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Abstract: A sound ecosystem is the prerequisite for the sustainable development of human society,
and the karst ecosystem is a key component of the global ecosystem, which is essential to human
welfare and livelihood. However, there remains a gap in the literature on the changing trend and
driving factors of ecosystem services value (ESV) in karst areas. In this study, Guizhou Province,
a representative region of karst mountainous areas, was taken as a case to bridge the gap. ESV in
the karst areas was predicted, based on the land use change data in 2009–2018, and the driving
mechanisms were explored through the gray correlation analysis method. Results show that a total
loss of CNY 21.47 billion ESV from 2009 to 2018 is due to the conversion of a total of 22.566% of the
land in Guizhou, with forest land as the main cause of ESV change. By 2025 and 2030, the areas
of garden land, water area, and construction land in Guizhou Province will continue to increase,
whereas the areas of cultivated land, forest land, and garden land will decline. The total ESV shows a
downward trend and will decrease to CNY 218.71 billion by 2030. Gray correlation analysis results
illuminate that the total population and tertiary industry proportion are the uppermost, among all
the driving factors that affect ESV change. The findings in this study have important implications for
optimizing and adjusting the land use structure ecological protection and will enrich the literature
on ESV in ecologically fragile areas.
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1. Introduction

Ecosystem services (ESs) are increasingly the focus of international attention in the 21st
century [1], which represents the benefits that life on earth obtains, directly or indirectly,
from nature to maintain its ecosystem functions [2,3]. Nevertheless, human activities have
exerted a dramatic impact on the ecosystem, resulting in the degradation of approximately
60% of the Earth’s ESs [4,5]. The karst landform, featured in poor ecological stability and
sensitive to ecological disturbance [6], are widely distributed globally [7]. Changes of the
ecosystem functions, especially the extensive land degradation and vegetation deterioration
in karst areas, have caused severe soil erosion and drought [8]. Studies have shown that
there is a significantly positive correlation between incidence of poverty and ESs in karst
areas [9]. As one of the most fragile ecosystems in the world [10], karst areas in China
account for approximately 15% of the total land areas, making China one of the countries
with the largest karst landforms in the world [11]. The ecological foundation of karst
areas in China is so fragile that it can easily be damaged. Tremendously degraded plant
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communities were observed in the karst areas of Southwestern China, owing to geological
conditions and severe human disturbances [6]. Once damaged, it is formidable to repair
and restore, which makes the protection of ESs in karst areas, particularly difficult but
momentous. However, ESs changes in karst areas are dealt with in only a few studies,
among which, the development trend and drivers of the change are rarely involved.
Therefore, quantifying the ESs changes in karst areas and exploring its driving factors will
help with formulating practical ESs management policies towards achieving beneficial
environmental outcomes [12].

The concept of ESs, first proposed in 1970, provides a valuable perspective on linking
human well-being to ecosystem structures and processes [13]. Methods for quantitatively
estimating ESs include material quality assessment, value assessment, and energy assess-
ment [14,15], with value assessment being the most widely used one [16]. Experts and
scholars have conducted in-depth research on the ecosystem services value (ESV) of differ-
ent ecosystem types, such as forest land [17], farmland [18], grass land [19], regions [20],
and cities [16], and a certain degree of progress has been made. The assessment of ESV,
at different scales in China, also obtains stunning achievements. Yuan et al. [16] calcu-
lated the ESV loss in China using spatial analysis under the background of urbanization.
He et al. [20] introduced the regional difference coefficient to value the ESs of Awang
basin, Yunnan, China, from 2012 to 2018. Kuang et al. [21] conducted the spatiotemporal
correlation and regression analysis on ESV and socioeconomic development indicators
in the Xiangxi Tujia-Miao autonomous region, through remote sensing, geographic in-
formation system, and R language method. Yet, these studies predominantly focus on
the overall changes of the ESV in the study area, rarely extended the analysis to specific
geological conditions and geomorphic features [22], most notably the karst areas. Further-
more, research on ESs in China’s karst areas predominantly concentrated on the ecosystem
degradation [23], ecosystem vulnerability [24], and trade-offs among ESs [8,25], rather few
studies analyzed the changes of ESs attributed to land use structure adjustment and the
driving factors behind the changes in the karst areas.

