentrated in the Three Gorges Reservoir, Danjiang Reservoir and
Wuling Mountains, Qinba Mountains, Dabie Mountains, and Makufu. The project area
is mainly clustered in the Three Gorges Reservoir Area, Danjiang Reservoir Area and
Wuling Mountain Area, Qinba Mountain Area, Dabie Mountain Area, Moufu Mountain
Area, and other ecologically important areas. Until 2019, the forest coverage rate in Hubei
province increased by 7 percent, and the living wood accumulation increased by more than
30 million cubic meters [35]. The ecological benefits are reflected in various aspects, such
as reduced soil erosion, increased soil fertility, and reduced wind and sand erosion.

4.1. Factors Influencing Soil Erosion

The factor analysis of soil erosion in Hubei Province using Geodetector showed that
the height, slope, soil, NDVI, rainfall, and land use type had a significant influence on soil
erosion (Figure 4a), and soil erosion was influenced by both natural and human activities.
From 2000 to 2015, land use type and precipitation had a greater influence on the soil
erosion rate than other factors, and land use type and precipitation had a greater impact on
soil erosion rates than other factors from 2000 to 2015. In 2000, the NDVI had the second
lowest influence on the soil erosion rate among the six factors; however, its influence
gradually increased to become the most influential factor on the soil erosion rate in 2020.
The degree of influence of land use type on soil erosion tended to fluctuate downwards
and was surpassed by slope and the NDVI.

In addition, the combined effect of the two factors on soil erosion had a greater
influence than that of the single element (Figure 4b). The slope and NDVI, slope and land
use, rainfall, and land use all had a greater influence on the rate of soil erosion together than
when they were single elements. In the future, land management policymakers should
optimize the land use structure and pay attention to soil conservation projects on sloping
land and other ecological greening constructions.
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Figure 4. The q values of influencing factors on soil erosion from 2000 to 2020 ((a) q statistic; (b) interaction q statistic).

4.2. Landscape Pattern Analysis of Land at Different Soil Erosion Levels

In terms of the interannual variation in the mean AI values of the different soil erosion
zones (Figure 5a), between 2000 and 2020, the highest AI values were in the slight, light,
and severe soil erosion zones. The AI values in the slight soil erosion zone and light soil
erosion zone fluctuated upwards, while the AI values in the high soil erosion zone and
the more se-verely eroded zones fluctuated and decreased. The AI values showed that
the land with slight, light and severe erosion levels was more clustered than the land with
other soil erosion levels (Figure 5a) and was concentrated in the central and eastern plains
of Hubei Province; the AI values of the high and very high soil erosion zones were the
lowest, indicating that the distribution of the more eroded soils became more dispersed.
The lowest AI values were in the high and very high soil erosion zones, indicating that the
land with higher soil erosion was scattered, mainly in the mountainous areas of western
Hubei Province and the hills of eastern Hubei. This phenomenon indicates that the land
with high soil erosion was relatively difficult to modify in Hubei.

The change in the average FRAC values for the different levels of soil erosion areas
between 2000 and 2020 (Figure 5b) showed that the FRAC index for the light erosion zones
was higher than that for the high soil erosion zones in 2000. The fluctuating FRAC values
in light erosion zones decreased, while the FRAC values in severe erosion zones fluctuated
and increased until 2010, when the complexity of soil patches in light erosion zones started
to be lower than that in high erosion zones. The higher the FRAC index was, the more
complex the shapes of the patches. Therefore, the higher the FRAC value in a patch, the
more difficult it was to implement soil conservation measures. The FRAC values in the
severe erosion zones were still high (Figure 5b,c). In conclusion, it is still difficult to carry
out soil erosion protection projects in Hubei Province.

In terms of the average AI values at three different scales, both the AI values of the
very high soil erosion zone and the AI values of the severe erosion zone were greater at
the town scale than at the city scale. If the aggregation of land with serious soil erosion is
low, it is difficult to concentrate soil and water conservation work, and there is no cluster
bene-fit, which increases the cost of soil and water management. The FRAC values of the
very high erosion areas varied greatly among the three scales, with the highest average
FRAC values in cities and the lowest average FRAC values in towns, while the FRAC
values of the severe erosion areas varied greatly among the three scales. Therefore, erosion
control projects can be carried out on a town-by-town basis. In addition to selecting the
scale for erosion project management, hotspot analysis should also be used to select key
conservation sites for soil and water conservation projects.
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Figure 5. (a) AI and FRAC indexes of land at different soil erosion levels. (b) Mean value of AI and
FRAC at three scales of very high erosion zones from 2000 to 2020. (c) Mean value of AI and FRAC at
three scales of severe erosion zones from 2000 to 2020.

