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Abstract: Analysis of the robustness and vulnerability of metro networks has great implications for
public transport planning and emergency management, particularly considering passengers’ dynamic
behaviors. This paper presents an improved coupled map lattices (CMLs) model based on graph
attention networks (GAT) to study the cascading failure process of metro networks. The proposed
model is applied to the Shanghai metro network using the automated fare collection (AFC) data,
and the passengers’ dynamic behaviors are simulated by GAT. The quantitative cascading failure
analysis shows that Shanghai metro network is robust to random attacks, but fragile to intentional
attacks. Moreover, there is an approximately normal distribution between instant cascading failure
speed and time step and the perturbation in a station which leads to steady state is approximately
a constant. The result shows that a station surrounded by other densely distributed stations can
trigger cascading failure faster and the cascading failure triggered by low-level accidents will spread
in a short time and disappear quickly. This study provides an effective reference for dynamic safety
evaluation and emergency management in metro networks.

Keywords: cascading failure; metro network; coupled map lattices; graph attention network

1. Introduction

With the development of the metro network, it has become the main means of trans-
portation in mega-cities. For example, Shanghai has a metro system with 303 stations and
350 tunnels over 617 km [1]. The metro system has great influence on the travel of residents,
the efficient use of land and the urban safety, so the research on its security and efficiency
has become an important content.

As the metro system plays an increasingly important role in the urban mobility, if the
metro system breaks down, the consequences will be extremely serious and unbearable.
In the metro system operation, the negative result is usually caused by cascading failure,
which can be triggered by the signal failure of infrastructure, natural disasters, terrorist
attacks and other emergencies [2]. For example, on 16 April 2018, Shanghai metro system
suffered the most simultaneous failures in history, leading to many passengers being
stranded. In St. Petersburg, on 3 April 2017, a terrorist attack killed at least 14 people
and injured more than 120, which shut down several important metro lines and stranded
many passengers [3]. Most of the existing studies on cascading failure based on a static
topological network ignore the passengers’ dynamic behaviors between different station
pairs. Therefore, in this paper, the passengers’ dynamic behaviors, which are quantified
as flow coupling strength between different station pairs, are trained from the Shanghai
metro AFC data instead of assuming that all stations have the same flow coupling strength.
Moreover, the cascading failure process and robustness optimization of metro networks
are studied by an improved coupled map lattices model [4] based on graph attention
networks [5] proposed by us.
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This paper provides an advanced and accurate analytical model and theoretical sup-
port for the safety operation and the emergency management of metro systems. The main
contributions of this study are as follows. (1) An improved CMLs model based on GAT is
proposed, which can better reflect the cascading failure of metro networks than the previous
coupling models. (2) Based on the coupling strength trained by GAT, the passenger flow
redistribution during the cascading failure is dynamically simulated. (3) A case study with
the AFC data of the Shanghai metro system demonstrates the topological characteristics of
the Shanghai metro, the failure degree under intentional attacks (IAs) and random attacks
(RAs) and the influence of the propagation process on the robustness. The rest of this paper
is organized as follows. In Section 2, the relevant research is summarized and the research
gap is highlighted. Section 3 presents the improved CMLs model based on GAT and the
detailed execution procedure. Based on the proposed model, a case study on the Shanghai
metro system with Shanghai AFC data is conducted in Section 4. Finally, the conclusions
and future research directions are summarized in Section 5.

2. Literature Review
2.1. Topology Analysis of Metro Networks

In the early stage, the network-based analysis approach [6,7] provides an effective and
logical basis to the quantification of the reliability and robustness of large-scale transporta-
tion systems. Latora and Marchiori [8] investigated the small-world feature of the Boston
metro network based on complex network theory, and then some studies quantified the
static topological characteristics of several Chinese metro networks [9–11]. The results show
that the node connectivity in the small-world networks follows a scale-free power-law
distribution.

However, the above network-based studies do not offer a rigorous comparison among
metro networks. In this respect, the topological characteristics of the world’s 20 largest
metro systems [12] and the complexity and robustness of 33 metro systems in the world [13]
were analyzed, which suggest that most metro networks are indeed scale-free networks
and small-world networks.

In addition, as there exists the dynamic passenger flow in the metro networks, some
studies loaded dynamic passenger flow data into the metro networks based on the static
network topologies [14–16]. The result suggests that the failure of one or a few nodes
could lead to other nodes’ failure by the flow coupling strength between nodes, triggering
cascading failure of a few or even all nodes in the network.

2.2. Cascading Failure

Some empirical studies on the cascading failures in different networks [17], such as
the US power grid and water gird, found that the cascading failure phenomenon had a
great impact on the network function. Among the classical proposed models, the load-
capacity model started with the work of Kim and Motter [18] has been used to investigate
the cascading failure of metro networks. A load-capacity optimal relationship model is
proposed and applied to the Shanghai metro network [19]. The results show that the load-
capacity optimal relationship model has the best robustness against cascading failure with
less cost. Moreover, the cascading failure of the Nanjing metro network [20] is analyzed
based on the proposed model considering load fluctuation and robust station capacity
assignment. The results show that coupling effects of station capacity on the metro network
robustness can be optimized by adjusting model parameters.