ESs are important tools for optimizing territorial space and promoting planning
decision better in line with the concept of ecological civilization, the analysis of which can
provide theoretical and technical support for different levels of territorial spatial planning
and facilitate the ideological synergy in the „Multi-plan Coordination” [25]. To better
serve the formulation of territorial spatial planning and provide scientific support, it is
of great significance to predict the future development trend of ESs in karst areas. Land
use change is a pervasive but important ecological trend worldwide, which is closely
related to human and nature [16]. As a complex artificial ecosystem [10], changes in the
structure of land use can impact the structure and functions of the ecosystem, which in turn
affects the types and intensity of functions provided by the ecosystem [26]. Studies have
shown that land use change is the main form of ecosystem change [27,28] and one of the
most important drivers of ESs changes [29]. The relationship between ESV and land use
change has been extensively studied; however, in western China, where the ESV hotspots
are concentrated [30], especially in the karst areas, relevant research is quite lacking. Hu
et al. [22] adopted the benefit transfer method to estimate the ESV changes in China’s karst
areas during 1992–2015 and to reveal its spatial heterogeneity along with the sensitivity of
ESV to land use change. Peng et al. [7] took Guizhou Province as the case study area and
distinguished the impact of land use and climate change on ESs in karst landscape in China.
Therefore, it is scientifically reasonable and technically feasible to apply land use change
data to measure ESs change in karst areas. Land use prediction methods, include GM(1,1)
(Gray Model) [31], Markov chain [32], cellular automata [33], CLUE-S model [34,35], and
FLUS (Future Land-Use Simulation) model [36], were widely used in existing literature.
Compared with other land use prediction methods, gray GM(1,1) can make predictions
with a small number of data samples, without considering the distribution pattern of
land use structure and the transition probability of land use types, which exhibits unique
advantages of convenient calculation and high prediction accuracy [10].
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Currently, research concerning the driving factors of ESV changes are plentiful [37–41],
while direct drivers, such as land use change, and the application of new technologies
attracts more attention [42,43]. For example, Liu et al. [44] superimposed the impact of
future climate scenarios and land use change on ESs to explore the overall effect of the
changes on ESs. During the period of rapid economic development, population growth,
economic development, and urban expansion have exerted unprecedented pressures and
negative effects on the regional ESs [39], and the impact of national policies on the ESs
should not be neglected, such as the Grain for Green Program [17,45,46]. However, studies
on whether socioeconomic characteristics are related to ESs prefer conceptual model and
scenario analysis [26]. Villamagna et al. [47] insisted that socioeconomic factors are the
driver of the ESs in agricultural landscape. Minin et al. [48] explored the trade-offs of
ESs, land use, economic development, and biodiversity to identify priority areas through
four policy scenarios. Song et al. [41] illuminated that socioeconomic development effect
exerted the greatest impact on wetland ESV in Northeast China. A preliminary qualitative
conclusion can be drawn from the above research, that socioeconomic factors do impose
effect on ESs; yet, they cannot distinguish or sort the specific types of socioeconomic factors,
which, as a result, cannot facilitate targeted policy application.

Guizhou is one of the provinces with the most typical karst landform development in
China, exhibits extensive karst landform features and obvious regional differentiation [10].
In the past decade, Guizhou has experienced rapid economic development and urban-
ization, which have profoundly affected the karst ecosystem. Conducting research on
kasrt areas is a new challenging attempt, which can enrich the types of studies on ESV in
ecologically fragile areas. Taking Guizhou Province as a study case, this study analyzes the
spatio-temporal change of land use and ESV during 2009–2018 and its driving forces in
Guizhou Province. Based on the gray GM(1,1) model, the study made gray prediction on
the future land use structure and the development trend of ESV. Additionally, the driving
factors behind the change of ESV were explored by adopting gray correlation analysis
method. The application of gray system to forecast the development trend and reveal the
driving forces behind is an innovation. The findings of this research can aid in targeted
policy application towards achieving beneficial environmental outcomes. The research
objectives are as follows:

(1) To analyze the spatio-temporal characteristics of land use change and ESV in Guizhou
Province from 2009 to 2018.

(2) To forecast the development status and trend of ESV in Guizhou Province in 2025 and
2030.

(3) To explore the driving factors affecting ESV change in Guizhou Province.

2. Materials and Methods
2.1. Study Area

Guizhou Province (103◦36’~109◦36’ E, 24◦37’~29◦14’ N) is located in the east slope of
Yunnan-Guizhou Plateau, with the terrain high in the west and low in the east (Figure 1).
Guizhou Province covers an area of 17,609,858 hm2, accounting for 1.83% of the total land
area of China. The landform types are complex and diverse, mainly plateau and mountain,
exhibiting typical karst geomorphological characteristics. The forest coverage rate is
reaching 60%, and the land reclamation rate is as high as 20.03%, which is approximately
twice the national average level. The high-intensity reclamation of territorial space has
caused large areas of rocky desertification and soil erosion. Under the background of rapid
urbanization, industrialization, and significantly unbalanced regional development, the
land use in Guizhou Province underwent profound transformation from 2009 to 2018. The
area of construction land increased by 181,959 hm2, whereas the area of cultivated land
decreased by 36,340 hm2, the forest land decreased by 84,117 hm2, and the grass land
decreased by 59,077 hm2. Land use change disturbs the ecosystem severely, and Guizhou
Province has extensive karst landform features, generating a combination of serious land
degradation issues [49]. Therefore, conducting research on the impact of land use change
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on ESV and unearthing the driving factors behind the ESV change in Guizhou is of great
significance, which can serve as scientific guidance for the ecological protection in karst
areas, as well as to promote the coordinated development of ecological protection and
social economy.
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Figure 1. Geographical location of Guizhou Province.

