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Abstract: Non-pathological mental fatigue is a recurring, but undesirable condition among people
in the fields of office work, industry, and education. This type of mental fatigue can often lead to
negative outcomes, such as performance reduction and cognitive impairment in education; loss
of focus and burnout syndrome in office work; and accidents leading to injuries or death in the
transportation and manufacturing industries. Reliable mental fatigue assessment tools are promising
in the improvement of performance, mental health and safety of students and workers, and at the
same time, in the reduction of risks, accidents and the associated economic loss (e.g., medical fees
and equipment reparations). The analysis of biometric (brain, cardiac, skin conductance) signals has
proven to be effective in discerning different stages of mental fatigue; however, many of the reported
studies in the literature involve the use of long fatigue-inducing tests and subject-specific models in
their methodologies. Recent trends in the modeling of mental fatigue suggest the usage of non subject-
specific (general) classifiers and a time reduction of calibration procedures and experimental setups.
In this study, the evaluation of a fast and short-calibration mental fatigue assessment tool based on
biometric signals and inter-subject modeling, using multiple linear regression, is presented. The
proposed tool does not require fatigue-inducing tests, which allows fast setup and implementation.
Electroencephalography, photopletismography, electrodermal activity, and skin temperature from
17 subjects were recorded, using an OpenBCI helmet and an Empatica E4 wristband. Correlations
to self-reported mental fatigue levels (using the fatigue assessment scale) were calculated to find
the best mental fatigue predictors. Three-class mental fatigue models were evaluated, and the best
model obtained an accuracy of 88% using three features, β/θ (C3), and the α/θ (O2 and C3) ratios,
from one minute of electroencephalography measurements. The results from this pilot study show
the feasibility and potential of short-calibration procedures and inter-subject classifiers in mental
fatigue modeling, and will contribute to the use of wearable devices for the development of tools
oriented to the well-being of workers and students, and also in daily living activities.

Keywords: fatigue; biometrics; electroencephalography; modeling; wearable sensors

1. Introduction

Mental fatigue refers to the effects of prolonged cognitive activity demands [1]. As the
progress of fatigue continues, a decrease in vigilance and performance capacity manifests,
which translates into reduced competence and willingness in maintaining and performing
specific tasks [2]. This condition and its negative effects are of common occurrence across
different daily-life activities and environments, such as in the workplace [3], at school [4],
when driving [5] and even at some stages of physical exercise [6]. In some cases (e.g.,
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industry workers, drivers and pilots), mental fatigue is related to many hazardous risks
and accidents that represent both economic and human losses [3,7]. Therefore, reliable
methods that detect this condition are highly necessary to prevent risks.

This type of fatigue is an occupational issue derived from work-related conditions,
such as shift work [8], work schedule [9], and emotional distress [10]; it is further related
to reduction of cognitive functions among workers, which can lead to a decrease in pro-
ductivity [11]. This condition is subjective [12] and therefore, in order to properly assess it,
multiple efforts have been made on translating self-assessment questionnaires [13] and har-
monizing health and safety scales [14]. Alternatively, more modern, artificial intelligence
(AI)–based proposals are capable of the following: improving safety in construction sites
using internet of things (IoT) technology [15]; predicting injury outcomes and number of
days away from work [16]; analyzing thermal protective and thermophysiological comfort
performance of fabrics [17]; and protecting workers health, safety and well-being [18].

In 2019, the Mexican government published the NOM-035-STPS-2018 regulation,
which obligates employers to identify, analyze and prevent anxiety and work-related
stress among workers [19]. This norm is in compliance with the international norm ISO
10075-3:2004, which refers to the ergonomic principles of measurement and assessment of
mental workload. The implementation of the NOM-035-STPS-2018 intends to prevent risks
in the workplace and promote a safe work environment, which has a positive impact on
employers’ health and well-being. However, due to the obligatory aspects of this norm,
Mexican companies will need to implement reliable mental fatigue measurement protocols
to ensure the mental state of their employees. Such protocols need to be easy to implement
in order to be used at any time during a work shift. In this sense, the goal of this study
is to propose a mental fatigue detection procedure which is relatively fast and easy to
implement in different contexts.

Several reports exist in the scientific literature about mental fatigue detection by track-
ing changes in neural activity through electroencephalography (EEG), which is considered
the ‘gold standard’ for mental fatigue assessment [20]. However, most of these studies
present common methodological patterns, including the following: (1) the use of gel-based
EEG caps [21–23], which require a considerable setup time, proportional to the number
of electrodes in the cap; (2) the use of often long (>50 min) fatigue-inducing tests to
identify different levels of mental fatigue during model evaluation [20,23–25]; and (3) the
construction of predictive models which are highly subject-specific [22,26–28].

In a recent brain–computer interface (BCI) technology review [29], it is highlighted
that one of the major challenges in the field is the long calibration time needed for some
applications. They also urge to find solutions to reduce calibration periods such as the use
of dry electrode EEG systems and optimized experimental designs. EEG caps with dry
electrodes require on average, one third of the setup time when compared to those with
gel-based electrodes, while offering similar comfort, performance and signal reliability [30].
From the revised related work, only a few studies have used mental fatigue recognition on
dry electrode EEG headsets [30–32].

New developments in EEG technologies have started to explore the use of dry elec-
trodes for more portable solutions [33]. Highly portable EEG headsets, such as the Think-
mindset [34], and the Muse [35] (3 and 4 dry electrodes respectively), allow to obtain fast
EEG acquisitions with none or very reduced setup time. Few-channel EEG equipment
are often preferred in some applications, as they are more comfortable and better suited
for real-world scenario studies [36]. Some EEG studies have explored the classification of
neural activity using data from a single electrode for BCI spellers [37], and motor imagery
BCIs using three electrodes [38] with 97% and 81% accuracy respectively. This few-channel
approach reduces the complexity and preparation time of the system, and at the same time
increases its usability.