Compared with the load-capacity model, the CMLs model [21] has the advantage of
realizing complete coupling of network information including topology and flow. While
both models can be used to simulate the dynamic behavior of real complex systems and
qualitatively reveal their dynamic patterns, CMLs focus more on the topology coupling
strength and passenger flow coupling strength between node characteristics than load-
capacity model. Therefore, CMLs are more suitable for studies considering both topology
and passenger flow coupling strength. The cascading failure of the Shanghai metro network
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based on CMLs was analyzed [22], and the result indicated that the metro lines with more
passengers generally had a more significant impact on the network vulnerability.

However, the bidirectional flow characteristics of the metro network are not con-
sidered. The CMLs cascading failure algorithm based on the actual case of the Nanjing
metro was optimized by considering the two-way metro problem and the passenger flow
redistribution [23]. In fact, for the two-way metro problem, there is a highly uncertain cor-
relation between the in-flow and out-flow, such as passenger dynamic behavior and station
layout [24]. For the passenger flow redistribution, quite a number of studies conducted
simulation verification by analyzing the impact of passenger flow redistribution on metro
systems under emergencies [25–28]. Additionally, the result suggests that the redistributed
flow in the network will increase the pressure on other nodes and affect the load balance of
network traffic.

2.3. Graph Neural Network

To deal with the above two problems (the two-way metro problem and the passenger
flow redistribution), further research needs to accurately quantify the correlation between
nodes, including the passenger flow correlation and topology correlation. Deep learning
can accurately extract the relationship between data objects through learning the right
representation for the data. To learn a vectorized representation containing sufficient
information from complex graph data, the concept of graph neural networks (GNNs)
was first proposed [29], which was further elaborated [30,31]. However, these studies are
computationally expensive because of propagating the neighbor information through the
recurrent neural networks (RNNs) in an iterative way until the stable state. Due to the
outstanding performance of convolutional neural networks (CNNs) in the computer vision
domain, convolution was introduced into GNNs [32] and gradually improved [33–35].

For a metro network, the graph-based deep learning system can explore the internal
relationship between nodes (or lines) and passenger flow in different time periods to
provide reference for transportation planning and management. Han [36] proposed a GCN
model to capture the irregular spatiotemporal dependencies along the Shanghai metro
network and successfully predicted the short-term passenger flow volume.

However, GCNs still have two major limitations. One is that it is unable to handle
inductive learning, which means that the images processed by training and testing are
different. The other is that it is difficult to assign different weights to different neighbors
for directed graphs. Therefore, recently, more variants of spatial-based GCNs have been
developed [37,38]. Among them, GATs become state of the art in many datasets (e.g., Cora,
Citeseer and PubMed citation network datasets) while solving the remaining problems of
GCNs. Zhang [39] has applied GCNs and GATs to the traffic flow prediction and achieved
great results, which demonstrates that GAT can accurately capture correlations between
graph nodes.

In this paper, we aim to train passenger flow correlation between stations in the metro
system with GAT, and simulate passenger flow redistribution based on this. Based on the
application of CMLs model, it can compensate for the assumption that all nodes have the
same coupling relationship, and capture the complex non-stationary time dynamics and
spatial dependence among metro stations.

3. Data and Methods
3.1. Data Description of Shanghai Metro

As shown in Figure 1, a topological network representing the Shanghai metro system
with 288 stations is built and plotted. The black dots represent the metro stations, and the
links between two dots are the metro lines. In this study, an independently constructed
graph data set was adopted based on the Shanghai AFC data with 288 nodes for 30 days in
April, 2015. As shown in Table 1, the Shanghai AFC dataset includes the station ID, date,
time, node, vehicle, cost and discount. While the AFC data can underestimate passenger
demand owing to fare evasion [40], this study mainly considers the passenger flow coupling
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strength which was obtained by training the one-month continuous dataset through GAT.
The fare evasion will have a slight effect on the training process. Moreover, since the
data input in GAT’s training process is the passenger flow of one metro station every five
minutes, this study does not need to consider the problem of transfer stops.

We use this data to construct the adjacency matrix of the Shanghai metro network
and the graph dataset that will be learned by GAT. Moreover, RAs and IAs are used to
simulate attack or failure, and the cascading failure process of the Shanghai metro system is
analyzed based on the proposed improved model. Three important stations are chosen to
illustrate how IAs work. They are Century Avenue (CA) with a maximum node degree of 7,
Shanghai Railway Station (SRS) with maximum in-flow of 6095 and Xinzhuang Station (XZ)
with maximum out-flow of 3307 in the first Wednesday of our dataset. The three chosen
stations are also labelled in Figure 1.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 19 
 

 

graph data set was adopted based on the Shanghai AFC data with 288 nodes for 30 days 
in April, 2015. As shown in Table 1, the Shanghai AFC dataset includes the station ID, 
date, time, node, vehicle, cost and discount. While the AFC data can underestimate pas-
senger demand owing to fare evasion [40], this study mainly considers the passenger flow 
coupling strength which was obtained by training the one-month continuous dataset 
through GAT. The fare evasion will have a slight effect on the training process. Moreover, 
since the data input in GAT's training process is the passenger flow of one metro station 
every five minutes, this study does not need to consider the problem of transfer stops. 