4.3. Hotspot Analysis of Soil Erosion

The soil erosion hotspots at 99% confidence in 2000, 2010, and 2020 account for about
12.43%, 11.79%, and 5.73% of the town overall, while the 99% confidence cold spot areas
account for 6.07%, 12.63%, and 0% of the town overall (Figure 6), respectively. At the
city scale, hotspots were clustered in the northwestern mountainous areas, over-lapping
with the severely eroded soil areas. The average rate of soil erosion in the hotspot area
at the town scale with a significance of 90% and above was 8179.50 t·hm−2·yr−1, which
is a very high soil erosion level. Compared with the analysis of the spatial distribu-tion
characteristics of land with different soil erosion levels, hotspot analysis of soil ero-sion
revealed the cluster of land with the same soil erosion level. In this study, the hotspot
analysis revealed that there was an area of high soil erosion in northwestern Hubei Prov-
ince. It would be more cost-effective to carry out land conservation projects in hotspot
are-as. In contrast, the cold spot patches clustered in the central and southeastern plains
in 2000, gradually decreased from 2000 to 2015 and disappeared by 2020. The continuity
of areas with relatively low soil erosion rates compared to areas with higher erosion rates
is related to the topographic characteristics and land use structure of Hubei Province.
Relatively large-scale soil conservation measures need to be implemented.

Compared to the city scale (Figure 6a–d), two hotspots, the northeast and southwest,
have appeared at the county scale. They both decreased gradually from 2000 to 2010. The
cold spot at the town scale formed a patch in the central plains that decreased from 2000 to
2015 and disappeared in 2020. It is worth noting that this cold spot area did not overlap
with the cold spot area at the city scale.
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Figure 6. The hotspots and cold spots of soil erosion at (a–e) city scale, (f–j) county scale, and
(k–o) town scale from 2000 to 2020.

The hotspot area at the town scale included not only the northwestern and south-
western mountainous areas but was also scattered in the northeastern and southeastern
mountainous areas, decreasing from 2000 to 2020 (Figure 6k–o). The cold spots were located
in the central, southern, and eastern plains. From 2005 to 2020, the hotspot areas gradually
decreased, and the hotspot distribution map showed a trend towards fragmentation. The
distribution of high soil erosion areas became dispersed. The average soil erosion rates
in the hotspot areas decreased at both the county and town scales, with decreases of
53.68% and 43.92%, respectively. During the study period, guided by the Chinese central
government’s soil and water conservation policies and program, the Hubei provincial
government actively participated in the Grain for Green program [36,37], a which may
slow soil erosion in Hubei. As the scale changed from the county scale to the town scale,
land with high soil erosion rates in southwestern Hubei Province became dis-persed
hotspots in 2010.

The hotspot area at the city scale was only 84.29% of the hotspot area at the town
scale, but the average soil erosion rate of soil erosion hotspots in Hubei Province at the
town scale was 12.17% higher than that at the county scale. The hotspots at the town scale
were more clustered and severe, making soil conservation measures less costly and more
effective. For town-scale hotspot areas (6.84% of the total area of Hubei Province in 2020),
50.42% of the total soil erosion was reduced. Town-scale hotspots were mostly located
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in the mountainous and hilly areas of Hubei Province. To control soil erosion in town-
scale hotspots, land managers should combine erosion control projects with ecological
restora-tion projects on sloped land to optimize the regional ecological layout [38].

5. Discussion
5.1. Comparison with Existing Studies

We found that the areas of severe soil erosion in Hubei Province were mainly in the
mountainous areas of western Hubei Province, including Enshi, Shiyan, and Yichang,
which is consistent with the results of Zeng’s research [39]. This indicates that the western
mountainous areas of Hubei Province have been the areas with high soil erosion from
1980 to the present. By comparing the remote sensing survey data of soil erosion in Hubei
Province, 52.41%, 56.17%, and 77.76% of the total eroded area in 2006, 2011, and 2019 in
Hubei Province [24], it can be seen that soil erosion is on a decreasing trend, and all these
trends are consistent with the results of this paper. Our study shows that the soil erosion
area in Hubei province decreases, with light erosion accounting for 42.79%, 53.61%, and
77.02% of the total erosion area in 2005, 2010, and 2020(Figure 7). However, there are
differences in the evaluation results because of different evaluation methods and different
evaluation years.