Typically, mental fatigue studies include in their protocols fatigue-inducing tests.
The duration of such tests varies from one study to another. Some examples include
50 min short-term memory experiments [39], 1 hr auditory vigilance tasks (AVT) [40],
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90 min simulated driving [23], 2 hr arithmetic tasks [20], and 150 min simulated driving
experiments [24]. Although the use of such procedures ensures that the participants are in
a fatigued state while measuring their neural activity, the time consumed is considerably
large, and such protocols do not fit in our proposed fast setup scheme. Calibration-free
methods to identify mental fatigue are also suggested in [41] to avoid the time-consuming
process of inducing fatigue.

Due to the variability in neural activity from one user to another, many mental
fatigue recognition studies implement customized EEG-based algorithms in which different
classifiers are trained to a specific subject’s signals, using different machine learning and
deep learning techniques [42]. Some examples of classic machine learning methods include
the following: a Fisher linear discriminant analysis (FLDA) approach used to classify mental
fatigue with 98% accuracy [39]; a kernel partial component analysis (KPCA)–support vector
machine (SVM) approach to classify from three mental fatigue states with an accuracy
of 81.64% [24]; a two-states, SVM classifier using EEG and electrocardiographic (ECG)
spectral features with 91% accuracy [20]; and a five-level mental fatigue SVM achieving
91.2% accuracy [40]. In the deep learning context, algorithms such as long short-term
memory (LSTM), recurrent neural networks (RNN) and convolutional neural networks
(CNN) were implemented. A bidirectional LSTM (BLSTM) model was able to classify
the level of drowsiness in pilots under simulated flight obtained 87% and 69% accuracies
when classifying two and five drowsiness levels, respectively [22]. An RNN model with
an accuracy of 92.95% for driving mental fatigue detection was presented in [23]. A two-
class EEG-based mental workload estimation using BLSTM-LSTM architecture with an
average accuracy of 86.33% was implemented in [43]. An EEG-based spatio-temporal CNN
(ESTCNN) model showed a high accuracy of 97% when identifying between alertness and
fatigue states during simulated driving tasks [26].

All the aforementioned works used a subject-specific approach in their protocols
and data processing. An inter-subject transfer learning approach was followed in [42]
to develop a multi-participant model for mental fatigue recognition under simulated
driving tasks. Although the accuracy of the obtained model was lower than in other works
(73%), the study proposes an interesting take on the development of universal classifiers
and calibration-free methods. As stated in [42], general classifiers allow inter-subject
classification by using information from different samples (subjects) as input, and are able
to model features from multiple participants. The development of general models allow the
avoidance of the time-consuming task of creating one personalized model per participant.
This is highly important when using data from large databases, as one general model could
be used to represent all participants without the need of several individual models.

Among the related scientific literature, EEG, ECG and other physiological signals
were used as features for mental fatigue recognition. In EEG, posterior alpha (8–12 Hz) and
anterior theta (4–7 Hz) waves were found to be directly related to mental fatigue [44]. The
increase of theta power, as well as the theta/alpha ratio, have shown positive correlation to
mental fatigue states [27]. During the condition of mental fatigue, users experience a shift
from an alertness state to a more relaxed state, which is reflected in EEG as an increase in
low frequency waves, and a reduction in high frequency waves [39,45].

There are also studies on time-locked event-related potentials (ERP) in EEG to observe
changes in temporal aspects of brain response in fatigued users [46,47]. The P300 waveform
is widely used in a BCI context, as well as for mental fatigue evaluation [48–50]. The P300
is a positive peak presented approximately 300 ms after the onset of a stimulus [51]. The
height of this peak is larger when users are presented with an unexpected, low probability
stimulus. Based on this premise, the oddball task emerged as the standard protocol to
elicit P300 responses. The oddball tasks present a user two types of stimuli (frequent and
non-frequent) to observe the P300 waveforms [52,53]. Two parameters of interest of the
P300 wave are (1) latency, which is the time when the peak of the wave appears, and (2) its
amplitude. Variations in these parameters are associated with the development of mental
fatigue [54,55]; a decrease in amplitude and an increase in latency are associated with the
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development of mental fatigue. In such a state, the performance of cognitive tasks reduces,
which reflects as a delayed stimulus identification, as well as a decreased arousal level [21].
Similar latency increases of ERPs are related to the aging process as well, as shown by
auditory oddball (AO) protocols [56].

Heart rate variability (HRV) was also monitored to estimate user’s mental fatigue and
drowsiness [57]. Power increases in the low frequency (LF) component of ECG (0.1 Hz)
were observed after continuous performing of monotonous tasks [20]. It is also possible
to observe the relation between sympathetic and parasympathetic activity through an
analysis of heart-related signals. An increase in heart rate (HR) can be related to an increase
in sympathetic activity and vice versa. Alternative HR and HRV measurements can be
obtained through photopletysmography (PPG), which is an optical signal that measures
blood volume changes in micro vascular tissue [58]. Other physiological measures were
studied during fatigue-inducing experiments, such as electrodermal activity (EDA) and
body temperature [59]. EDA measures changes in skin resistance associated with sweating;
therefore, it is a sensitivity index of sympathetic nervous system activity. An increase
in EDA and a decrease in body temperature were observed during sleep deprivation
experiments, as well as a reduction in reaction time to presented stimuli [59]. Another
study presents a CNN model which used biometric data (EDA, HR and Temperature)
gathered from six weeks to predict the fatigue level of users, obtaining an accuracy of
82.9% [60].

Following the aforementioned methods in mental fatigue recognition, employers that
want to comply with well-being regulations would need to ask their workers to undergo
fatigue-inducing tests, and then build one specific classifier for each of them, which is not
practical. Therefore, the aim of our study is to implement a fast mental fatigue detection
test, able to be implemented under different work scenarios. In this sense, we propose
three key components: (1) the use of a dry electrodes EEG headset, (2) the design of a
short-calibration experimental protocol that does not need to induce mental fatigue, and
(3) the construction of an inter-subject fatigue recognition algorithm. In this pilot study,
multiple linear regression (MLR) models were used, as suggested in [27] to contribute in
the development of more simple and general models. Fatigue-inducing tests are not part of
this study. Instead, participants are asked to answer a self-reported fatigue questionnaire,
which is used as ground truth to model the fatigue recognition algorithms. This procedure
implies a very reduced setup time, ensuring the short-calibration design.

