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Abstract: Road accidents are increasing every year in Malaysia, and it is always challenging to
collect reliable pre-crash data in the transportation community. Existing studies relied on simulators,
police crash reports, questionnaires, and surveys to study Malaysia’s drivers’ behavior. Researchers
previously criticized such methods for being biased and unreliable. To fill in the literature gap,
this study presents the first naturalistic driving study in Malaysia. Thirty drivers were recruited
to drive an instrumented vehicle for 750 km while collecting continuous driving data. The data
acquisition system consists of various sensors such as OBDII, lidar, ultrasonic sensors, IMU, and GPS.
Irrelevant data were filtered, and experts helped identify safety criteria regarding multiple driving
metrics such as maximum acceptable speed limits, safe accelerations, safe decelerations, acceptable
distances to vehicles ahead, and safe steering behavior. These thresholds were used to investigate
the influence of social and cultural factors on driving in Malaysia. The findings show statistically
significant differences between drivers based on gender, age, and cultural background. There are
also significant differences in the results for those who drove on weekends rather than weekdays.
The study presents several recommendations to various public and governmental sectors to help
prevent future accidents and improve traffic safety.

Keywords: driving behavior; naturalistic driving study; aggressive driving; speeding; driver perfor-
mance; the relationship between social/cultural factors and driving; characteristics of young and
older drivers

1. Introduction

Following cardiovascular diseases and cancer, traffic accidents are the third leading
cause of death [1]. Despite the government’s various preventive measures, the number of
road accidents in Malaysia is increasing year after year [2]. From 2000 to 2015, the country
saw a 93 percent increase in total vehicle accidents, resulting in a 17 percent increase in
mortality [3]. Malaysian road users are categorized as the worst in Southeast Asia, with
23.8 deaths per a 100,000 population [4]. In general, three main factors contributed to road
accidents: human, vehicle, and road condition. Accidents are caused by the human factor
alone in 80–90 percent of cases [4]. According to these statistics, most road accidents are
caused by reckless driving, which has been identified as the leading cause of road accidents
in most countries.

In the literature, researchers reported that social factors, such as age and gender,
impact driving [5–11]. Researchers in reference [12] identified age, gender, national, and
regional differences as impacting drivers’ behavior. Moreover, researchers discovered that
driving on weekdays may have a negative impact on safe driving because drivers are
under tremendous pressure to get to work [13]. Furthermore, researchers have identified a
number of factors that influence driver performance, such as driving experience, level of
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education, and knowledge, concluding that novice drivers are more likely to underestimate
hazards than experienced drivers, who are often more focused [14]. Previous studies also
showed a statistically significant relationship between lifestyle dimensions, such as an
aggressive driving association with driving for recreational purposes, and a safe driving
association with people of a religious background [15].

It is important to investigate the relationship between driving behavior and so-
cial/cultural factors because they are determinative to aggressive driving.

It is also becoming increasingly necessary to comprehend the impact of such factors
on driving in Malaysia, as cultural differences influence driving in various countries [16].
Another reason is that conclusions in the literature have often been contradictory; therefore,
they cannot be generalized. For instance, researchers long believed that male drivers are
more likely to be involved in motor-vehicle crashes [17]; however, female drivers are now
over-represented in crashes when compared with males [9].

Regarding Malaysia, previous researchers attempted to identify differences between
driving in Malaysia and driving in the UK in references [18,19]. Moreover, one study
looked at the differences in road safety attitudes and driver behavior between Malaysia and
Singapore [20]. Furthermore, researchers determined the characteristics of basic driving
skills among older drivers in Malaysia [21]. Those studies, however, had limitations. First,
they did not examine the impact of the social/cultural factors on drivers in Malaysia, which
raises the following questions:

1. Do social factors, such as gender and age, influence drivers’ behavior in Malaysia?
2. Is driving in Malaysia influenced by one’s cultural background, such as whether one

is a local or a foreigner?
3. Is there a difference between driving on a weekday and driving on a weekend

in Malaysia?