Figure 7. Correlation analysis between simulated value (105 t) and observed value (105 t) in (a) 2010
and (b) 2015.

We found that soil erosion in Hubei Province is more correlated with land use, slope,
and vegetation cover. During the study period, key projects for soil erosion control in Hubei
Province include the National Key Construction Project of Soil and Water Conservation, the
Comprehensive Management Project of Soil and Water Erosion on Sloping Arable Land, the
Soil and Water Conservation Project in Danjiangkou Reservoir Area and Upstream, the Soil
and Water Conservation Project for Consolidating the Results of Returning Cultivated Land
to Forests, and the Soil and Water Conservation Project for Comprehensive Management
of Rock Desertification in Karst Areas [24]. These ecological restoration projects reduce
soil erosion in Hubei Province by increasing vegetation cover and reducing erosion loss
through grass retention and tree planting, and reducing the topographic slope of the area
to reduce the flow rate of water on the slope and weaken the erosion effect of flowing water
on the ground. This analysis is similar to the findings of Xiao Wang et al.’s research [40].

Due to the lack of erosion data in the region, the soil erosion results estimated by the
CSLE model in this study were analyzed using the observations of river sand transport
monitoring stations at the outlet of each watershed of typical rivers (11 river sand transport
monitoring stations in 2010 and 2015) from the Hubei Soil and Water Conservation Bulletin
for correlation analysis. The results showed that the overall correlation coefficient was
0.79 in 2010 and 0.82 in 2015, indicating that the soil erosion estimation results for these
two years were satisfactory. This could partially reflect the accuracy of the soil erosion
results. Besides, most of the existing studies on soil erosion in China are on the Loess
Plateau in northern China [30], the Beijing–Tianjin–Hebei region [41], and the Yunnan–
Guizhou Plateau in southern China [20,42,43], but few studies on the spatial distribution
characteristics, landscape patterns, and influence mechanisms of soil erosion have been
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conducted in central China. Few studies are available for comparison of soil erosion in
Hubei province.

5.2. Methodological Limitations

Because of the inconsistent resolution of precipitation data, DEM data, soil data, LULC
data, and NDVI data, the accuracy of the calculation results are relatively rough. Besides,
the R-factor could be calculated in various ways due to the different data resources available
in different locations, based on annual precipitation data [44], monthly precipitation data,
and daily precipitation data, and it is difficult to compare the results of similar research
with similar topics since different calculations are used for soil erosion analysis [45–47]. As
high-resolution data increases, future research should use a higher resolution to reduce
calculation errors.

6. Conclusions

In this study, the multi-scale spatial-temporal variations in soil erosion loss in 2000,
2005, 2010, 2015, and 2020 were evaluated using the CSLE model in Hubei Province. In
contrast to previous studies, this study innovatively examines the effect of soil erosion
characteristics based on different administrative scales and identifies effective control types
and regions by integrating landscape patterns and hotspot analyses to propose effective
soil erosion control suggestions in regional landscape planning. The results show that
soil erosion fluctuated in Hubei over the study years. Scaling effects existed in the spatial
characteristics of soil erosion. The landscape pattern and hotspots of soil erosion in each
year changed with scale. The slope, NDVI and land use had a greater influence on the
rate of soil erosion than other factors. The impacts of human activities increased over time
and as the scale decreased. The town scale was the best control scale based on the scale
effect analysiss.

The sustainability of human societies depends on the wise use of natural resources.
Soils contribute to basic human needs. To make regional policies and plans for soil conser-
vation, it is necessary to identify where the soil erosion problems are, which means knowing
where soil erosion rate is exceeding the soil loss tolerance. In the future, researchers could
explore the trade-offs between soil erosion and other ecological services at multiple scales,
which would be valuable references for effective and sustainable management and policy
decisions for minimizing trade-offs and maximizing synergies of ecological services. Land
managers in the Hubei government need to optimize the land-use structure, pay attention
to sloping land improvement [48], increase vegetation coverage [49,50], and increase ecolog-
ical restoration projects in the west of Hubei. Besides, land policymakers should consider
the scale effect of soil and water conservation projects when making land-use plans.
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Appendix A. Rainfall Erosivity Factor (R)

The equations of average annual rainfall erosivity and 24 ratios of half month erosivity
to annual erosivity calculation using daily erosive rainfall data were represented as follows
by referring Liu’s research [51].