2.2. Data Sources

This study used ten-year data from 2009 to 2018. In details, the land use data are
predominantly from the land use change survey data of Guizhou Province, and the
socioeconomic data are from China Statistical Yearbook and Guizhou Statistical Year-
book. DEM is a 90 m ASTER GDEM data derived from the Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 15 November 2021), which can accurately reflect
the topographic features of the study area. According to China’s land use classification
system, the original land use classes of the data consist of seven first-class land use types,
including cultivated land, garden land, forest land, grass land, construction land, water
area, and unused land.

2.3. Method
2.3.1. Evaluation Model of Ecosystem Services Value

Costanza et al. [50] clarified the principles and methods of ESV estimation in a scientific
sense. In China, Xie et al. [2,51], based on Costanza’s research and China’s characteristics,
grouped China’s ecosystem and re-determined the ESV coefficient, which became the basis
for Chinese scholars to assess ESV [10,52,53]. Based on the research results of Costanza
et al. [50] and Xie et al. [2,51], the literature on the study of ESV in different regions were
analyzed, the ecosystem types and ecological value coefficients (VC), corresponding to the
land use categories in the Guizhou Province, were determined by combining the geographical
and climate situation of the study area (Table 1). The calculation of ESV is as follows:

ESV = ∑Ai × VCi, (1)

http://www.gscloud.cn/
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where ESV refers to the total value of ESs in the study area (CNY); Ai refers to the distribu-
tion areas (hm2) of the i type of land use in the study area; VCi refers to the ecological VC
per unit area of type i land use category (CNY /hm2 yr); i refers to the type of land use in
the study area.

Table 1. Ecological value coefficients of different land use categories in the study area [2,10,50,51].

ESs
Land Use Category/(Million CNY/hm2 yr)

Forest
Land

Garden
Land

Grass
Land

Cultivated
Land

Water
Area

Unused
Land

Regulating services

Gas regulation 3097.00 1265.50 707.90 442.40 0 0
Climate regulation 2389.10 1170.30 796.40 787.50 407.00 0

Hydrological regulation 2831.50 41.50 707.90 530.90 18,033.20 26.50
Waste treatment 1159.20 722.10 1159.20 1451.20 16,086.60 8.80

Supporting services
Soil formation and

retention 3450.90 1291.90 1725.50 1291.90 8.80 17.70

Biodiversity protection 2884.60 16.60 964.50 628.20 2203.30 300.80

Supplying services Food production 88.50 356.90 265.50 884.90 88.50 8.80
Raw material 2300.06 1145.40 44.20 88.50 8.80 0

Cultural services Recreation and culture 1132.60 547.80 35.40 8.80 3840.20 8.80

Total 19,333.46 6558.00 6406.50 6114.30 40,676.40 371.40

2.3.2. Sensitivity Index

Coefficient of sensitivity (CS) or coefficient of elasticity is usually used to determine
the sensitivity and robustness of the price (coefficients) [54]. To verify the representative of
ecosystem types to each landscape type, as well as the accuracy of VC, CS was introduced to
determine the degree of dependence of the total ESV on the change of VC over time, namely
changes in ESV attribute to a 1% change in VC, which can be expressed in Equation (2) [55]:

CS =|
(
ESVj − ESVi

)
/ESV(

VCjk −VCik

)
/VCik

|, (2)

where i and j represent the initial and adjusted value, respectively; k represents the land
use category. The CS is applied to verify whether the selected VC is suitable for this study
area.

According to Equation (2), CS is always less than 1 [20]. The higher the ratio, the more
critical the accuracy of the VC, and the greater the sensitivity of the ESV to it. In this study,
the VC of each landscape type was adjusted up and down by 50%, respectively, to illustrate
the sensitivity of ESV to VC.

2.3.3. Gray Forecast Model

Gray prediction model [10,31] is based on the understanding of the uncertain char-
acteristics of the system evolution, using sequence operators to generate and process the
original data, dig out the law of system evolution, establish the gray model, and make
scientific quantitative predictions for the future state of the system. In this study, the gray
GM(1,1) model is adopted to forecast the land use structure and the development trend of
ESV in Guizhou Province in 2025 and 2030.

If x(0)t (i) is defined as the original data sequence and x(1)t (i) is a sequence of number
generated by an accumulation, then the standard equation of the first-order, linear constant
coefficient differential equation of GM(1,1) model is as follows:

dx(1)

dt
+ ax(1) = u, (3)
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The standard solution, corresponding to the gray GM(1,1) model, is as follows:

x(1) =
(

x(0)(1)− u
a

)
e−at +

u
a

, (4)

where a and u are unknown parameters to be determined; t is time.
To improve the accuracy and reliability of gray GM(1,1) model prediction, a posterior

difference test method was adopted to test the model accuracy. The posterior error ratio C
and the small error frequency P are defined as follows:

C =
S2

S1
, p = P{|εk−ε| < 0.6745S1 }, (5)

where S1 is the standard deviation of the original data; S2 is the mean of standard deviation
of the predicted data; εk is the error of forecast data; and ε is the prediction error. The value
of C indicates the degree of dispersion of the difference between the predicted value and
the actual value (the lower, the better).