We use this data to construct the adjacency matrix of the Shanghai metro network 
and the graph dataset that will be learned by GAT. Moreover, RAs and IAs are used to 
simulate attack or failure, and the cascading failure process of the Shanghai metro system 
is analyzed based on the proposed improved model. Three important stations are chosen 
to illustrate how IAs work. They are Century Avenue (CA) with a maximum node degree 
of 7, Shanghai Railway Station (SRS) with maximum in-flow of 6095 and Xinzhuang Sta-
tion (XZ) with maximum out-flow of 3307 in the first Wednesday of our dataset. The three 
chosen stations are also labelled in Figure 1.  

 
Figure 1. Topological network of Shanghai metro system. 

Table 1. A sample AFC data. 

ID Date Time Node Vehicle Cost Discount 
3002779092 1 April 2015 07:23:50 L3, ZhongTanRoad metro 0.0 no 
3002779092 1 April 2015 07:44:36 L4, BaoShanRoad metro 4.0 no 

3.2. Model Specification 
The research flow diagram is shown in Figure 2 and the symbols are defined in Table 2. 

Figure 1. Topological network of Shanghai metro system.

Table 1. A sample AFC data.

ID Date Time Node Vehicle Cost Discount

3002779092 1 April 2015 07:23:50 L3, ZhongTanRoad metro 0.0 no
3002779092 1 April 2015 07:44:36 L4, BaoShanRoad metro 4.0 no

3.2. Model Specification

The research flow diagram is shown in Figure 2 and the symbols are defined in Table 2.
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Table 2. Symbols and definition.

Symbols Definition

→
h i

→
h i represents the characteristic information of metro station i (e.g., passenger

flow or time).
R R = 1 means that the current metro system doubles its passenger flow.
aij aij = 1 means that there is an edge between node i and j; otherwise, aij = 0.

qi, qin
i , qout

i
qi is the passenger flow through node i. qin

i represents the in-flow of node i, qout
i

represents the out-flow of node i.

ki, kin
i , kout

i

ki denotes the degree of node i which is defined as the number of edges incident
to node i. kin

i denotes the in-degree of station i and kout
i denotes the out-degree of

station i.
eij eij indicates the correlation between node i and node j.

ε, ε1, ε2
ε ∈ (0, 1) is the coupling strength of topological structure. ε1 is the coupling

strength of topological structure and ε2 is that of passenger flow.

ε1ij , ε2ij

ε1ij is the topology coupling strength of the directed edge from node i to node j,
ε2ij is the passenger flow coupling strength of the directed edge from node i to

node j.

ε1,i, ε2,i
ε1,i represents the topology coupling strength mean of node i and ε2,i represents

the topology coupling strength mean of node j.
pj→i the passenger flow volume from station j to station i.

f (xi(t)) xi(t) denotes the state of node i at the t-th time step, f (x) = 4x(1− x)

I(t) I(t) defines the cumulative failure proportion of the network before the t-th
time step.

Balanced I Balanced I is the stable I(t) as R increases.
V(t) V(t) represents the instant failure proportion.

3.2.1. Flow Coupling Strength Trained by GAT

The core of the attention mechanism is to assign weight to the given information, and
information with high weight means that attention should be focused. As the sole layer
throughout all the GAT architectures, a single graph attentional layer will first be described
in this study. As with all attention mechanisms, a single graph attentional layer can be
mainly divided into two parts: calculation of correlation coefficient and aggregation.

In our experiments, the whole metro network is a graph and each station is a graph
node with operation data (e.g., passenger flow volume and speed) as its node features. The

input to graph attentional layer is a set of node features, h =

{→
h 1,
→
h 2, . . . ,

→
h N

}
,
→
h i ∈ RF,

where N is the number of nodes, and F is the number of features in each node. The output

will be a new set of node features, h′ =
{→

h
′
1,
→
h
′
2, . . . ,

→
h
′
N

}
,
→
h
′
i ∈ RF′ . The layer will first

augment the features of each node at least by one learnable linear transformation. This step
uses a shared linear transformation, parametrized by a weight matrix, W ∈ RF′×F. We then
concatenate the transformed features of node i and its neighbor j and map the spliced high-
dimensional features by a shared attentional mechanism a to compute attention coefficients
(Equation (1)):

eij = a(W
→
h i, W

→
h j), j ∈ Ni (1)

that indicate the correlation between node i and node j. In this step, we only compute eij for a
pair of adjacent nodes and the shared attentional mechanism a is a single-layer feedforward
neural network. To make it easier to compare attention coefficients between different
pairs of nodes, we use LeakyRelu as the activation function and normalize the attention
coefficients by the softmax function to get the flow coupling strengths ε2 ij (Equation (2)):