Another common issue within the studies that aimed at understanding drivers’ be-
havior in Malaysia is the use of inadequate and biased techniques for data collection such
as surveys, questionnaires, simulations, and on-road observations using cameras, which
were heavily criticized in the literature [9,10,22–38]. As a result, collecting naturalistic
driving data (NDD) using in-vehicle sensors emerged as a crucial data source with high
ecological reliability [39,40]. NDD have been widely used to predict the likelihood of
various behaviors such as reckless speeding, lane changing, and distracted driving. Based
on speeding behaviors extracted from vehicles’ GPS trajectory data, researchers in [41]
classified drivers into three categories: restrained, moderate, and belligerent. Researchers
also utilized existing datasets to investigate the effects of gender and age on speeding [42].
Moreover, in [43], researchers demonstrated a model that detects lane-changing maneuvers
using the SHRP2 dataset. Furthermore, researchers utilized NDD to compare the safety of
organized and unorganized carpooling situations in terms of speeding and distractions
while driving [44]. In Malaysia, researchers used in-vehicle sensors to collect data [2].
However, those experiments were conducted in a non-naturalistic manner. Two cones were
placed on the street by the researchers. They asked drivers to focus on steering through
the cones rather than braking, which altered their natural driving style, resulting in the
experiments being non-naturalistic. The main objectives of this study are as follows:

1. Develop a reliable and cost-effective data acquisition system (DAS) for gathering
driving data in naturalistic experiments. The proposed DAS should be as unobtrusive
to the drivers as possible, so that it does not interfere with their natural driving style.

2. Compile a dataset of over 750 km of continuous driving data from 30 drivers across
two cities in Malaysia.

3. Investigate the influence of social/cultural factors on driving behavior in Malaysia.

2. Methodology
2.1. DAS Design and Installation

The proposed DAS consisted of an onboard diagnostics (OBDII) reader, a lidar, two
ultrasonic sensors, an inertial measurement unit (IMU), and a standalone global positioning
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sensor (GPS). The sensors used in the proposed DAS, their location inside the vehicle, and
the corresponding recorded data are shown in Table 1.

Table 1. Sensors, recoded parameters, and location.

Sensor Sensor Location Recorded Data

OBDII Below the steering wheel Speed
Lidar Front of the vehicle Long distances

Ultrasonic sensors Front of the vehicle Short distance
IMU Inside the steering wheel Steering
GPS Vehicle trunk Vehicle position

2.1.1. OBDII

The selected OBDII reader was ELM327. It is cost-efficient, is easy to plug into the
vehicle’s OBDII 16-pin connecter, and can send data to a smartphone via Bluetooth in Excel
format. The communication between the smartphone and the ELM327 was sent via an
application called Torque. Figure 1 shows the ELM327 installed beneath the steering wheel.
The smartphone was placed inside the vehicle’s glove compartment.
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2.1.2. Lidar

It is critical to choose a lidar that can detect objects accurately. Initially, the plan was to
use the lidar model TF03, which can cover distances of up to 100 m. During the installation
phase, however, tests revealed low detection rates. The Garmin lidar has a better reputation
among sellers; however, it only covers up to 50 m. Other commercially available models
cover no more than 22 m at the most, such as TF02, TiM100, TFMini, and RPLIDAR. Table 2
compares the TF03 lidar to the Garmin lidar in a 30 min test drive on a medium-traffic
route in the Serdang area.
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Table 2. Comparisons of the two lidar sensors (TF03 and Garmin).