2.3.4. Gray Correlation Analysis

Gray correlation analysis is a method to measure the correlation degree between
factors according to the similarity or difference degree of the development trend among
factors. Its principle is based on the macro or micro geometric approximation between
behavior factors [56]. When the experiment is not explicit, or the experimental method
cannot be carried out accurately, gray analysis can help to make up for the deficiencies in
statistical regression [57] and can be used to measure the approximate correlation between
the series [58]. The more similar the curves, the greater the correlation between relative
data series [56]. In other words, if the changing trends of two factors (or indicators) are
basically consistent or synchronized, it can be regarded as the correlation between the two
is relatively strong, and vice versa. In this study, seven factors were selected from three
aspects of population, economy, and policy to analyze the driving factors of ESV in Guizhou
Province, which were the total population (TP), urbanization level (UL), gross domestic
product (GDP), secondary industries proportion (SIP), tertiary industries proportion (TIP),
total investment in fixed assets (TIFA), and afforestation project (AP) (Table 2).

Table 2. Variables used to identify the driving forces of ecosystem services value change in Guizhou Province.

Category Variable Description Source Mean, Range

Population TP Total population at the
year-end

Guizhou Province
Bureau of Statistics

35.24,
34.69 to 36 million

UL Urbanization level Guizhou Province
Bureau of Statistics

0.39,
0.30 to 0.48 percent

Economic

GDP Gross domestic product Guizhou Province
Bureau of Statistics

896.34,
391.27 to 1535.32 billion CNY

SIP Secondary industry proportion Guizhou Province
Bureau of Statistics

38.50,
35.86 to 41.6 percent

TIP Tertiary industry proportion Guizhou Province
Bureau of Statistics

47.76,
44.6 to 50.09 percent

TIFA Total investment in fixed assets Guizhou Province
Bureau of Statistics

903.60,
245.10 to 1836.36 billion CNY

Policy AP Afforestation project Guizhou Province
Bureau of Statistics

25,149.27,
18,053.33 to 50,586.67 hm2

After the original data are normalized by the initial value or average value, the gray
correlation coefficient can be obtained by the following equation:

ξij(k) =
min

i
min

k
|x0(k)− xi(k)|+ ρmax

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρmax
i

max
k
|x0(k)− xi(k)|

, (6)
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where ξij(k) is called the gray correlation coefficient at time t = k for x0 and xi,
min

i
min

k
|x0(k)− xi(k)| and max

i
max

k
|x0(k)− xi(k)| are the minimum difference and max-

imum difference from the normalized reference series to all the other normalized series,
respectively, and ρ is called the distinguished coefficient which can be adjusted to better
distinguish between the normalized reference series and normalized comparative series, ρ
is taken between 0 and 1, usually 0.5.

Then, Equation (7) is introduced to calculate the gray correlation grades, which is
actually the average of the gray correlation coefficients.

rij =
1
n

n

∑
k=1

ξi(k), (7)

where rij is the gray correlation grade. n refers to the number of factors. The closer to 1 the
existing gray correlation grade is, the greater the impact of the comparison sequence on
the reference series, that is, the greater the correlation impact on the ESV.

3. Results
3.1. Land Use Change in Guizhou Province

As shown in Table 3, whether in 2009 or 2018, forest land accounted for more than
50% of the total land areas, constituting the main body of the land use structure. Due to
the large areas of forest land, the ecological function in Guizhou is of great significance
and it is sensitive in the construction of ecological environment. From 2009 to 2018,
the total area of land use change in Guizhou Province was 374,900 hm2. Among them
construction land and forest land are the main types of land use change, with a total change
area of 266,100 hm2 (construction land increased by 182,000 hm2, forest land decreased
by 84,100 hm2), accounting for 70.98% of the total land use change. Among the land use
categories, the area of forest land, grass land, cultivated land, and unused land all decreased
to varying degrees (Table 3), with a reduction of 84,100 hm2, 59,100 hm2, 36,300 hm2, and
8400 hm2, respectively. The reduction rates were 0.93%, 3.6%, 0.8%, and 1.7%, respectively.
Construction land, garden land and water area increased by 182,000 hm2, 4700 hm2, and
1300 hm2, respectively, with an increase rate of 12.0%, 3.0%, and 0.5%. The gray forecast
analysis shows that by 2025 and 2030, cultivated land, forest land, grass land, and unused
land exhibit a downward trend, whereas garden land, construction land, and water areas
will be reversely varied (Figure 2).

Table 3. Changes of the land use area in Guizhou Province in 2009 and 2018.