ε2 ij =
exp(LeakyRelu(eij))

∑k∈Ni
exp(LeakyRelu(eik))

(2)
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After the calculation of flow coupling strength, we aggregate the features of each node
by applying a nonlinearity activation function σ (Equation (3)):

→
h
′
i = σ

(
∑

j∈Ni

ε2 ij W
→
h j

)
(3)

We also employ multi-head attention to stabilize the learning process in our exper-
iments. This step will be executed by K independent attention mechanisms, and then
concatenate their features (Equation (4)):

→
h
′
i =

K
‖

k=1
σ

(
∑

j∈Ni

εk
2 ij

Wk
→
h j

)
(4)

where ‖ represents the concatenation operation, εk
2 ij

are the flow coupling strength com-

puted by k-th attention mechanism, and Wk is the k-th input shared linear transformation’s
weight matrix.

Figure 3 is a simple graphical representation of GAT training coupling strength. Sta-
tion 1 is the central metro station, station 2, station 3 and station 4 are the neighbor metro

stations,
→
h i represents the characteristic information of metro station i (e.g., passenger

flow or time). The first step is to transform the characteristic information of metro stations
through a linear layer and calculate the attention coefficient eij between the central metro
station and adjacent metro stations. In the second step, the attention coefficient is normal-
ized by softmax function to get the coupling strength ε2 ij . The third step is to generate a
new feature expression by aggregating the characteristic information of the neighbor metro
station and its own characteristic information to itself through coupling strength.
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Figure 3. An example to describe how to obtain the passenger flow coupling strengths by GAT. W is
a weight matrix for linear transformation. S is the softmax function for normalization.

3.2.2. Passenger Flow Redistribution

When a metro station fails because of an accident, the passenger flow of the current
time step will be redistributed to other lines connected with the station according to the
demand of the passenger flow itself. These redistributed passenger flows will gradually
spread to the entire metro network, leading to load stress at other stations and even
cascading failure. The flow coupling strength trained in Section 3.2.1 reflects the correlation
of passenger flow between metro stations. We assume that this traffic correlation is still
maintained between stations in the event of a failure at any station, which means that
practical meaning of flow coupling strength is expressed by proportion of passenger flow
redistribution. To facilitate the rapid calculation and demonstration of cascading failure
process, we assume that the redistributed passenger flows are independent of each other.

If station i fails, the flow pj→i from one neighbor of station i will be shared by other
neighbors of station j. Since the link between two stations with a larger flow coupling
strength means that it has stronger passenger flow carrying capacity and passenger flow
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preference in most cases, we assume that it will have a larger proportion of passenger flow.
Then, ∆pj→w (Equation (5)) is

∆pj→w = pj→i ·
ε2 jw

∑
kout

j
x=1 ε2 jx

(5)

where ε2 jw is the flow coupling strength between station j and its neighbor station w.
Equation (6)

∑w

ε jw

∑
kout

j
x=1 ε jx

= 1 (6)

means that all passenger flow will be considered in the redistribution model.
The passenger flow redistribution model enables the relevant management agencies

to obtain the transfer rules of passenger flow when a failure occurs based on the large-
scale learning of the natural passenger flow movement. This indicates that the transfer
of passenger flow has preference consistency in a certain period of time. Generally, this
rule exists in real metro systems because when a station or line suffers a disaster or attack,
passengers are more likely to choose a nearby transit service to escape chaos and accidents
as quickly as possible.

3.2.3. An Improved CMLs Model

CMLs have been widely used in the research of temporal–spatial traits of complex
systems. Most of these researches assumed that different pairs of stations had a regular
coupling topology. However, in a real metro network, the synchronization of coupling
topology on CMLs does not exist due to the heterogeneity between different station pairs.
Additionally, the cause of cascading failure is not only related to its topology attributes, but
also related to the passenger flow transfer rules.

We first consider a CML of N nodes without heterogeneity between different station
pairs and passenger flow coupling strength (Equation (7)):

xi(t + 1) = R +

∣∣∣∣∣∣∣∣∣(1− ε) f (xi(t)) +

ε
N
∑

j=1,j 6=i
aij f
(

xj(t)
)

ki

∣∣∣∣∣∣∣∣∣ (7)

where xi(t) denotes the state of node i at the t-th time step. ε ∈ (0, 1) is the coupling
strength of topological structure. The function f defines the local dynamics of stations and
is chosen in this paper as the logistic map function f (x) = 4x(1− x). We use absolute
value notation in Equation (7) to guarantee the nonnegative constraints of each station’s
state and simulate the effect of an attack on a station by adding an external perturbation
R ≥ 1 to demonstrate that an attack or failure of the station i happens. A larger R indicates
a more serious attack or failure. If node i has not encountered an attack, R = 0.