Regarding the analyzed features to build such models, our proposal uses a combina-
tion of highly portable wearables, which allow simultaneous recording of EEG, PPG, EDA
and body temperature. Generalizable features are preferred in the multi-participant scheme,
such as P300 parameters, power band ratios and normalized features. The equipment used
is useful to implement measurement and predictive tools in real-world scenarios, such
as workplace and educational scenarios. Using the proposed procedure, it was possible
to design and evaluate a time-efficient and easy-to-implement mental fatigue assessment
tool. Such a tool can be used in industrial, office and educational environments with the
purpose of identifying the mental fatigue condition of the users. This tool could be used to
infer the mental fatigue state of a user based on its biometric signals and to provide reliable
feedback. The experimental setup and design is described in Section 2, while the signal
processing, feature extraction and model evaluation methods are presented in Section 3.

2. Data

The proposed fatigue assessment tool includes the measurement of biometric data,
such as EEG, HR, HRV and EDA through wearable devices (OpenBCI helmet and Empatica
E4 wristband) during a five-minute recording. Biometric data are transferred to a PC
to perform analysis, feature extraction and fatigue modeling to evaluate prediction of
previously self-reported fatigue scores.
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2.1. Experimental Design

A total of 17 healthy subjects volunteered in this study, with a mean age of 22 years and
standard deviation of ±3 years (8 male and 9 female). Subjects were informed beforehand
of the experimental procedures and were asked to sign a consent form, informing them of
their right to leave the experiment if feeling uncomfortable at any moment. All participants
provided signed consent for data sharing and publication.

After explaining the procedures and obtaining the consent forms signed, users were
asked to answer a fatigue questionnaire, the fatigue assessment scale (FAS) test. Then,
the Ultracortex “Mark IV” EEG headset, (OpenBCI, New York, NY, USA) and the E4
wristband (Empatica, Milano, Italy) were adjusted over the user’s head and left wrist,
respectively. Volunteers were asked to remain seated in a relaxed, comfortable position
while measuring their physiological signals. EEG and biometric recordings were initialized
in synchronization. Measurements took place in an environment replicating working
settings, (e.g., classroom or office). All participants underwent a 5 min recording, consisting
of a 30 s eyes closed (EC) recording, followed by a 30 s eyes open (EO) measurement, and a
4 min AO task, to elicit P300 waves. The change between EC and EO tasks was marked by
a three-second low pitched tone, as well as the change between EO and AO. EC and EO
were used for measurement of baseline state signals of each user, as well as preparation
for the AO trials to avoid the sudden start of experiments. A conceptual framework of the
proposed mental fatigue assessment tool is presented in Figure 1.

HR, HRV, EDA, ST

EEG

Data Processing 

Feature Extraction

Model Identification

Data acquisition

Interface

OpenBCI Headset

E4 Wristband

30s   30 s                         4 min 

AOEOEC

Figure 1. Concept for the experimental design of the fatigue assessment tool. Biometric data are
acquired through the OpenBCI and E4 wearables during a relaxed state (EC and EO) and during
the AO task. In the AO task, frequent and non-frequent stimuli are presented randomly in a 80:20
proportion. Data are transferred to a PC via Bluetooth, using the OpenVibe software and analyzed
offline in Matlab for data processing, feature extraction and model assessment.

The AO task was formed by the presentation of a total of 120 auditory stimuli of
two classes (two different tones): 96 frequent and 24 non-frequent stimuli, with a 80:20
probability proportion, as suggested in [53,61]. Stimuli were presented for one second,
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with an inter-stimulus period of one second. Volunteers were instructed to use a set of
earphones during the recordings to avoid distractions from surrounding noise. Participants
underwent one trial each of the explained protocol. Stimulus presentation protocols were
designed using OpenVibe software, which allows real-time acquisition, filtering, processing,
classifications and visualization of brain signals [62]. Data from the E4 wristband were
stored in a cloud server and accessed using the E4 Manager app. MATLAB was used for
offline processing of the obtained data, feature extraction and model evaluation.

2.2. EEG Acquisition

EEG signals were acquired using the wireless OpenBCI equipment along with the
Cyton Board. This system allows to obtain EEG signals, using dry electrodes at a sampling
frequency of 250 Hz. The Ultracortex Mark IV headset was used to set the EEG electrodes.
It is an open-source, 3D-printable headset intended to work with any OpenBCI Board and
allows to record EEG signals under different possible configurations. These properties
allow for fast, simple implementation and set up during the experiments [63]. This systems
makes use of eight EEG channels of the standard 10–20 system: FP2, FP1, C4, C3, P8, P7, O1,
and O2, and two clip reference electrodes (one placed in each earlobe). Using OpenViBE,
signals were further filtered using a 60 Hz Notch filter to remove powerline noise, and
0.1–100 Hz 4th order Butterworth bandpass filter, as brain activity lies within this frequency
range [64]. The first two rows of Figure 2 show a 30 s visualization of EEG acquisition of a
representative participant on two electrodes (O1 and O2).

2.3. Biometric Signals Acquisition

The Empatica E4 wristband is a wireless wearable system that measures biometric
signals in real time [65]. This system measures PPG, inter-beat interval (IBI), HR, EDA and
skin temperature (ST) signals. Signals were obtained at 64 Hz (PPG), 4 Hz (EDA and ST)
and 1 Hz (HR and IBI). The last five rows of Figure 2 show a 30 s visualization of signals
(BVP, EDA, ST, HR and IBI) of one representative participant.

2.4. Fatigue Assessment Scale

Mental fatigue level was measured for all volunteers, using the score obtained in the
self-answered FAS questionnaire. The FAS is a tool which represents a valuable instrument
for fatigue assessment with consistent reliability and validity [66], and has been validated
in several studies in the literature [67–69]. In [67], the use of the FAS was used for the
identification of mental fatigue in young adults. Furthermore, the questions from the FAS,
as stated in [69], were selected from four previous valid questionnaires: the fatigue scale
(FS), the checklist individual strength (CIS), the emotional exhaustion subscale of the Dutch
version of the Maslach Burnout Inventory (MBI-DV), and the Energy and Fatigue Subscale
of the World Health Organization Quality of Life assessment (WHOQOL) instrument.