Land Use Type Area of 2009
/hm2

Proportion
/%

Area of 2018
/hm2

Proportion
/%

Variation
/hm2

Rate of Change
/%

Cultivated land 4,562,515 25.909 4,526,175 25.703 −36,340 −0.796
Garden land 157,805 0.896 162,535 0.923 4730 2.997
Forest land 9,008,978 51.159 8,924,861 50.681 −84,117 −0.934
Grass land 1,630,923 9.261 1,571,846 8.926 −59,077 −3.622

Construction land 1,521,870 8.642 1,703,828 9.675 181,959 11.956
Water area 243,584 1.383 244,853 1.390 1269 0.521

Unused land 484,183 2.749 475,759 2.702 −8423 −1.740
Total 17,609,858 100 17,609,858 100 – –
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The main driving factors for the decrease of cultivated land and the increase of garden
land are the implementation of the Grain for Green Program [17,45,46] and the adjustment
of the agricultural industry structure, which has turned part of the cultivated land into
orchards, tea gardens, and other land use types. The decrease in forest land, grass land
and unused land, and the increase in construction land is predominantly due to the de-
velopment of social economy [10]. Additionally, Guizhou Province has implemented a
large number of resettlements, infrastructure, poverty alleviation industries, and people’s



Int. J. Environ. Res. Public Health 2021, 18, 12404 9 of 20

livelihood security projects, and the demand for construction land is far beyond expec-
tations. The reason for the increase of water area is that the three-year battle of water
transport construction launched by Guizhou Province promoted the construction of water
conservancy and hydropower projects.

3.2. Ecosystem Services Value in Guizhou Province
3.2.1. Change of Total Ecosystem Services Value in Guizhou Province

The total ESV in Guizhou Province from 2009 to 2018 is calculated by Equation (1)
(Table 4). Results show that the total ESV in Guizhou Province is CNY 223.64 billion in 2009
and CNY 221.50 billion in 2018, a decrease of CNY 21.47 billion in 10 years, with a change
rate of 9.60%. The VC of forest land is relatively high, leading to the continuous decrease of
total ESV in the Guizhou Province, due to the reduction of forest land in the past decade.
In ten years, the area of forest land decreased by 84,117 hm2, resulting in a reduction of
CNY 16.26 billion in ESV, accounting for 75.73% of the total ESV decrease, indicating that
the change of forest land is the main reason for the change of ESV. In terms of the total ESV
of each land use type, the ESV of cultivated land, forest land, grass land, and unused land
exhibit a downward trend, whereas garden land and water area display a floating change
(Figure 3). The main reason for the decline in ESV in Guizhou is predominantly, due to
the development of social economy. Though the implementation of the Grain for Green
Program did play an active role [10,59,60], leading to the rapid growth of garden land, but
it only worked in the early stage. The three-year battle of water transport construction in
Guizhou exerted great impact on the change of water area, but then the effect weakened.
The decrease of ESV caused by construction occupation, due to economic development
is difficult to compensate. Besides, the total ESV of forest land and cultivated land reach
up to 89%. Therefore, Guizhou Province should attach importance to the protection of
forest land and cultivated land ecosystem in the future land use, continue to strengthen the
ecological environment construction through forest land protection and comprehensive
land management.

Table 4. Changes of the total ecosystem services value in Guizhou Province in 2009 and 2018.

ESV

2009 2018
Variation

/Billion CNY
Rate of Change

/%Value
/Billion CNY

Proportion
/%

Value
/Billion CNY

Proportion
/%

Cultivated land 27.90 12.474 27.67 12.494 −2.22 −0.796
Garden land 1.04 0.463 1.07 0.481 0.31 2.997
Forest land 174.18 77.881 172.55 77.902 −16.26 −0.934
Grass land 10.45 4.672 10.07 4.546 −3.79 −3.622
Water area 9.91 4.430 9.96 4.497 0.52 0.521

Unused land 0.18 0.080 0.18 0.080 −0.03 −1.740
Construction land 0 0 0 0 0 0

Total 223.64 100 221.50 100 −21.47 −9.600

Since the ESV distribution characteristics of different regions vary little each year,
we only listed the maps in 2018 (Figure 4). The ESV provided by cultivated, forest, and
grass land were predominantly distributed in areas of the Wumeng Mountains, Dalou
Mountains, and south of the Miaoling Mountains (Figure 4a,c,d), while the ESV provided
by the garden land is predominantly distributed in south of the Miaoling Mountain and the
north of the Wuling Mountain (Figure 4b). The ESV provided by water area and unused
land is predominantly distributed in the central and western part of Guizhou Province
(Figure 4e,f).
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Figure 4. Spatial distribution characteristics of ecosystem services value of different land use types
in Guizhou in 2018. Notes: (a) the spatial distribution characteristics of ecosystem services value of
cultivated land; (b) the spatial distribution characteristics of ecosystem services value of garden land;
(c) the spatial distribution characteristics of ecosystem services value of forest land; (d) the spatial
distribution characteristics of ecosystem services value of grass land; (e) the spatial distribution
characteristics of ecosystem services value of water area; and (f) the spatial distribution characteristics
of ecosystem services value of the unused land.