In this work, xi(t) will be initially normalized in the interval (0, 1) with passenger flow
at initial time of the selected dataset by the softmax function, and a larger xi(t) indicates
heavier traffic. When 0 ≤ x ≤ 1, 0 ≤ f (x) ≤ 1. If a station i fails because of the passenger
flow overload at time step s, the state xi(s) ≡ 0 will be set for t > s. However, the neighbors
of station i will still be affected by xi(s) at time s + 1. In case the state of one or more
neighbors of the failed station is larger than threshold value 1, a new round of failures will
be triggered.

If we add the passenger flow coupling strength, Equation (7) can be rewritten as
Equation (8):

xi(t + 1) = R +

∣∣∣∣∣(1− ε1 − ε2) f (xi(t)) + ε1 ∑
j,j 6=i
·
aji f
(
xj(t)

)
ki

+ ε2 ∑
j,j 6=i
·
aji pj→i f

(
xj(t)

)
qi

∣∣∣∣∣ (8)
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where ε1 is the coupling strength of topological structure and ε2 is that of passenger flow,
respectively, and ε1, ε2, ε1 + ε2 ∈ (0, 1). qi is the passenger flow of node i.

In order to better simulate the real metro network topological characteristics, we
consider the bidirectional metro problem and improve the CMLs model with both hetero-
geneity between different station pairs and passenger flow coupling strength (Equation (9)):

xi(t + 1) = R +

∣∣∣∣∣∣∣∣
(1− ε1,i − ε2,i) f (xi(t)) + ∑

j,j 6=i
ε1ji ·

aji f (xj(t))
kin

i
+ ∑

j,j 6=i
ε1ij ·

aij f (xi(t))
kout

i

+ ∑
j,j 6=i

ε2ji ·
aji pj→i f (xj(t))

qin
i

+ ∑
j,j 6=i

ε2ij ·
aij pi→j f (xi(t))

qout
i

∣∣∣∣∣∣∣∣ (9)

We can assume ε1ij = ε1ji and ε2ij = ε2ji for simplicity because the in-degree and
in-flow of a station are also the out-degree and out-flow of another station. Therefore,
Equation (9) can be rewritten as Equation (10):

xi(t + 1) = R +

∣∣∣∣∣∣∣∣
(1− ε1,i − ε2,i) f (xi(t)) + ∑

j,j 6=i

ε1ij
aij

ki
·
(

f
(
xj(t)

)
+ f (xi(t))

)
+ ∑

j,j 6=i
ε2ij aij ·

(
pj→i

qin
i
· f
(
xj(t)

)
+

pi→j

qout
i
· f (xi(t))

)
∣∣∣∣∣∣∣∣ (10)

This formula derivation is reasonable because the out-flow of one station will not
affect its state at the next time step. We use I(t) to define the cumulative failure proportion
of the network before the t-th time step, which is the ratio of the number of station failures
over the metro network with N stations. We then use V(t) to represent the instant failure
proportion, which is equal to I(t) minus I(t− 1). The perturbation in the station that leads
to steady I(t) is defined as the critical perturbation threshold Rc, which can be used to
measure the robustness of the network. A more resilient network should have more nodes
with a large Rc and a more important station to a metro system should have a larger Rc at
any time.

With this improved model, the problems needed to be studied are as follows:

• The correlation between the scale of cascading failures and the external perturbation
under different attacks;

• The speed of cascading failures in a discrete time series under different attacks;
• The difference between this improved model and existing CMLs model.

4. Results and Discussions
4.1. Threshold Analysis for Cascading Failure

We first investigate the thresholds to trigger maximum cascading failures under
different attacks. Different levels of attack have been simulated by adding different R to
different stations. In Figure 4, we plot the variation of balanced failure proportion I with
the increasing R in the four chosen Wednesdays of the experiment dataset. As shown
in Figure 4, when R > 1, failures start to be triggered in the metro topology network.
However, RA and IAs obviously have different trigger thresholds. As R increases, the
curve of CA will first make a mutation, and then that of XZ, SRS and RA. The results show
that the large-scale cascading failure of IA is more easily triggered than RA because only
a relatively small attack is needed to realize the rapid spread of cascading failures over
the network. Thus, the Shanghai metro network is more robust to RFs than to IAs. This
mutation effect also shows that for important stations, even a very small increase in the
perturbation value R can quickly trigger large-scale cascading failure of metro stations. The
results reveal the inherent vulnerability of the metro as a special mean of transportation.

From Figure 4, we observe that the stations near CA and SRS are densely distributed,
while the stations near XZ are relatively dispersed. Therefore, CA and SRS have a larger
flow pressure than XZ. From Figure 4,c, before the balanced I of XZ is held constant, there
is a relatively large decrease as R increases. This result indicates that when the value of R
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reaches a certain threshold, the importance of CA and SRS to the whole metro network
is higher than that of XZ. However, this phenomenon is not significant in Figure 4a,d.
We observe that the curves have a similar trend at the first and last Wednesday of April.
However, there is a significant difference in the second and third Wednesday of April. The
results show that mid-month heterogeneity of stations is more significant than that at the
beginning and end of the month, and the importance level has a stratified effect. It reveals
the significant temporal–spatial heterogeneity of cascading failures in metro systems.