Due to the fact that Spanish was the first language of all volunteers, the Spanish version
of the FAS was used in this study [70]. The FAS questionnaire consists of 10 questions with
an individual score (1–5). The questions and possible answers from the FAS are presented
in Figure S1 (see Supplemental Material). According to [71], the FAS total score can be
classified into three classes: no fatigue (1–21), substantial fatigue (22–35) and extreme
fatigue (36–50). From the 17 participants, 3 were in the no fatigue class (19 ± 2), 8 in
substantial fatigue (27 ± 3), and 6 (37 ± 3) in extreme fatigue. A distribution plot of the
FAS scores of the 17 participants is presented in Figure S2 (see Supplemental Material).



Int. J. Environ. Res. Public Health 2021, 18, 11891 7 of 20

Figure 2. Thirty-second visualization of biometric signal acquisition during AO task for participant P2. Each row represents
a different signal in the same time frame. From top to bottom: EEG (O1, O2) obtained from the OpenBCI headset, and BVP,
EDA, ST, HR and IBI, obtained from the E4 wristband.

3. Methods

The methods used in this study are mainly divided into the following: signal acquisi-
tion and processing, feature extraction, and model training and evaluation. A simplified
diagram of the methodology is presented in Figure 3.

3.1. EEG Temporal (P300) Analysis

EEG signals were pre-processed prior to analysis to reduce unwanted noise and
remove artifacts. Besides the bandpass filters mentioned in Section 2.2, all EEG signals
were further cleaned using the artifact subspace reconstruction (ASR) algorithm, using
a parameter κ = 15 to reduce large artifacts. The ASR is an effective and efficient signal
cleaning method that reconstructs artifacts as large as κ-times the standard deviation of
a clean portion of the signal [72]. Values of κ between 10 and 100 are recommended
for optimal ASR filtering, according to [72]. The choice of the parameter κ was selected,
as, by using this value, the artifact filtering is not as aggressive as removing important
EEG-related activity, but is effective at removing muscle and eye movement–related activity
instead [72]. This algorithm was implemented using MATLAB’s EEGLAB toolbox [73].

P300 waves were analyzed according to the protocol described in [21]. EEG signals
were divided into Nn f 1-second windows, where Nn f = 24 is the number of non-frequent
stimuli in each trial. All windows were formed by 1000 ms containing the signals comprised
of the 200 ms prior to the onset of the stimuli to the 800 ms after the stimuli. All windows
were filtered from 0.1–10 Hz, averaged and baseline (EO) corrected to obtain eight (one per
channel) P300 representative waves per trial. To ensure that there was no phase distortion in
the 1000 ms windows due to temporal filtering, a zero-phase digital filter was implemented
using the MATLAB command filtfilt, which ensures zero phase distortion at its output.

P300 amplitudes and latencies were obtained for all EEG channels and users. The
amplitude of P300 is defined as the highest positive peak of the obtained waveform in the
immediate post stimulus 200–500 ms window [21], while latency is defined as the time
from stimulus onset to the presentation of the aforementioned peak [74]. Typical P300
analysis involves individualized analysis per subject; however, in our inter-subject proposal,
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following the parameter detection guidelines reported in [21], an automated P300 latency
and amplitude detection algorithm was implemented for an efficient feature selection
process. Automatic P300 parameter detection was previously reported and validated in the
literature [75]. The calculated amplitude and latency values obtained by these procedure
were used as features (2 × 8 channels = 16 features) for the MLR models.

Figure 4 shows a P300 waveform representation obtained from the average of all
subjects for both frequent and non-frequent stimuli during the AO trial at eight channels.
In this representation, the P300 wave is observed around 200 ms after stimulus onset at
FP1 and C3, and more prominently at 300 ms in P7.

Consent
and self

assesment

Biometric
data 

acquisition

Signal
analysis and 
assessment
modeling

Assessment
model

selection

Invitation
to do the

test

Consent
forms

signature

Fatigue 
assessment
using FAS

AO (P300) 
Test

Setup Ready
on Employee / 

Student

Customized
Experimental 

Setup

Model
training and 
evaluation

Feature

Extraction

Signal
Analysis

Comparison
to self

reported FAS 
results

Model
Selection

Figure 3. Diagram of the methodology implemented in the study. After data acquisition, the signal
processing, feature extraction and model evaluation steps were performed.

3.2. EEG Spectral Analysis

EEG signals were used to calculate power in five frequency bands: Delta (1–4 Hz),
Theta (4–7 Hz), Alpha (8–12 Hz), Beta (13–29 Hz) and Gamma (30–50 Hz). Power was
calculated on 1-s windows using the fast Fourier transform (FFT) for all EC, EO and AO
tasks in all EEG channels and frequency bands. Normalized power values (with respect
to EO task) (NP(t)) at every 1 s window t were obtained for each user independently,
following Equation (1).

NP(t)ch, f b =
AO(t)ch, f b − EOch, f b

EOch, f b
, (1)

where EOch, f b represent the average power at specific channel (ch) and frequency band
( f b) during the EO task, and AO(t)ch, f b represent the power values at the same channel
and frequency band during the AO task before normalization. Average normalized power
values for all EEG channels and frequency bands were used as features (5 frequency
bands × 8 channels = 40 features) for the MLR models.

Power ratios were also calculated for all possible combinations of frequency bands.
A total of 20 power ratios were obtained for all EEG channels, using the estimated power
values prior to normalization (AO(t)ch, f b). Then, average power ratios were used as
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features (20 ratios × 8 channels = 160 features) for the MLR models. All the obtained
power ratios are shown in Table 1.

Table 1. Power ratios calculated for all frequency bands.