Lidar Sensor Recorded Distance Data Accuracy Rate

Garmin 73% 82%
TF03 32% 45%

Table 2 shows that the Garmin lidar recorded more distance data than the TF03 lidar
(73% vs. 32%). Furthermore, the Garmin lidar outperformed the TF03 lidar in terms of
detection rate (82% vs. 45%). Therefore, as a result, the Garmin lidar was chosen for
the proposed DAS. It was placed on top of the license plate to measure the distances
between the experimental vehicle and vehicles in front of it. The lidar was connected
via cables to Terasic DE10-Nano, a field-programmable gate array (FPGA), for its flexible
and reconfigurable design, high processing capability, and high-speed DDR3 memory. To
provide stable electrical power for the lidar, the FPGA was connected to a power bank.
MobaXterm, a terminal software installed on a laptop, was used to send commands to the
FPGA to start and stop the recording process of distance data. The data were then saved in
text format to the FPGA’s secure digital (SD) card. The physical connection between the
lidar, FPGA, and laptop is depicted in Figure 2.
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It is commonly known that lidars are typically not very accurate in detecting objects
over short distances. As a result, ultrasonic sensors were used for short-range detection.
Two ultrasonic sensors were placed on the left and right sides of the Garmin lidar. The
FPGA was reconfigured and programmed to record distance data from the two ultrasonic
and lidar sensors simultaneously. This combination of the Garmin lidar and two ultrasonic
sensors increased detection accuracy from 82% to 97–100% in distances up to 50 m. Figure 3
shows the installation of the ultrasonic sensors and the Garmin lidar on the vehicle. Figure 4
shows a sample of distance data recorded by FPGA from the two ultrasonic sensors and
the Garmin lidar.
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After configuration, the FPGA was placed inside the vehicle trunk and connected to the
Garmin lidar and ultrasonic sensors via 12 cables, 6 m long, wrapped in protective sleeves.

2.1.3. IMU

The MPU-6050 model was chosen because it is cheap, small-sized, and easy to install
and configure. The first design was simple: installing the IMU on the steering wheel along
with a microcontroller, a battery, and a SD card. The system worked, but there were two
major issues. First, the battery had to be replaced every two hours, rendering the proposed
system impractical. Second, placing the IMU directly on the steering wheel has its own set
of issues, as drivers may accidentally touch the IMU, causing their natural driving behavior
to change and the system to crash. Figure 5 depicts the early design for the IMU system.
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The design of a small enough system to be placed inside the steering wheel makes
the proposed system non-visible to the drivers. In addition, it eliminates possible biases
from the data collection process. As a result, the IMU system of the proposed DAS was
distributed into two parts: the sending side and the receiving side.

Figure 6 shows the sending side of the IMU system, which is installed inside the
vehicle’s steering wheel. On the sending side, the IMU sensor was connected to an antenna
that sends recorded steering data to another antenna on the receiving side. The antenna on
the sending side was connected to a power bank.
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Figure 7 shows the receiving side of the IMU system, which was placed inside the
vehicle trunk. A raspberry pi, an antenna, a power bank, and a laptop comprised the
receiving side. The laptop was connected to a raspberry pi board (model Raspberry
PI-4B-4G). Using a raspberry pi instead of a standard microcontroller is advantageous
because the raspberry pi is a minicomputer that has a faster clock speed, has more RAM,
performs multitasking, and consumes less power. The antenna on the receiving side was in
charge of delivering the commands from the laptop to the antenna on the sending side and
obtaining recorded steering data. The recorded data were saved in text file format to the
raspberry pi SD card. Figure 8 shows a sample of steering data in text format.
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It is worth noting that the MPU-6050 includes a DMP (Digital Motion Processor)
that implements the MotionFusion algorithm, which fuses data from the gyroscope and
accelerometer to minimize sensor errors. As discussed previously, on the sending side of
the system, the MPU-6050 was placed inside the steering wheel on a flat horizontal surface.
As a result, the returning values on the receiving side of the system would represent the
driver’s steering wheel rotation

It is worth mentioning that Jeff Rowberg and I2Cdev libraries [45] provide a collection
of classes that support simple interfaces to inter-integrated circuit devices, for researchers
interested in calibrating the sensor. The offset values of the gyroscope’s axis in the raw
code should be set to zero. The offsets should be adjusted based on the values returned by
the code until the code returns 0 for every axis.

A case was designed and built to protect the raspberry pi and the FPGA located inside
the vehicle’s trunk. This protective case was named the data collection box. Two fans were
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installed on the left and right sides of the data collection box to protect the sensitive boards
from dust and overheating. In addition, a power inverter was plugged into the vehicle’s
accessory socket to prevent the laptop from running out of power during experiments.
Figure 9 shows the data collection board, and Figure 10 shows the entire equipment inside
the vehicle trunk.
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An external GPS device was installed inside the vehicle to ensure that drivers did not
deviate from the predetermined route.