Moreover, we find that in all the subgraphs of Figure 4, the balanced I of each station
increases firstly and then decreases instead of increasing gradually to 1. The maximum
value of balanced I is close to 0.8, which demonstrates that after adding the topology
coupling strength and passenger flow coupling strength, the Shanghai metro system is
impossible to fail completely. Previous studies whose experiments guaranteed complete
failure of the whole metro system as long as the perturbation R is large enough generally
assume that ε1 = ε2 = 0.25 [19–21,23]. Analyzing the mathematical formulas (e.g., For-
mulas (7) and (8)), the status value xi(t + 1) of the next time step of a station is almost a
fixed composition structure (when ε1 = ε2 = 0.25): (1) 50% * the t step status value f (xi(t));
(2) 25% * the topology information of the neighbor node; and (3) 25% * the passenger flow
information of the neighbor node.
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This means that as long as the f
(
xj(t)

)
of the failed neighbor node is large enough,

even multiplying by 0.25 will lead to the node failure. However, in Formula (10), if a station
has a large number of neighbors (e.g., 7 neighbors), the ε1,i and ε2,i of the neighboring
site can be very small (e.g., topology coupling strength = 1/7). This will lead to that the
xj(t + 1) of the neighbor node in the next time step is mostly determined by the state of
the node in the current time step xj(t). This result shows that in the metro system loaded
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with real passenger flow, when the failure characteristic information is transmitted to a
metro station with many adjacent stations, the state of the next time step determined by
the formula is mostly borne by the state of the current time step (e.g., 80% or 90%), and
the other parts jointly constitute the rest (e.g., 20% or 10%). This explains why the global
failure does not occur even under very large perturbation from one initial failed station.
When one station has a large number of neighbor nodes, no matter how serious a neighbor
node fails, all of the neighbors share part of its next time step status information xj(t + 1).

By comparing Figures 4 and 5, we find that the curve of the morning peak is different
from that of the evening peak. For example, the similarity of the four curves in Figure 4b,c
is higher than that in Figure 4a,d. However, the similarity of the four curves in Figure 5a,d
is higher than that in Figure 5b,c. It implies that for CA and SRS, the balanced I always
increases fast when 1 < R < 2, then takes a little drop, finally remains constant. For XZ,
the mutation rules of the morning and evening peak curves vary from time to time in a
month. Most mutations occur in the interval (1, 2) and the amplitudes of them are larger.
For RAs, a fast increase of cascading failure relatively requires a larger R than that of IAs.

The critical perturbation Rs at different time are shown in Table 3. For example, Rc for
XZ fluctuate mainly around 4, Rc for CA fluctuate mainly around 5, Rc for SRS fluctuate
mainly around 6, and Rcs for RA fluctuate mainly around 7. The results indicate that the
scale of cascading failure changes with R, and it also changes with time, however, the
perturbation in the station that leads to steady I(t) is approximately a constant.
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Table 3. The critical perturbation threshold at different times.

Rc Morning-1 Morning-2 Morning-3 Morning-4 Evening-1 Evening-2 Evening-3 Evening-4

XZ 4.0 3.6 3.5 3.5 4.2 4.0 4.0 4.2
CA 5.0 4.7 3.7 4.5 4.6 5.3 4.7 4.7
SRS 7.0 6.5 7.2 7.0 7.6 5.4 5.8 9.5
RA 6.0 6.2 6.2 6.3 6.3 6.5 6.5 6.3

4.2. Cascading Failure Process

In Figure 6, we plot the cumulative failure proportion I(t) as a function of time step t.
When R is small, for example, R = 1, the failure will spread in a short time and disappear
quickly, and the maximum I(t) remains relatively small value, even less than 0.05. The
result accords with the actual situation in which a low-level accident on a station will
cause other limited metro stations to fail in a short time. It is also easier for the metro
authorities to solve these problems. However, when there is a serious accident, the failure
will gradually spread over the metro network. For example, in Figure 5a, when t = 10,
the I(t) of the curve with R = 2 increases to 0.04 while that of the curve with R = 4, 6, 8
increases to 0.3.

Compared with the curves of XZ shown in Figure 6d, the curves of SRS and CA shown
in Figure 6b,c obviously trigger the maximum network failure from initial failure (t = 0)
more easily. SRS gets a steady value at t = 15, CA gets that at t = 25, while XZ gets that
at t = 30. Combined with the distribution of the three metro stations labeled in Figure 1,
we find that the cascading failure triggered from a station surrounded by other densely
distributed stations needs fewer steps to spread over the metro network.
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Compared with the curves of RA shown in Figure 6a, the curves of IAs are more
centralized when for larger R. For instance, the curves with R = 3, 4 in Figure 6b, the curves
with R = 2, 3, 4 in Figure 6c and the curves with R = 2, 3, 4 in Figure 6d. Moreover, when
t is small, the curves are similar with each other, especially for those with R = 3, 4. The
result shows that it is easier for cascading failures to be predicted in the beginning and be
increasingly unmanageable over time because the destruction of the metro network will
restrict the passenger flow evacuation.