3.2.2. Sensitivity Analysis

The CS can determine the dependence of ESV over time on ecological VC, so as to
verify whether the selected ecological VC is suitable for this study area. By adjusting the
VC by ±50%, the ESV and CS of each category in Guizhou Province in 2009 and 2018 were
calculated (Table 5). The horizontal comparison shows that the ecosystem CS is in the order
of forest land > cultivated land > grass land > water area > garden land > unused land,
and the highest value is 0.779. Namely, when the VC of forest land increases by 1%, the
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corresponding ESV increases by 0.779%, exerting the greatest impact on the ESV of the
study area. The lowest value is 0.001, that is, when the VC of the garden or unused land
increases by 1%, the corresponding ESV increases by 0–0.001%, which has little impact on
the ESV of the study area. From the perspective of different periods, there is no significant
change in the sensitivity index of all land types from 2009 to 2018. The greatest change is
forest land, but it only increases by 0.007%. In addition, the 10-year change rate of the total
ESV in the study area varies from 0.897% to 1.563% after the adjustment of ecological VC,
and the difference is small. All these indicate that ESV in the study area is inelastic to VC,
namely the VC adopted in the study area does not affect the authenticity of ESV changes
over time, which is in line with the actual situation in the study area, and the research
results are credible.

Table 5. Estimation of the coefficient of sensitivity and ecosystem services value after the adjustment of the total ecosystem
services value coefficient in Guizhou Province.

ESV/Billion CNY The Difference of the
Rate of Change before
VC Is Not Adjusted/%

CS

2009 2018 Variation Rate of
Change /% 2009 2018

Cultivated land VC + 50% 237.59 235.33 −2.26 −0.951 −0.951
0.125 0.126Cultivated land VC−50% 209.69 207.66 −2.04 −0.971 −0.971

Garden land VC + 50% 224.16 222.03 −2.13 −0.951 −0.951
0.005 0.005Garden land VC − 50% 223.13 220.96 −2.16 −0.969 −0.969

Forest land VC + 50% 310.73 307.77 −2.96 −0.953 −0.953
0.779 0.786Forest land VC − 50% 137.37 135.22 −2.15 −1.563 −1.563

Grass land VC + 50% 228.68 226.53 −2.15 −0.939 −0.939
0.047 0.045Grass land VC − 50% 218.42 216.46 −1.96 −0.897 −0.897

Water area VC + 50% 228.60 226.48 −2.12 −0.928 −0.928
0.044 0.045Water area VC − 50% 218.69 216.52 −2.17 −0.994 −0.994

Unused land VC + 50% 223.73 221.58 −2.15 −0.961 −0.961
0.001 0.001Unused land VC − 50% 223.55 221.41 −2.15 −0.960 −0.960

Since the spatial distribution pattern of the sensitivity index of ESV to VC of different
land use types were similar in different years, we only listed the maps in 2018 (Figure 5).
The spatial distribution showed that the sensitivity index of cultivated land in the west
was higher than that in the east (Figure 5a), whereas the sensitivity index of forest land
shows the opposite (Figure 5c). Besides, the sensitivity index of garden land, grass land,
water area, and unused land show higher distribution characteristics in the middle and
southwest Guizhou Province (Figure 5b,d–f).

3.3. Gray Forecast of Ecosystem Services Value

Based on the land use data of Guizhou Province from 2009 to 2018, Matlab_R2021a
was applied to construct a gray GM(1,1) model suitable for all land use types in the study
area to predict the land use structure in 2025 and 2030. The forecast assumes that the total
area of the study area remains unchanged, and the predicted value of unused land is the
total area of Guizhou Province minus the predicted value of other land use types and the
ESV of different land use types is calculated (Table 6). Results show that by 2025 and 2030,
the ESV of garden land and water area will increase slightly, whereas others will decrease
to varying degrees, with forest land the greatest (Figure 6). The total ESV will decrease to
CNY 219.83 billion and CNY 218.71 billion in 2025 and 2030, respectively. According to the
model prediction accuracy rating standard, when C < 0.35 and p≥ 0.95, the model accuracy
is level 1 (good). When C ≥ 0.65 and p ≤ 0.75, the model accuracy is level 4 (unqualified).
According to Table 6, the posterior error ratio of this model, Ci ≤ 0.28 < 0.35, and Pi = 1 >
0.95, shows that the prediction accuracy of the model is good and the prediction value is
highly reliable.
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Table 6. Ecosystem services value in Guizhou Province in 2025 and 2030.

2025 2030 Accuracy Test

Predictive
Value/hm2 ESV/Billion Predictive

Value/hm2 ESV/Billion P C

Cultivated land 4,493,780 27.48 44,705 27.33 1 0.15
Garden land 169,230 1.110 1719 1.13 1 0.28
Forest land 8,862,768 171.35 88,229 170.58 1 0.20
Grass land 1,523,707 9.76 14,909 9.55 1 0.11
Water area 245,119 9.97 2450 9.97 1 0.16

Unused land 450,216 0.17 4502, 0.16 - -
Construction land 1,865,038 0 19,856 0 1 0.06

Total 17,609,858 219.83 17,609,858 218.71 - -
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3.4. Driving Forces of Change in Ecosystem Services Value in Guizhou Province

Gray correlation grades of influential factors on ESV change are listed in Table 7. It
can be seen that all the gray correlation grades are greater than 0.5 and maintain high value,
indicating that the seven parameters are the driving factors affecting the ESV change in
Guizhou Province. From 2009 to 2018, the relative importance of influencing factors to ESV
change is as followed: TP > TIP > SIP > AP > UL > GDP > TIFA. Among them, TP exerts
the greatest impact on ESV, with a gray correlation grade of 0.9965, which is close to 1. The
smallest gray correlation grade belongs to TIFA, which equals to 0.6620. Except from 2009
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to 2012 TIP accounts for the highest gray correlation degree, TP ranks the highest of gray
correlation degree in other years, which has been maintained above 0.97. Besides, the gray
correlation grade of TIP has also remained above 0.93, revealing that TP and TIP were the
two main driving factors of ESV change in Guizhou Province.