Participating in a driving study may impact drivers’ behavior because sensors and
devices may cause distractions or inconveniences to participants, altering their normal
driving patterns. Thus, to minimize the possibility of influencing drivers’ behavior, a
unique DAS design was proposed, in which most of the chosen sensors and related
equipment were well hidden within the vehicle. As previously stated, the OBDII reader
was placed on the right side of the vehicle beneath the steering wheel. The smartphone
was placed inside the glove compartment. The sending side of the IMU system was placed
inside the steering wheel, while the receiving side of the IMU system was placed inside the
vehicle’s trunk along with the other equipment, such as the laptop, FPGA, and raspberry pi.
Finally, the lidar and the ultrasonic sensors were placed in front on top of the license plate.

Furthermore, researchers in [46] advocated for the development of a reliable, cost-
efficient DAS. As a result, the proposed DAS had a total cost of only 406 dollars (excluding
the laptop and the smartphone). Figure 11 depicts the proposed DAS’s entire architecture
and design.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 10 of 19 
 

 

An external GPS device was installed inside the vehicle to ensure that drivers did not 
deviate from the predetermined route.  

Participating in a driving study may impact drivers’ behavior because sensors and 
devices may cause distractions or inconveniences to participants, altering their normal 
driving patterns. Thus, to minimize the possibility of influencing drivers’ behavior, a 
unique DAS design was proposed, in which most of the chosen sensors and related equip-
ment were well hidden within the vehicle. As previously stated, the OBDII reader was 
placed on the right side of the vehicle beneath the steering wheel. The smartphone was 
placed inside the glove compartment. The sending side of the IMU system was placed 
inside the steering wheel, while the receiving side of the IMU system was placed inside 
the vehicle’s trunk along with the other equipment, such as the laptop, FPGA, and rasp-
berry pi. Finally, the lidar and the ultrasonic sensors were placed in front on top of the 
license plate.  

Furthermore, researchers in [46] advocated for the development of a reliable, cost-
efficient DAS. As a result, the proposed DAS had a total cost of only 406 dollars (excluding 
the laptop and the smartphone). Figure 11 depicts the proposed DAS’s entire architecture 
and design. 

. 

Figure 11. The architecture and design of the proposed DAS. 

2.2. Participants 
A total of 30 participants were recruited in this study, 15 of whom were males and 15 

were females. There were 15 locals and 15 foreigners. Their mean age was 40.96 years. The 
youngest participant was 20 years old, and the eldest was 69 years old. Participants were 
categorized into three groups based on their age (young, middle, and senior). Each group 
consisted of 10 participants. The young group included participants between the age of 
20 and 29. The middle group included participants between the age of 30 and 49. Finally, 
the senior group included participants between the age of 50 and 69. On average, they 
have had 22.28 years of driving experience, ranging from 2 years to 51 years. 

2.3. Test Route  
Figure 12 depicts the experimental route, which was approximately 25 km long and 

included highways, intersections, roundabouts, 2-way lanes roads, 3-way lanes roads, and 
tunnels. The route was primarily urban and sub-urban and passed through two cities, 
Kula Lumpur and Serdang. 

Figure 11. The architecture and design of the proposed DAS.

2.2. Participants

A total of 30 participants were recruited in this study, 15 of whom were males and
15 were females. There were 15 locals and 15 foreigners. Their mean age was 40.96 years.
The youngest participant was 20 years old, and the eldest was 69 years old. Participants
were categorized into three groups based on their age (young, middle, and senior). Each
group consisted of 10 participants. The young group included participants between the
age of 20 and 29. The middle group included participants between the age of 30 and 49.
Finally, the senior group included participants between the age of 50 and 69. On average,
they have had 22.28 years of driving experience, ranging from 2 years to 51 years.

2.3. Test Route

Figure 12 depicts the experimental route, which was approximately 25 km long and
included highways, intersections, roundabouts, 2-way lanes roads, 3-way lanes roads, and
tunnels. The route was primarily urban and sub-urban and passed through two cities, Kula
Lumpur and Serdang.
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2.4. Data Collection Procedure

To ensure consistency, experiments were conducted throughout the week on clear
sunny days from 9 a.m. to 12 p.m. Thus, external factors such as weather and visibility
would not influence the data collection process and skew the future analysis. Temperature
checks were performed, and participants were only permitted to drive if their readings
were less than 37 ◦C (98.6 ◦F). Participants were also required to wear face masks and
protective gloves during the experiments. In addition, only the participating driver was
present inside the vehicle, and no instructions on how to drive were given. The driver’s
movements were tracked through the GPS. The vehicle was thoroughly sanitized after each
experiment. At most, only one experiment was carried out per day. A total of 21 trips were
carried out during weekdays and 9 during weekends. The total duration of the experiments
was 1148.85 min. The longest trip took 52.91 min, while the shortest took 30.23, with an
average of 38.29 min per trip.