It can be seen from Figure 7 that there is an approximate normal distribution visu-
ally between instant cascading failure speed and time step t, which is verified by the
Kolmogorov–Smirnov normal distribution test in Table 4. If p value >0.05, the data is
normally distributed. When R is small, the peak times of curves under both RA and IAs are
always within two steps. It indicates that the cascading failure triggered by a slight accident
or attack will be limited in a small-world network and terminate quickly. However, the
peak time will significantly be delayed as R increases to a certain value. It implies that the
propagation of cascading failures is mainly reflected in the early stage. For example, t = 6
in Figure 7a, t = 5 in Figure 7b, t = 5 in Figure 7c, and t = 8 in Figure 7d.
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Table 4. Kolmogorov–Smirnov normal distribution test.

Station p Value of R = 2 p Value of R = 3 p Value of R = 4

SRS 0.90 0.47 0.95
CA 0.82 0.84 0.84
XZ 0.59 0.59 0.58

In Figure 7c, the curves of V(t) for different R are almost similar with each other,
which indicates that SRS has the predictability to perturbations, at least when R = 2, 3, 4.
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For IAs, we can see that XZ has several peak times (t = 8, 18, 22, 25), which is different from
SRS and CA shown in Figure 7b,c. We also observe that the V(t) of XZ’s peak time is almost
half of that of CA and SRS. It indicates that the station location has a great influence on the
cascade failure speed. For RA shown in Figure 7a, the curves have a relatively wider peak
time range. The results show that different attack can significantly influence the cascading
failure process. There is a diversity for the cascading failure proportion distribution and
peak time as R changes. When attacking a random station on a metro system, the attack
often needs to be more intense, which means that a larger R should be added. This echoes
the previous conclusion.

4.3. Effect of Coupling Strength
4.3.1. Comparison of GAT and Classical Baseline GCN

As the classical algorithms of GNN, both GCN and GAT aggregate the features of
neighbor nodes to the central node by learning the new node feature expression. The
difference is that GCN uses the Laplacian matrix, while GAT uses the attention coefficient.
In Figure 8, GCN and GAT are applied to the graph flow dataset of the Shanghai metro
system to verify the superiority of GAT in learning the correlation between metro station
passenger flow characteristics.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 15 of 19 
 

 

system to verify the superiority of GAT in learning the correlation between metro station 
passenger flow characteristics. 

  
(a) (b) 

 
(c) 

Figure 8. Comparison of predictions with the passenger flow target on the graph flow dataset of 
Shanghai metro system. (a) CA, (b) SRS, and (c) XZ. 

The prediction of this study is passenger flow characteristics, and the dataset includes 
every 5 minutes’ passenger flow. The correlation between different stations’ passenger 
flow can be trained by using historical passenger flow to predict the specified station pas-
senger flow in the future, which is passenger flow coupling strength. In order to solve the 
problem of outlier data, this study takes the average by sliding window to make passenger 
flow data more stable (e.g., the first window is from 1 April 2015 to 6 April 2015, the sec-
ond window is from 2 April 2015 to 7 April 2015). 

Compared with GCN, GAT performs better in predicting the characteristics of the 
Shanghai metro passenger flow, which is shown in Figure 8 and Table 5. 

Table 5. MAE, MAPE and RMSE of GAT and GCN in Shanghai metro passenger flow dataset. 

Method MAE MAPE RMSE 
GAT 25.08 0.52 47.82 
GCN 30.64 0.49 60.22 

4.3.2. Difference between CMLs Based on GAT and CMLs 
Since topology and passenger flow coupling strength describe two kinds of interac-

tions between different pairs of stations in a network, it is necessary to consider them to 
investigate their influence with cascading failure. The topology coefficients and passenger 
flow coefficients of the chosen three stations have been shown in Table 6. XZ has two 

Figure 8. Comparison of predictions with the passenger flow target on the graph flow dataset of
Shanghai metro system. (a) CA, (b) SRS, and (c) XZ.

The prediction of this study is passenger flow characteristics, and the dataset includes
every 5 minutes’ passenger flow. The correlation between different stations’ passenger flow
can be trained by using historical passenger flow to predict the specified station passenger
flow in the future, which is passenger flow coupling strength. In order to solve the problem
of outlier data, this study takes the average by sliding window to make passenger flow
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data more stable (e.g., the first window is from 1 April 2015 to 6 April 2015, the second
window is from 2 April 2015 to 7 April 2015).

Compared with GCN, GAT performs better in predicting the characteristics of the
Shanghai metro passenger flow, which is shown in Figure 8 and Table 5.

Table 5. MAE, MAPE and RMSE of GAT and GCN in Shanghai metro passenger flow dataset.