Table 7. Gray correlation grades of influential factors on ecosystem services value change.

Driving Forces
Gray Correlation Grades (R)

2009–2018 2009–2012 2012–2015 2015–2018

Population TP 0.9965 0.9845 0.9957 0.9748
UL 0.9140 0.8491 0.9558 0.8695

Economic

GDP 0.7909 0.7130 0.7314 0.7215
SIP 0.9883 0.9632 0.5082 0.9458
TIP 0.9921 0.9873 0.9830 0.9318

TIFA 0.6220 0.6251 0.8189 0.6442
Policy AP 0.9379 0.8441 0.9369 0.7018

4. Discussion
4.1. Comparing with Previous Studies

Judging from the overall change trend of ESV in Guizhou Province, the ecological
protection trend in karst areas is not optimistic. Studies have shown that the process of
urbanization in the past is often at the cost of the ecological environment, resulting in a
significant loss of ESV [26]. In the early stage (2000–2008), the implementation of Grain
For Green Program did play an active role in ESs in karst areas [10,59,60], yet, according
to our study, in the past decade, though the Grain For Green Program continued, the
land demand resulted from urbanization and population boom far exceeded expectations,
leading to the decline of ESV in karst areas. From 2009–2018, construction land in Guizhou
Province has increased by 181,959 hm2, with a change rate of 11.96%. As a result, ESV in
Guizhou Province has decreased by CNY 2.15 billion, with an average annual decrease of
3.6%. Undoubtedly, urbanization has exerted a negative impact on the ecosystem supply
capacity, which is in line with the research of Chen et al. [61].

In this study, ESV was evaluated in combination with the equivalent value table
proposed by Xie et al. [2,51] and Costanza et al. [50]. Results showed that the contribution
of different land use types to the total ESV was significantly different, among which the
forest land contributes the largest, followed by cultivated land and grass land, which is
consistent with the research of Leh et al. [62] and W. Chen et al. [63]. Some studies believe
that the ESV of construction land is negative [64], whereas some studies consider that
construction land can provide certain ESs (e.g., entertainment, tourism, culture, and carbon
storage) [22,65]. This research is in conformity to the research of Wu et al. [26], which
suggested that construction land contributes nothing to ESV but the loss of it; hence, we
assign the coefficient of construction land to be 0.

Previous studies mostly used coarse data sets that lacked correction, leading to dif-
ferences in ESV assessment in the same place [66,67]. Meanwhile, the inconsistency in
the land use classification can also lead to differences in ESV assessment. For example,
when Wang (2018) [68] measured the ESV of Guizhou from 2016 to 2017, the land use types
were divided into cultivated land, forest land, water area, grass land, construction land,
and unused land; the calculated ESV for 2016 and 2017 were CNY 207.90 and CNY 207.70
billion, respectively, both less than the ESV calculated in this study, which are CNY 221.87
and CNY 221.66 billion, respectively. Zhao et al. [69] classified land use types into five
categories: cropland, forest land, grass land, water bodies, and unused land. According to
their calculation results, the total amount of ESV in 2013 and 2017 were both higher than
that in this study, CNY 261.80 and CNY 261.20 billion, respectively. In the evolution of
China’s land use classification system, garden land is an important secondary category.
However, when ESV is measured, garden land is rarely considered, but mostly counted
into forest land [70], which is also a factor attracts the difference in ESV assessment. This
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study believes that garden land differs from forest land, the VC of which should be less
than that of forest land. Therefore, it is listed separately for evaluation.

4.2. Evolution Mechanism of Ecosystem Services Value in Guizhou Province

Our research results are in accordance with previous studies that land use change is
one of the main drivers of ESV loss [71], and the most significant change in ESs attributed
to land use change is predominantly urbanization driven [7]. However, the research results
also show that neither socioeconomic factors nor physical factors are the sole or primary
potential causes of ESs change [27], and the main driving forces are also variable in different
periods [72]. In addition to land use structure, economic, social, demographic, and policy
factors are also driving factors affect ESV. The results of this study show that from 2009
to 2018, TP imposes the greatest impact on ESV, followed by TIP in economic factors.
Leading driving forces vary in different periods. The most important factor affecting the
regional variation of ESV is TIP, between 2009 and 2012, while TP between 2012 and 2018.
The urbanization process is accompanied by the population surge, and the rise of the
tertiary industry has become an important symbol of the acceleration of urbanization. The
Guizhou Province is located in the center of the east Asian karst region, with the most
complex, complete types, and largest distribution area in the world [70]. Thus, the analysis
of the driving factors affecting the ESV change in Guizhou will provide decision-making
reference for the study of ESV change and ecological governance in karst areas and will
enrich the literature on ESV in ecologically fragile areas.