2.5. Data Processing

Collected raw data were filtered in three phases:

• Phase one (removal of unrelated data): irrelevant data recorded during experiments,
such as engine load, engine oil, exhaust gas temperature, fuel pressure, and kilometers
traveled per liter, were removed.

• Phase two (removal of extra data): when experiments begin, there is a brief period
(between 1 and 5 s) during which the driver is not driving, but the DAS is recoding
data. Moreover, after the experiment’s end, there is a brief period (between 1 and 10 s)
during which the driver stops driving, but the DAS continues to record data. Such
data were deleted in this phase.

• Phase three (removal of missing data): missing data, null values, blank values, and
duplicated data.
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2.6. Experts and Safety Criteria

With the assistance of the Road User Behavioural Change Research Center director
at the Malaysian Institute of Road Safety Research (MIROS), speeding, close distancing,
aggressive steering, harsh acceleration, and harsh deceleration were identified as the main
factors that contribute to accidents in Malaysia.

The DAS recorded the three parameters, speed, distance, and steering, during experi-
ments. The remaining two parameters, acceleration and deceleration, were derived and
calculated mathematically from speed. The Malaysian highway code, traffic regulations,
published articles, and extensive discussions with MIROS experts were used to determine
when drivers are considered aggressive in relation to the aforementioned factors. It is a
straightforward process in terms of speeding, as drivers must adhere to the speed limits of
the designated route.

In terms of distancing, according to the Malaysian highway code, drivers should
maintain a distance of at least 4 m with the vehicle ahead for every 10 mph (15 kmh). The
acceleration and deceleration threshold limits were adopted from the article reference [47].
Regrading steering, the yaw axis change per second was calculated, and their z-scores were
then used to determine safe/aggressive steering behavior. Z-scores range from −3 standard
deviations (far left of the normal distribution curve) to +3 standard deviations (far right
of the normal distribution curve). The Z score is denoted as z = (x − µ)/σ, where x is
the change in the yaw axis per second; µ is the mean; and σ is the standard deviation.
The criteria for determining safe/aggressive behavior in terms of speeding, distancing,
acceleration, deceleration, and steering are shown in Table 3

Table 3. Criteria for safe and aggressive behaviors.

Parameter Criteria Status

Speed <speed limit Safe
>speed limit Aggressive

Distance >4 m for every 15 khm Safe
<4 m for every 15 khm Aggressive

Acceleration <3.5 m/s2 Safe
>3.5 m/s2 Aggressive

Deceleration >−5.5 m/s2 Safe
<−5.5 m/s2 Aggressive

Steering If z-score for the change in yaw axis per second is between 1σ and−1σ Safe
If z-score for the change in yaw axis per second is above 1σ or below −1σ Aggressive

2.7. Hypotheses

Data were collected from 30 participants of different genders, ages, and nationalities.
Such diverse data can be analyzed to provide answers to the research questions posed in
the introduction section. For instance, if there are no significant differences between male
and female drivers, gender does not influence drivers in Malaysia. Furthermore, if there
are significant differences between young and senior drivers, age has an impact on drivers
in Malaysia. Therefore, several hypotheses were proposed:

Hypothesis 1 (H1). Gender differences in driving are significant.

Hypothesis 2 (H2). There are significant differences in driving across age groups.

Hypothesis 3 (H3). Driving differs significantly between people of various cultural backgrounds.

Hypothesis 4 (H4). There are significant behavioral differences between people driving on week-
days and weekends.
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2.8. Independent Sample t-Test and ANOVA

In this study, drivers are categorized into two groups based on gender (males and
females), two groups based on cultural background (local drivers and foreign drivers),
three groups based on age (young, middle, and senior), and two groups based on driving
day (weekday and weekend). An independent sample t-test was deployed in this study to
find the differences among drivers in the two group categories. However, ANOVA was
deployed to find the difference among drivers in the three age groups.