δ θ α β γ

δ/θ θ/δ α/δ β/δ γ/δ
δ/α θ/α α/θ β/θ γ/θ
δ/β θ/β α/β β/α γ/α
δ/γ θ/γ α/γ β/γ γ/β

Figure 4. Grand average representation of the P300 wave across all participants. Eight traces (one
per channel) are presented for frontal (F), central (C), parietal (P) and occipital (O) electrodes of the
left and right hemispheres of the brain. Shaded area represents standard error across traces.

3.3. Empatica E4 Analysis

Features from the Empatica E4 wristband were also calculated, providing informa-
tion about physiological variables of each participant. Power values from PPG signals
were calculated in four frequency bands: total power (TP: 0–0.4 Hz), high frequency
(HF: 0.15–0.4 Hz), low frequency (LF: 0.04–0.15 Hz) and very low frequency
(VLF: 0–0.03 Hz) [20,76]. Normalized PPG power values (with respect to EO task) were
obtained using 30 s windows, on one-second moving windows for all frequency bands in a
similar manner as in Equation (1). This window size was selected to correctly estimate all
frequency components mentioned previously. Additionally, two ratios were calculated: the
LF/HF ratio, and the LF in normalized units (LFNU). The LF/HF ratio was obtained by
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dividing the LF and HF features prior to normalization, and the LFNU was estimated as
defined in [20] using Equation (2).

LFNU(t)AO =
LF(t)AO

TP(t)AO − VLF(t)AO
, (2)

where LF/HF(t)AO represents the ratio between the LF and HF components during the
AO tasks, and LFNU(t)AO represents the LF component in normalized units at each time
window. Ten signals were obtained from the E4 wristband per second: VLF, LF, HF, TP,
LF/HF, LFNU, IBI, HR, EDA and ST during AO trials. The average values of the calculated
signals were used as features for the MLR models.

3.4. Feature Selection

A total of 226 features were obtained as variables for the MLR model: 16 (P300) + 40
(Normalized EEG Power) + 160 (EEG Power Ratios) + 10 (E4). Signals from three subjects
were discarded due to missing data. Therefore, the presented results take into account the
remaining 14 participants. Correlational analyses were extensively used in the literature
to find physiological features relevant to mental fatigue [77]; therefore, the correlation
between features and FAS scores was obtained.

Correlation coefficients, using the corrcoef MATLAB function, were calculated as well
as the corresponding p-values for the correlation tests between each of the 226 features
and the FAS scores, with a sample size of m = 14 (participants). Features which showed
significant correlation to FAS scores (p-value < 0.05) were considered in the subsequent
analysis; features which did not show this condition were excluded.

The selected significant features from the correlational analysis were used to build a
feature matrix, containing those features most correlated to FAS scores from all volunteers.
This feature matrix was sorted according to their p-values, e.g., the first feature in the
matrix, (with the lowest p-value), was the most correlated to FAS. The sorted feature matrix
was then used for model evaluation purposes.

3.5. Model Training and Evaluation

Models were evaluated using three (training:testing) data splitting approaches: 70:30,
80:20 and leave-one-out (LOO), respectively. The 70:30 ratio is commonly used in machine
learning approaches in EEG-based classification [78,79], and the 80:20 ratio [20] and the
LOO approach [42] were implemented in similar studies. In the 70:30 ratio, a training
set was built by randomly selecting data from 10 subjects and testing on the remaining
4 subjects; in the 80:20, data from 11 subjects were used for training, and 3 for testing;
and in the LOO approach, the training set used 13 and 1 subjects for training and testing,
respectively. In order to evaluate the performance of the predictive models, in all data splits
implemented, data from participants in the training set were not included in the test set.

Models were trained and evaluated using two nested for loops. The first loop increased
the number of features of the training set from 1 to K (using the sorted feature matrix),
where K is the maximum number of significantly correlated features (e.g., the model first
evaluates the most correlated feature), and the second loop enabled the random selection
of a different training/testing set at every iteration (cross-validation).

This process was iterated ten times to achieve a ten-fold cross-validation (CV) to
obtain an average representation of the model’s performance. In each CV, the parameters of
the MLR models for each selected training set were calculated, using the normal equation
method [80,81], and were used to predict the FAS scores in each test set. Following this
procedure, by averaging across the 10 CVs, the performance of the models using different
number of features were obtained.

Two metrics were used to evaluate model’s performance: the root mean square error
(RMSE), and the average percentage of correct classification. The RMSE was used to
estimate model performance under a linear regression approach, and shows the difference
between the predicted and real FAS scores. When evaluating RMSE, it is desirable to be as
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minimized as possible to increase the model’s performance. The RMSE was obtained using
the following:

RMSE =

√
n

∑
i=1

(Yi − Ŷi)2

n
, (3)

where Yi and Ŷi are the real and predicted FAS scores, respectively, and n, the number of
examples in the evaluated test set. The average RMSE was obtained across CVS.

To evaluate the performance of the models under a classification approach, the accu-
racy of the models was calculated as the average percentage of correct classifications across
CVs. In this case, the model is evaluated on how well it predicts the correct classes of the
FAS questionnaires answered by the participants.

Three MLR models were designed and evaluated to predict FAS score using different
combinations of features and data splitting approaches. The first model (EEG) considered
all the selected features from EEG analysis. The second model (NR-EEG) considered only
the non-redundant significant features from only EEG analysis. Redundant features were
removed from the analysis. For instance, if a pair of features, such as α/θ and θ/α, at the
same EEG channel were significant, the feature with the higher p-value was removed from
the model. The third model (E4) considered the six E4 features shown in Table 2.

The prediction performance and RMSEs of all the models were evaluated and com-
pared, using different amounts of data from the AO task—4 min, 2 min, 1 min, 30 s and
15 s—to observe the best time period for assessing fatigue in this approach. Feature ex-
traction, selection and model evaluation were implemented by custom codes in MATLAB
2020a version 9.8.0.1396136 (The MathWorks Inc).

Table 2. EEG and E4 features which showed significant correlation to FAS score.