4.3. Policy Implications

In the early stage of economic development, ecological considerations have commonly
been interpreted as a factor restricting economic development and can, thus, be ignored
easily [12]. Existing evidence indicates that economic development yields obvious ecosys-
tem degradation through land use change [27]. Rapid urbanization in Guizhou has driven
the expansion of human-dependent lands (e.g., housing and transportation infrastructure),
while ecological lands (e.g., forest land, grass land, and garden land) were heavily en-
croached. The ratio of GDP to ESV in China is, approximately, 1:1 [73], whereas the ratio of
GDP to ESV in Guizhou from 2009 to 2018 increased from 1.75:1 to 6.93:1, indicating that
the ESV in Guizhou is far below the average level in China. Policy can play a vital role in
maintaining regional ESV [74,75]. A considerable number of studies have focused on ESs,
and how to incorporate ESs into land use and ecological conservation decision-making has
long been discussed [76]. However, the non-uniqueness and effectiveness of assessment
methods along with the difficulty of incorporating assessment results into actual man-
agement have led to the policy implications of ESs [77]. Additionally, the trade-offs and
synergies in ESs [78], are also the key to land use decision-making [42]. For example, land
development to guarantee food security will inevitably lead to the weakening of water and
soil conservation and the hydrological regulation function.

As a typical representative of China’s karst landform, Guizhou is positioned as a
province with balanced grain production, marketing, energy, and mineral base. Mean-
while, it is also as an important ecological security barrier in the upper reaches of the
Yangtze river and the Pearl River. Thus, its ecological restoration should be placed in a
prominent position; under the premise of protection, the economic development must
meet the carrying capacity of resources and environment. Within this context, Guizhou
Province must coordinate ecological protection and economic development. In accordance
with the principle of „ecological priority and green development” [61], the adjustment
of economic structure should be accelerated, industrial transformation and upgrading
must be promoted, and rationalization of the spatial layout of industrial functions must be
guided, so that to promote green and high-quality development. Meanwhile, it would also
be an innovation to incorporate new concepts, such as green GDP, into the performance
evaluation system for government officials [3,79].
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4.4. Limitations and Future Directions

Certain limitations could be observed in this study. The VC adopted in this study
is based on the research of Xie et al. [2,51] and Costanza et al. [50]. Actually, the VC
of the same ESs in different regions have certain deviations. However, this study does
not consider applying different indicators to estimate the same ESV in different regions.
Besides, obtaining data in the karst areas is not easy, which can be a direction of future
research. Although the assessment of ESs has been extensively studied, considerable
progress still needs to be made to improve the evaluation of ESs [80]. In predicting future
ESV changes, the temporal heterogeneity of VC is also easy to be ignored. Therefore, how
to accurately assess and quantify ESs in a complex and constantly changing ecosystem
will also be a question worth exploring. Furthermore, the research of Aschonitis et al. [54]
showed that the ecosystem sensitivity index can only be applied to rank the importance of
land use based on its contribution to the total ESV and should be abandoned for assessing
the robustness and sensitivity of ESs. Future studies can be discussed in this regard. In
terms of land use simulation and prediction, the gray prediction model has the advantage
of being able to make predictions, in the case of a small number of data samples; however,
the impact of factors, such as policies, in the long-term series will make for the prediction
results to be inconsistent with the actual development situation, which needs to be noted
when applied for forecasting in the future. In the next step, our study will further improve
the method model and analyze the value differences of ecosystem types in different times
within the same region, and the spatial distribution value differences of ecosystem types
will be further explored.

5. Conclusions

The gray GM(1,1) model is introduced in this study to reveal the spatial-temporal
changes of land use and ESV. The contribution of different land use types to ESV, in virtue
of the sensitivity index, is measured. The gray correlation analysis method is adopted
to explore the driving mechanism affect ESV changes in Guizhou Province. The areas of
forest land, grass land, cultivated land, and unused land in Guizhou Province decreased to
varying degrees, whereas the construction land, garden land, and water areas exhibited
an upward trend from 2009 to 2018. Among them, construction land and forest land are
the main types of land use change. The ESV in Guizhou Province decreased by CNY
21.47 billion, with forest land the main cause of ESV change. The sensitivity indexes of
ESV to VC were all less than l, indicating that the evaluation results of ESV in Guizhou
Province were credible. From the perspective of different periods, there was no significant
change in the sensitivity index of all land use types from 2009 to 2018. The forecast results
showed that by 2025 and 2030, the areas of garden land, water area, and construction
land in Guizhou Province will continue to increase, whereas the areas of cultivated, forest
and garden land will be on a decline. Nevertheless, the total ESV will decrease to CNY
218.71 billion by 2030. Gray correlation analysis results showed that population, economy,
and policy factors can all affect ESV change, among which TP and TIP are the two most
important driving factors. Consequently, top priority should be given to the ecological
factors in future planning and socio-economic development. We expect that the research
result and proposed policy suggestions of this study will constitute an important aid to the
correct treatment of the spatial characteristics of land uses change and ESV in karst areas.
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