The Statistical Package for the Social Sciences (SPSS) was used to run the t-tests and
ANOVA. According to Pallant [48], the researcher must examine Levene’s test for equality
of variances in an independent sample t-test. If Levene’s sig value is greater than 0.05,
then equal variances are assumed. However, if Levene’s sig value is less than 0.05, then
equal variances are not assumed. The significant differences are confirmed if the t-test
sig (2-tailed) is below 0.05. However, no differences are assumed if the value of the t-test
sig (2-tailed) is above 0.05. All the analyses of the independent t-tests in this study were
based on this rule. Moreover, post hoc tests were conducted to uncover specific differences
between the three age groups when ANOVA tests showed significant differences.

3. Analysis Results

Aggressive events refer to the number of times the driver violated safety driving
criteria listed in Table 3. The mean and aggressive events of the five driving parameters
were used to compare the groups in the proposed hypotheses.

The t-test results revealed significant differences in average speed (sig 2-tailed = 0.001)
and aggressive steering events (sig 2-tailed = 0.046) between male and female drivers, as
shown in Table 4. The results showed that female drivers (mean = 48.20) drove significantly
faster than male drivers (mean = 42.62). However, male drivers (mean = 141.80) performed
more aggressive steering than female drivers (mean = 123.26).

Table 4. Statistical differences in gender group.

Variables Gender N Mean

Levene’s Test
for Equality
of Variances

t-Test for Equality of Means

F Sig. Sig.
(2-Tailed) Conclusions

Average speed Male 15 42.62 0.192 0.664 0.001 Females drive faster
than males.Female 15 48.20 0.001

Steering aggressive events Male 15 141.80 0.002 0.969 0.046 Males do more aggressive
steering than females.Female 15 123.26 0.046

Moreover, t-test results revealed significant differences between local and foreign
drivers in terms of average steering (sig 2-tailed= 0.011) and aggressive steering events
(sig 2-tailed = 0.008), as seen in Table 5. Local drivers steered much more frequently
(mean = 9.66) and aggressively (mean = 144.60) than foreign drivers.

Table 5. Statistical differences in cultural background group.

Variables Nationality N Mean

Levene’s Test
for Equality
of Variances

t-Test for Equality of Means

F Sig. Sig. (2-Tailed) Conclusions

Average steering Local 15 9.66 4.767 0.038 0.010 Local drivers average significantly
higher than foreign driversForeigner 15 8.96 0.011

Steering aggressive events Local 15 144.60 0.921 0.345 0.008 Local drivers do more aggressive
steering than foreign drivers.Foreigner 15 120.46 0.008

Moreover, t-test results revealed significant differences between driving on weekdays
as opposed to weekends in terms of average speed (sig 2-tailed = 0.001), average deceler-
ations (sig 2-tailed = 0.01), and aggressive steering events (sig 2-tailed = 0.34), as seen in
Table 6. Drivers drove faster on weekends (mean = 49.72) than on weekdays (mean = 43.56).
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Drivers decelerated significantly more often on weekends (mean = −0.82) than during
the week (mean = −0.76). Conversely, drivers steered more aggressively on weekdays
(mean = 138.95) than on weekends (mean = 117.55).

Table 6. Statistical differences in driving day group.

Variables Day of Driving N Mean

Levene’s Test
for Equality
of Variances

t-Test for Equality of Means

F Sig. Sig. (2-Tailed) Conclusions

Average speed Weekday 21 43.56 0.199 0.659 0.001 Drivers drive faster on weekends
than on weekdays.Weekend 9 49.72 0.001

Average deceleration Weekday 21 −0.76 0.273 0.605 0.010 Drivers decelerate more often on
weekends than on weekdays.Weekend 9 −0.82 0.031

Steering aggressive events Weekday 21 138.95 0.105 0.748 0.034 Drivers steer more aggressively on
weekdays than on weekends.Weekend 9 117.55 0.037

ANOVA results showed significant differences between age groups in average speed
(sig = 0.026) and average steering (sig = 0.030), as seen in Table 7. Post hoc tests were
conducted to identify specific differences between the groups. The post hoc test, as shown in
Table 8, revealed that there was a difference in average speed between drivers in the senior
and middle groups. The sig value was 0.033, indicating that the differences between the
two groups were statistically significant. Middle-aged drivers drove faster (mean = 47.49)
than senior drivers (mean = 41.99). In addition, there were differences between drivers
in the young group and drivers in the senior group in terms of average steering as the
sig value was 0.024. Young drivers (mean = 9.79) steered more often than senior drivers
(mean = 8.90).