Feature p-Value r Feature p-Value r Feature p-Value r Feature p-Value r

β/θ (C3) 0.0003 −0.8252 δ/β (O1) 0.0145 0.6357 Latency (P7) 0.0290 0.5819 θ/γ (FP1) 0.0438 0.5451
θ/β (C3) 0.0003 0.8242 α/δ (O1) 0.0148 −0.6343 β/δ (FP1) 0.0299 −0.5794 α (C4) 0.0441 −0.5444
α/θ (O2) 0.0011 −0.7777 γ/θ (C3) 0.0157 −0.6299 γ/β (P8) 0.0305 −0.5775 δ (C4) 0.0451 −0.5422
θ/α (O2) 0.0011 0.7760 β/δ (O2) 0.0160 −0.6287 α/δ (C3) 0.0320 −0.5734 θ/γ (O1) 0.0467 0.5390
θ/α (C3) 0.0059 0.6941 δ/α (O1) 0.0166 0.6262 γ/δ (C3) 0.0335 −0.5694 δ/γ (C3) 0.0477 0.5368
α/θ (C3) 0.0060 −0.6927 θ/γ (O2) 0.0172 0.6235 θ (C4) 0.0342 −0.5677 α/δ (FP1) 0.0487 −0.5350
γ/δ (O1) 0.0064 −0.6894 δ/γ (O2) 0.0172 0.6235 α/θ (O1) 0.0358 −0.5636 ST (E4) 0.0785 −0.5267
δ/γ (O1) 0.0071 0.6829 γ/δ (FP1) 0.0177 −0.6213 γ/θ (O1) 0.0373 −0.5599 LF (E4) 0.0869 0.5146
γ/β (O1) 0.0084 −0.6727 δ/β (O2) 0.0182 0.6193 θ/α (O1) 0.0374 0.5598 TP (E4) 0.1221 0.4711
β/γ (O1) 0.0086 0.67091 β/δ (C3) 0.0204 −0.6106 γ (FP1) 0.0383 −0.5575 HF (E4) 0.1696 0.4239
β/θ (O2) 0.0011 −0.6545 θ/γ (C3) 0.0205 0.6101 δ/β (FP1) 0.0384 0.5572 LFN (E4) 0.1902 0.4061
θ/β (O2) 0.0128 0.6445 δ/γ (FP1) 0.0211 0.6080 γ/θ (FP1) 0.0387 −0.5566 LF/HF (E4) 0.2121 0.3884
β/δ (O1) 0.0139 −0.6389 β/γ (P8) 0.0268 0.5886 δ/α (C3) 0.0400 0.5536
γ/δ (O2) 0.0140 −0.6386 Latency (C3) 0.0268 0.5884 α/δ (O2) 0.0403 −0.5529
γ/θ (O2) 0.0145 −0.6358 δ/β (C3) 0.0285 0.5833 δ/α (O2) 0.0429 0.54711

4. Results

A total of 51 features, all of them obtained from the EEG analysis, were found to be
significantly correlated to the FAS score and were included in the models. No features
from the E4 analysis were found to be significant, and therefore, were discarded from the
subsequent analyses. All the selected features in these analyses are shown in Table 2 with
their respective p-values and correlation coefficients (r). For completeness, the six most
correlated E4 features (ST, LF, TP, HF, LFN and LF/HF) to the FAS score are also listed.

Among the most significant features from the EEG analysis were the β/θ in C3
(p = 0.003) and the α/θ in the O2 (p = 0.0011) ratios. Figure 5 shows the calculated α/θ
power ratio at electrode (O2), in relation to the β/θ ratio in C3 at different fatigue states.
The fatigue state defined by the FAS score is shown in color code for the three fatigue states.
Figure 5 represents a prominent negative correlation between both features and the user’s
fatigue scores. Regarding the ERP analysis, the latency showed a significant correlation in
C3 (p = 0.0268) and in P7 (p = 0.029), as presented in Table 2.



Int. J. Environ. Res. Public Health 2021, 18, 11891 12 of 20

0.95 0.96 0.97 0.98 0.99 1

 /  

0.9

0.92

0.94

0.96

 / 
 

No fatigue
Substantial fatigue
Extreme fatigue

Figure 5. Two-dimensional representation of the most significantly correlated feature to FAS score:
β/θ (C3), and α/θ (O2) in relation to their fatigue classifications.

Figure 6 shows the average accuracy of the evaluated models across CVs from the first
15 features, using different amounts of data of the AO task recording: 4 min, 2 min, 1 min,
30 s and 15 s. In the EEG model (70:30), maximum accuracy (88%) was obtained from one
minute using the three most significant features: β/θ (C3), θ/β (C3), and α/θ (O2). Further
feature inclusion resulted in lower accuracies. In the 80:20 model, a similar behavior to the
70:30 model was observed. In this case, 83% accuracy was the maximum using one minute
of data. In the LOO model, the three feature classifier decreases its performance, and the
maximum accuracy remains at 83%. However, a shift toward a higher number of features
is observed: using 8 features of the four minutes recording and 12 features of 30 s of data.

The NR-EEG classifier shows, on average, lower performance than the EEG model. In
this model, maximum accuracy (86%) was obtained using four minutes of the three most
significant features: β/θ (C3), α/θ (O2) and α/θ (C3) for the 70:30 ratio. In the 80:20 ratio,
a maximum accuracy of 77% results from using three features on two minutes of data.
In the LOO approach, the highest accuracy (80%) was found using 12 features using 30 s
of data.

The accuracies and RMSEs from both EEG and NR-EEG models in the three data
ratios are presented in Figure 7, using different amounts of data points in the AO tasks. It is
observed that the highest accuracy classifier (88%) also presents the lowest RMSE value of
4.058. In the 80:20 and LOO approaches, in general for the first six features, the accuracies
are lower and the errors higher than in the most accurate 70:30 model.

A slight accuracy reduction is observed in Figure 7 for the NR-EEG model, when
compared to the EEG models. The highest accuracy NR-EEG classifier (86%) shows a
relatively low RMSE error of 5.729. In the 80:20 and LOO approaches, it can be observed
that the errors of some models are slightly smaller than in the 70:30 ratio, and some are
even smaller than those in the EEG models (especially when including more features);
however, the accuracies are also lower and do not surpass the best model in the 70:30 ratio.