Method MAE MAPE RMSE

GAT 25.08 0.52 47.82
GCN 30.64 0.49 60.22

4.3.2. Difference between CMLs Based on GAT and CMLs

Since topology and passenger flow coupling strength describe two kinds of interac-
tions between different pairs of stations in a network, it is necessary to consider them to
investigate their influence with cascading failure. The topology coefficients and passenger
flow coefficients of the chosen three stations have been shown in Table 6. XZ has two
neighbors, SRS has 4 neighbors and CA has 7 neighbors. The topology coefficients of links
between two stations will be equally distributed based on the number of each station’s
neighbors. The passenger flow coefficients of links between two stations will be trained by
GAT to get a most reasonable value. The results show that the transfer of passenger flow
between each station and its neighbors is indeed unevenly distributed [23].

Table 6. Topology coupling strength and passenger flow coupling strength trained by GAT.

Station ε1ij ε2ij

XZ 1/2, 1/2 0.48, 0.52
SRS 1/4, 1/4, 1/4, 1/4 0.25, 0.24, 0.26, 0.25
CA 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7 0.14, 0.14, 0.14, 0.14, 0.14, 0.15, 0.15

Shen [23] proposed a bi-directional CMLs model to analyze the cascading failure of
Nanjing metro network. Previous studies on CMLs model assumed that ε1 = ε2 [41], while
this paper insists ε1 6= ε2. In this paper, a comparative experiment on Shanghai metro
network is made to highlight the characteristics of CMLs based on GAT. As shown in
Figure 9, for the node with the largest degree, the results have a high similarity. As CA
has seven neighbors and the 7ε2ij of CA trained by GAT are very close to each other. The
result denotes that for nodes with large degree, the cascading failure process using different
CMLs model can get a similar performance.
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As shown in Figure 10, for the node with maximum in-flow, ε2ij ≈ 0.25, the curves
R = 2, 3, 4 of CMLs based on GAT in Figure 10a have a similar time step with that of
CMLs in Figure 10b. However, for the node with maximum out-flow, ε2ij ≈ 0.5, the curves
R = 2, 3, 4 of CMLs based on GAT in Figure 10c have a longer time step than that of CMLs
in Figure 10d. Since the flow coupling strength in CMLs can significantly affected the
propagation process of cascading failure, a more accurate flow coupling strength between
stations can help to better understand the cascade failure process, which can be obtained
by GAT with attention mechanism.
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based on GAT, ε1 6= ε2, (d) XZ, CMLs, ε1 = ε2 = 0.25.

5. Conclusions

In this work, an improved CMLs model based on GAT to investigate the cascading
failure process of metro networks is proposed, which provides a theoretical reference for
the emergency management when the metro system encounters an accident.

By learning the real passenger flow data of the Shanghai metro network, we obtain the
passenger flow coupling coefficients that can best represent the passenger flow distribution
of the entire Shanghai metro network. The practical meaning of the passenger flow coupling
coefficient is the proportion of passenger flow allocated from one station to adjacent stations.
The dynamic OD requirements are considered to accurately simulate the network state
when cascading failures occur. By analyzing the Shanghai metro topology network and
passenger flow data, three key stations are selected as the targets of IAs. The simulation
result of the cascading failure shows that the Shanghai metro network is more robust to
Ras than to IAs. For IAs, when the degree of the perturbation increases to a threshold,
the mutation effect occurs, which means large-scale cascading failure of metro stations is
triggered. Previous studies insisted that a large enough perturbation or attack can cause
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the complete cascading failure of the whole metro network. However, in this study, the
Shanghai metro system is impossible to fail completely after considering the topology
coupling strength and passenger flow coupling strength, which shows the simulation is
more realistic. The scale of cascading failure changes with time increasing, however, the
perturbation in the station which leads to steady state is approximately a constant. Small
perturbations will spread in a short time and disappear quickly, which means a low-level
accident on a station will cause limited other metro stations to fail in a short time. A
station surrounded by other densely distributed stations will trigger cascading failure
faster. It is easier for cascading failure to be predicted in the beginning and be increasingly
unmanageable over time because the destruction of the metro network will restrict the
passenger flow evacuation. There is an approximately normal distribution between instant
cascading failure speed and time step and the propagation of cascading failures is mainly
reflected in the early stage. Different attacks can significantly influence the cascading
failure process. The transfer of passenger flow between each station and its neighbors is
indeed unevenly distributed. Increasing the coupling strength of one station will reduce
the robustness of the whole network.

The method proposed in this paper can simulate the cascading failure in other metro
systems more accurately, not only the Shanghai metro system. The simulation considers
both topology attributes and passenger flow transfer rules. There are still several mean-
ingful research aspects. For example, further research can focus on the cascading failure
triggered from multiple nodes. The passenger flow redistribution algorithm should be
improved by considering alternative modes of transportation. Moreover, the difference of
cascading failures caused by different failure scenarios is worth analyzing.
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