Table 7. Statistical differences in age group.

Variable Age N Mean F Sig. Conclusions

Average speed
Young 10 46.76

4.193 0.026
There are differences between age groups with

relation to average speed
Middle 10 47.49
Senior 10 41.99
Total 30 45.41

Steering aggressive events
Young 10 9.79

4.017 0.030
There are differences between age groups with

relation to average steering
Middle 10 9.25
Senior 10 8.90
Total 30 9.31

Table 8. Post hoc results to highlight differences in age group.

Dependent Variable (I) Age (J) Age Sig. Conclusions

Average speed
Middle Young 0.933 Middle drivers drive faster than old drivers.Old 0.033

Senior Young 0.071 Old drivers drive slower than young drivers.Middle 0.033

Average steering
Young Middle 0.221 Young drivers steer significantly more than old drivers.Old 0.024

Senior Young 0.024 Old drivers steer significantly less than young drivers.Middle 0.519

Based on the findings of the analysis, it is safe to conclude that gender, cultural
background, day of driving, and age significantly impact driving in Malaysia. As a result,
H1, H2, H3, and H4 were accepted.

Though factors such as age, gender, driving day, and cultural background may ap-
pear to be independent, determining whether there is multicollinearity between these
factors is critical because it undermines the statistical significance of an independent factor.
Multicollinearity exists whenever an independent factor is highly correlated with other
independent factors. As a result, correlation coefficient tests are utilized to check the signif-
icant relationships between the aforementioned factors and determine the strength and
direction of the association. Correlation values range between −1 and +1. Those numbers
indicate the strength of the correlation between two factors, while the sign indicates the



Int. J. Environ. Res. Public Health 2021, 18, 11740 15 of 18

relationship’s direction. For instance, −1 indicates a perfect negative correlation between
factors, while +1 indicates a perfect positive correlation. However, 0 means no correlations
whatsoever. The closer the number to +1 or −1, the stronger the magnitude of the rela-
tionship. According to the general guidelines, a correlation between two factors exceeding
0.90 indicates that the two factors are highly correlated [49,50]. This is also an indication
that the factors are multicollinear. It is indicated that a correlation greater than 0.5 between
two factors is considered strong, a correlation between 0.3 and 0.5 is considered moderate,
and a correlation less than 0.3 and 0.1 is considered weak [51].

Table 9 displays the result of testing the correlation between factors. Significant
correlations with a p-value less than 0.05 are labeled with a single star (*), while those with
a p-value less than 0.01 are labeled with two stars (**). Results indicate a moderate negative
correlation between age and gender with a coefficient of −0.49 and a p-value less than 0.01.
Furthermore, results show a moderate positive correlation between gender and driving day
with a coefficient of 0.36 and a p-value less than 0.05. There were no significant correlations
found between the remaining factors. Given that the highest correlation coefficient was
well below 0.9, the chances of multicollinearity between the factors are slim.

Table 9. Correlation matrix.

Variable Gender Cultural Background Age Driving Day

Gender 1

Cultural Background 0.20 1

Age −0.49 ** −0.08 1

Driving Day 0.36 * 0.07 −0.08 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

4. Discussion

This study’s results are comparable to previous publications. Researchers discovered
that young drivers tailgated more aggressively than middle-aged and older drivers [8].
However, there were no differences in headways between young, middle, and senior
drivers in this study. Researchers concluded that old drivers perform better than younger
drivers in reference [7], which is relatively consistent with this study’s conclusions. Senior
drivers had better steering performance than young drivers and were less hasty than
middle-aged drivers. Results were also compatible with the findings from article refer-
ences [11,52], which demonstrated that younger drivers were more likely to speed than
older drivers.