Figure S3 (see Supplemental Material) shows the accuracy of the E4 models for all
data-splitting approaches. It can be observed from these figures that such models are not
precise enough for the desired application, tending to present a similar behavior across
different number of features, and average accuracies of 55% and 60% for the 70:30 and 80:20
splits, respectively. The LOO approach obtained slightly higher performance, especially
using 30 s of the first three features (80%).
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Figure 6. Average classification accuracies for the EEG (top row) and NR-EEG models (bottom row) (K = 15 features), using
4 min, 2 min, 1 min, 30 s and 15 s of data during the AO task. Shaded area represents standard error across cross-validations.
Model performance was evaluated using 70:30 (left), 80:20 (middle) and LOO (right) data splitting approaches.

Figure 7. Average classification accuracy and RMSE for the EEG (top row) and NR-EEG models (bottom row), for the six
most significant features. Accuracy and RMSE were calculated using different amount of data from the AO task (4 min to
15 s). Error bars represent standard error across cross-validations. Model performance was evaluated using 70:30 (left),
80:20 (middle) and LOO (right) data splitting approaches.
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5. Discussion
5.1. Feature Analysis

In the present study, different physiological variables (EEG, BVP, EDA, temperature)
were measured in a fast, short-calibration and simple-to-implement mental fatigue evalua-
tion test, using wearable devices (portable, dry-electrode EEG and smart wristband). The
advantages of the proposed tool, compared to others reported in the literature, lie in the
design of the test: using dry-electrode EEG, which has a faster setup than gel-electrode
EEG; there is no implementation of long fatigue-inducing tests on the participants; and the
test follows an inter-subject approach.

In order to find relation between the measured variables and the mental fatigue states
of the participants, pair-wise correlations between features of physiological signals and
self-reported fatigue measurements were calculated in an inter-subject design. The most
significant correlations to FAS score, as shown in Table 2, were mainly EEG power ratios
between high and low frequency bands at central and occipital electrodes.

P300 latency was also significantly correlated to the FAS score in electrode C3, as
shown in Table 2. These observed changes in latency were probably due to the topo-
graphical proximity of the motor cortex to the temporal lobes, associated to the auditory
processing related to the AO tasks. The positive correlation between latency and FAS score
can be interpreted as a linked increase in latency and FAS score, which reflects the delayed
cognitive information processing upon the development of mental fatigue [82].

As reported in previous ERP studies, there exists a relationship between P300 features
and EEG spectral changes. More specifically, a decrease in P300 amplitude correlates to
a decrease in alpha power—in other words, a decrease in alpha power during a fatigued
state [74,83]. In our case, a decrease in α/θ ratio was observed to correlate to a fatigued
state, as observed in Figure 5. Both cases suggest that higher alpha power values are related
to less-fatigued states. Other power ratios were found significant in this study, such as β/δ,
β/θ, γ/δ, γ/θ, among others (See Table 2). This suggests that the ratio between the high
frequency bands related to attention and alertness (beta and gamma) and low frequency
bands related to drowsiness and sleep (theta and delta) is useful at determining the mental
fatigue level of participants.

Physiological signals from the E4 wristband failed to prove significance to statistical
tests, although they showed an apparent correlation by visual inspection. The most
correlated features were ST and LF, which showed negative and positive correlations to the
FAS score, respectively. A decrease in body temperature associated to fatigue development
was also reported in [59]. In [20], increased LF power of ECG measurements was reported
after performing fatigue inducing tasks. The authors explain that lower heart rate causes
more variations in heart rate and this is reflected as an increase in the LF component [20].
In [84], a set of physiological measures (temperature, brain and heart activity) is recorded
on workers, and such measures are related to fatigue. Mental fatigue signs were not
observed in the study, but changes in temperature were associated to physical fatigue.
In that particular study, thermoregulation was better suited to classify physical fatigue
than heart rate. It could be possible that a similar phenomena happened in our case.
Probably, changes observed in ST were related to physical fatigue and thus, showed a
slightly higher correlation and lower p-values to FAS scores than heart-related features,
which showed higher p-values. Although physical fatigue was not analyzed in this study,
studies have addressed the idea of a link between mental and physical fatigue [1,6]. In [6],
the development of mental fatigue in cyclists during a 20 km cycling time trial showed a
negative impact on their pace regulation and overall performance.

5.2. Model Evaluation

Regarding the MLR models, accuracies of 88% and 86% were achieved, using one
minute of AO task data for the EEG and the NR-EEG models, respectively, using a 70:30
ratio. In both cases, the features that best represent our proposed fatigue assessment
model were β/θ (C3), and α/θ (O2). As the models considered more features, lower
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accuracies (around 60%) were found, probably as the models were over-fitting at this
point. An increase in accuracy can be observed in Figure 6, when the LOO model used
12 features, in both EEG and NR-EEG models. However, a higher amount of features
in the model can lead to over-fitting and is very susceptible to noise [85]. In fact, in
these cases, it is suggested to reduce the number of features and use simpler models
to minimize performance reduction caused by noise [85]. Another possible solution to
increase accuracy could be regularization techniques such as the least absolute shrinkage
and selection operator (LASSO); however, this approach was not explored in this study.
BVP, HR, IBI, EDA and ST features failed to show significance; however, the difference
between the number of analyzed features from the OpenBCI and the E4 was considerably
different. It is not discarded that an increase in the number of analyzed E4 features could
help to increase model’s accuracy and provide a better insight on fatigue assessment.

A possible explanation on why the best model was obtained using data from the first
minute of the AO task is that by the end of the task, users could be in a more relaxed state
than when they answered the FAS questionnaire. Following this logic, the prediction of the
self-reported fatigue state would have more sense at initial stages of the AO task, closer to
the time when users answered the FAS questionnaire.