Ryear =
24

∑
j=1

Rj (A1)

Rj =
1
N

N

∑
i=1

m

∑
k=0

(α · P1.7265

i,j,k ) (A2)

RRj = Rj/Ryear (A3)

where Ryear is average annual rainfall erosivity in MJ·mm·ha−1·h−1·yr−1, j represents the
half month sequence of 1, 2, . . . , 24 ineach year, Rj is half month rainfall erosivity in
MJ·mm·ha−1·h−1, i is time series of daily rainfall from 1981 to 2010, k is days of daily
erosive rainfall (rainfall equal or greater than 10 mm) within each half month period, Pi,j,k is
0 when no erosive rainfall occurs in the half month, and a represents calibrated parameter
values of 0.3957 for warm months from May to September and 0.3101 for cool months from
October to April. RRj is the ratio of the average erosivity of half month j to the average
annual erosivity. The annual rainfall erosion value was interpolated using the Kriging
interpolation method in Arcgis 10.7 software to obtain the R map in Hubei province.

Appendix B. Soil Erodibility Factor (K)

The equations of K factor (t·h·MJ−1·mm−1) in this study was referred Williams et al.,’s [52]

K = 0.1317× {0.2

+ 0.3× exp
[
−0.256× SAND

(
1− SILT

100

)]
} ×

(
SILT

SILT+CLAY

)0.3

×
[
1− 0.25× TOC

TOC+exp(3.72−2.95×TOC)

]
×
[
1− 0.7× SN1

SN1+exp(22.9×SN1−5.51)

] (A4)

where, SAND, SILT, CLAY, TOC is the content for sand, silt, clay, and organic content of
soil(%), SN1 = SAND/100.

Appendix C. Length-Slope Factor (LS)

L and S are dimensionless topographic factors [53].

LS = L× S (A5)

where L is slope length, L =
( γ

22.1
)α, α = β/(1 + β),β = sinθ/0.089

3×sinθ0.8+0.56
, θ is the slope

value derived by DEM using Slope function ArcGIS 10.7, α is the slope exponent and β is
the ratio of fine gully erosion to surface erosion [54], S is slope steepness, the calculation
formula is as following.

S =


10.8 sin θ+ 0.03 θ < 5

◦

16.8 sin θ− 0.05 5
◦ ≤ θ < 10

◦

21.9 sin θ− 0.96 10
◦ ≤ θ

(A6)

Appendix D. Vegetation and Biological Practice Factor (B)

The calculations of vegetation and biological practice factor B was referred Xie’s
research. The value of B factor is based on Fraction Vegetation Coverage (FVC) (Table A1).
FVC was derived based on Wang’s research [55] and Li’s research [56], and different B
values were assigned to the land-use types under different vegetation cover degrees. Since
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bare land in the study area is very few (only 0.409%), we did not take them into the
calculation.

FVC = (NDVI−NDVImin)/(NDVImax −NDVImin) (A7)

where FVC is the vegetation cover, the NDVI value with a cumulative frequency of 0.5%
is the NDVImax value, and the NDVImin value with a cumulative frequency of 0.5% is the
NDVImin value.

Table A1. Value for B factor under different FVC value of different land cover in Hubei province.

FVC Forestland Grassland Arable Land Water Bodies Built-Up Area

0–20% 0.1 0.45 0.23 1.0 0.9

20–40% 0.08 0.24

40–60% 0.06 0.15

60–80% 0.02 0.09

80–100% 0.004 0.043

Appendix E. Engineering Practices (P)

P factor is determined as the ratio between the soil losses expected for a certain soil
conservation practice. Without engineering practices recorded, the values were taken by
refereeing Xu’s studies [57] (Table A2).

Table A2. Value for P factor under different land cover.

Forestland Grassland Arable Land Water Bodies Built-Up Area

P factor 1 1 0.4 0 0

Appendix F. Tillage Practice (T)

The criteria of tillage practice indicator (T value) was referred Liu’s research [51]
(Table A3).

Table A3. T factor value under different slope level.

Slope 0–5◦ 5–10◦ 10–15◦ 15–20◦ 20–25◦ >25◦

T Value 0.100 0.221 0.305 0.575 0.735 0.800

The values at different administration levels were extracted using the zonal statistics
function in spatial analysis tool of ArcGIS 10.7 software.
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