Previous studies on gender were inconclusive and inconsistent, with some finding
that male drivers were more likely to speed than female drivers [11]. Others found gender
to be an insignificant contributing factor in speeding [53]. This study concluded, however,
that gender plays a substantial role in driving, as female drivers drove significantly faster
than males, while male drivers were more aggressive during steering maneuvers. In
addition, the results were more consistent with the findings of the reference article [13],
which showed that females and young drivers are faster than males and senior drivers.

According to previous research, drivers are 24% more likely to drive below the speed
limit on weekends because they are not under pressure to get to work [13]. However, in
this study, drivers drove faster on weekends than on weekdays. The authors believe that
people drive faster on weekends in Malaysia because traffic tends to be less congested.

Researchers noted that Malaysian drivers required a higher danger threshold than UK
drivers before identifying a hazardous situation [19]. However, their findings were limited
in determining whether drivers from different cultures in Malaysia drive differently. This
study revealed that cultural background influences driver behavior in Malaysia, as local
drivers exhibited significantly more aggressive steering behavior than foreign drivers.

Correlation coefficient tests were used to confirm that there is no multicollinearity
between factors, thereby ensuring the interpretation of the statistical results. Before issuing
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driving licenses, Malaysia’s Road Transport Department is advised to evaluate safe steering
maneuvers for adolescent drivers. Policymakers should educate the public, particularly
middle-aged drivers, about the importance of adhering to speed limits. Policymakers
should also aim to raise public awareness on the importance of adhering to speed limits
on weekends, even if traffic is light. The Ministry of Transport should provide driving
instructors with tailored training courses that teach female drivers the importance of
driving below the speed limit and male drivers the importance of lane-keeping behavior.
Furthermore, local drivers were found to zigzag more frequently and more dangerously
than foreign drivers. As a result, unique road signs should be placed to remind drivers not
to switch lanes unless necessary.

5. Conclusions

An efficient and cost-effective DAS was built in this study to collect driving data from
naturalistic experiments in Malaysia. The majority of DAS sensors and equipment was
hidden inside the vehicle to avoid influencing drivers’ behavior. The study collected over
750 km of continuous driving data from 30 drivers across two cities in Malaysia. First, safe
and aggressive thresholds regarding driving parameters, such as speed, distance, steering,
acceleration, and deceleration, were outlined. Then, aggressive events were calculated for
each driver based on those thresholds. The study further explored the impact of social
and cultural factors on driving, and four hypotheses were proposed. Those hypotheses
assumed that drivers differed in terms of gender, age, cultural background, and driving
day. The proposed hypotheses were tested using mean and aggressive events of each
driving parameter. Drivers were categorized into two groups based on their gender (males
and females), two groups based on their cultural background (local drivers and foreign
drivers), three groups based on their age (young, middle, and senior), and two groups
based on their driving day (weekday and weekend). Independent sample t-tests were
deployed to find the differences among drivers in the two group categories. In addition,
ANOVA was deployed to find differences among drivers in the three age groups. Results
showed that female drivers drove faster than male drivers. Male drivers, on the other hand,
steered more aggressively than their female counterparts. In addition, drivers in the middle
age group drove faster than drivers in the senior age group, and drivers in the younger
age group steered more frequently than drivers in the senior age group. Moreover, local
drivers steered and changed lanes more frequently than foreign drivers. Furthermore, on
weekends, drivers drove faster and decelerated more often. On weekdays, however, they
steered rather aggressively. Based on the results, the proposed hypotheses were accepted.

Based on the findings, the study outlined recommendations to various public sectors
and policymakers in Malaysia, such as the Road Transport Department and the Ministry of
Transport, to help reduce future accidents.

As far as the authors’ knowledge, this is the first naturalistic driving study in Malaysia.
In the future, the authors intend to collect driving data from a larger sample size, improve
the DAS accuracy by incorporating more sensors, and develop a deep-learning-based
recognition system that can classify drivers based on their safe/aggressive behaviors. Thus,
the DAS and the recognition system would help traffic police and insurance companies
detect errant driving behaviors and improve traffic safety in Malaysia.
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