5.3. Limitations

Some limitations of this work that need to be addressed include the small sample
size, the experimental design of the AO task, and the class imbalance of self-reported
mental fatigue levels. A bigger and more balanced sample will help to increase the
statistical confidence of the models to obtain higher performance. It is also known that
some physiological features undergo changes due to the aging process [86]; therefore, it
is important to consider that the presented work is a pilot study, and is currently being
developed for the analysis of biometric signals of young adults. However, the same
methods are still applicable to users in a wide range of age if an age-specific database is
gathered and the models are built, for instance, for the elderly population, or middle-aged
adults.

Regarding class imbalance, the major drawback is that data from two of the three
participants in the no-fatigue class were excluded as mentioned in Section 3.4 due to
missing data. A bigger sample size could compensate this class disparity, and increase
the model’s performance. Although class imbalance is often a problem in classification
accuracy, it is not a major complication in our study when observed from the linear
regression approach. In the case of this type of model, the RMSE (Equation (3)) provides a
notion of the performance of the model, and in Figure 7, it is observed that the most accurate
model presents very small RMSE values. It is important to address that other studies in
this field have reported mental fatigue, drowsiness, or mental workload predictive models,
using data from a similar (and even smaller) sample size: 6 [60], 8 [6,26], 10 [22,23,40,87],
11 [42], 12 [5], 13 [24], 14 [67], and 16 [20], to mention a few. Considering the sample sizes
of similar studies reported in the identification of mental fatigue, it can be discussed that
the proposed pilot study holds its validity. However, the authors are aware that in future
research, the experimental database should be expanded.

As presented in Table 2, P300 latency was found significant to the FAS score; however,
the design of the AO task was made in such manner that stimuli were presented in a fixed
inter-stimuli period. Variations in inter-stimuli can help to increase stimuli unpredictability
in order to elicit more notorious P300 responses [88]. However, the P300 measurement
did not seem to contribute much to the prediction of fatigue in our models, as other
features were found to be more strongly correlated. Additionally, the reliability of the P300
waves increases as the number of averaged traces increases; therefore, its analysis is not
very suitable for the analysis of shorter time periods. However, its parameters helped to
corroborate the fatigue states of users to the FAS scores and other features.

Another limitation is the selection of a simple algorithm (MLR) to develop the predic-
tive models. Other, more complex algorithms, were able to classify mental fatigue states
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with higher accuracies [26,27]. It is of our interest to implement the proposed experimental
design using more complex algorithms to increase accuracy. However, our model offers
some useful advantages, such as a short-calibration mental fatigue detection, a fast setup
using a reduced number of dry electrodes, and generalizability across participants. As
mentioned before, across this manuscript, typical procedures in mental fatigue recogni-
tion include fatigue-inducing experiments prior to model construction to ensure different
fatigue states.

5.4. Final Remarks

In this study, mental fatigue was not induced in the volunteers, which makes the
methodology closer to a real-world setting, where the protocol can be applied in a worker
any time during the work shift, in a driver prior to a trip, or in a student before, during, or
after a class. Subsequently, using the system on different scenarios, for instance, varying
fatigue-related variables—such as shift work, work schedule, or emotional distress—the
system could be able to identify the work-related condition which contributes the most to
the development of mental fatigue [11]. Successfully implementing these check-ups in the
business’ everyday workflow could certainly improve workers’ performance and avoid
accidents, injuries, and errors. In our case, the analysis of one minute EEG data during AO
task was sufficient enough to obtain an 88% accurate prediction of self-reported fatigue
levels. Other important remarks are that the proposed experimental design allows a fast
setup, and the models are able to generalize across subjects.

6. Conclusions

The described protocols allowed an easy-to-deploy five-minute test to assess non-
pathological mental fatigue during work. The results presented in this study suggest
that EEG features are good predictors of the FAS score, even without the need of fatigue-
inducing tests, and that an 88% accuracy can be obtained from a linear model, using three
features of a one-minute EEG recording. The inclusion of such biometric features in a
MLR model is capable of providing a reliable fatigue assessment tool, which is free from
subjectiveness [12] and cultural biases. The tool could then develop into a crucial device
that properly assesses the urgency for an intervention on hazard-exposed workers, which
reduce fatigue-related hazards within copious work environments [18].

Several EEG features were found to be correlated to different states of fatigue, and
a more complete analysis of vital sign parameters is needed in order to improve the
accuracy of the predictive models. It is also necessary to implement and test more complex
algorithms under the same short-calibration design. From all features, the most useful ones
to predict the FAS score of users are power ratios between high- and low-frequency bands,
which represent the trade-off of increased and decreased cognitive processing capability at
the moment of measurement [89].

The presented methods are implemented as an offline classification model, but could
be adapted to an online classifier. In this online version, by a prior identification of relevant
features on a trained model, real-time predictions can be obtained and presented to a user
for biofeedback purposes. In this approach, two ’real-time’ computations would be needed
to provide the predictions: feature calculation (PSD, power ratios), and a multiplication
of the feature vector, and the weight vector of the trained model. The estimated time of
execution to perform such computations, using the most accurate model, is 0.26 ms (see
Figure S4).

The same procedures can be applied to biofeedback systems oriented to the detection
of pathological mental fatigue, and provide support in therapies. The test presented in
this study offers a simple solution to evaluate mental fatigue under different scenarios at
the workplace, and could be useful in the upcoming Mexican government regulations on
industries for workers’ well-being monitoring.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1:
Questions conforming the self reported FAS questionnaire, and the possible answers with their
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individual scores. The total FAS score is obtained by summing the scores of each question (note that
questions 4 and 10 must be inversely scored), Figure S2: Distribution of FAS Scores obtained for all
17 participants during the FatigueAssessment stage, Figure S3: Average classification accuracies (top)
and F-Scores (bottom) for the E4 model (K = 6 features) using 4, 2, 1 (min), 30 and 15 (s) of data during
the AO task. Shaded area represents standard error across cross-validations. Model performance
was evaluated using 70:30 (left), 80:20 (middle), and LOO (right) data splitting approaches, Figure S4:
Average computation time needed to real-time make predictions using the one-minute (most accurate)
EEG model. One hundred simulations were run, and the shaded area represents the standard error
across the simulations.
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