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Abstract: Clinical decision support systems (CDSSs) represent the latest technological transformation
in healthcare for assisting clinicians in complex decision-making. Several CDSSs are proposed
to deal with a range of clinical tasks such as disease diagnosis, prescription management, and
medication ordering. Although a small number of CDSSs have focused on treatment selection, areas
such as medication selection and dosing selection remained under-researched. In this regard, this
study represents one of the first studies in which a CDSS is proposed for clinicians who manage
patients with end-stage renal disease undergoing maintenance hemodialysis, almost all of whom
have some manifestation of chronic kidney disease–mineral and bone disorder (CKD–MBD). The
primary objective of the system is to aid clinicians in dosage prescription by levering medical
domain knowledge as well existing practices. The proposed CDSS is evaluated with a real-world
hemodialysis patient dataset acquired from Kyung Hee University Hospital, South Korea. Our
evaluation demonstrates overall high compliance based on the concordance metric between the
proposed CKD–MBD CDSS recommendations and the routine clinical practice. The concordance rate
of overall medication dosing selection is 78.27%. Furthermore, the usability aspects of the system are
also evaluated through the User Experience Questionnaire method to highlight the appealing aspects
of the system for clinicians. The overall user experience dimension scores for pragmatic, hedonic,
and attractiveness are 1.53, 1.48, and 1.41, respectively. A service reliability for the Cronbach’s alpha
coefficient greater than 0.7 is achieved using the proposed system, whereas a dependability coefficient
of the value 0.84 reveals a significant effect.

Keywords: clinical decision support system; treatment recommendation; case-based reasoning;
medication dosing estimation; expert knowledge modeling

1. Introduction

Clinical decision support systems (CDSSs) play an important role in enhancing the
overall capabilities of healthcare providers [1,2]. In a rapidly changing healthcare landscape,
CDSSs are emerging as inevitable applications for informed decision-making. CDSSs are
software application systems that provide time-critical, valuable, and relevant informa-
tion to doctors, paramedical staff, and patients in order to help them deal with complex
medical cases. CDSSs are sophisticated systems that encompass a variety of tools, such as
alerts/reminders to the caregivers, knowledge extraction from clinical guidelines, medica-
tion and test ordering, diagnosis automation, and prescription management [3].
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CDSSs provides assistance to medical practitioners in critical decision-making pertain-
ing to patients’ medical situations. The adoption of computerized systems in healthcare
has a positive impact on the quality of patient care. In this regard, CDSSs provide medical
practitioners with the necessary support in terms of pointers to relevant domain knowledge,
highlighting relevant patient information, and decision support to deal with complex situa-
tions requiring expert intervention [4]. Although most CDSSs are geared towards medical
professionals, some systems also provide support to the patients in terms of education and
awareness regarding their medical condition. Before proceeding to the contents, readers
are encouraged to look at Table 1 for the abbreviations used in this manuscript.

Table 1. A list of abbreviations used in this paper.

Abbreviations Full Form

CKD–MBD Chronic Kidney Disease-MineralBone Disorder
ESRD End-Stage Renal Disease
CDSS Clinical Decision Support System
PTH Parathyroid Hormone
Ca Calcium
P Phosphate

CPB Calcium-based Phosphate Binder
NCPB Non-Calcium-based Phosphate Binder

UX User Experience
UEQ User Experience Questionnaire
DK Domain Knowledge

CPG Clinical Practice Guidelines
UI User Interface

CART Classification and Regression Tree
CPOE Computerized Provider Order Entry

GP General Practitioner
DLI Drug Laboratory Interactions
EHR Electronic Health Records
DT Decision Tree
IQR Interquartile Range

MRN Medical Record Number
ATT Attractiveness
PQ Pragmatic Quality
HQ Hedonic Quality
PII Patient Improvement Indicator

It is widely indicated in the literature that CDSSs can positively impact the overall
quality of healthcare by leveraging state-of-the-art technologies which result in effective
and efficient decision management without hindering the established clinical/healthcare
workflows. In this regard, it is of the utmost importance that CDSSs provide services with-
out becoming overtly bothersome to the clinicians [5,6]. Therefore, the usability aspects of
CDSSs are also an important consideration. The application of these systems can be justified
on the basis of their impact on the following: increased quality of service, reliable and
transparent decision support, real-time situational awareness, enhanced health outcomes,
user satisfaction e.g., of healthcare personnel and/or patients, and time-saving [7].

In this study, we designed a CDSS to assist the management of chronic kidney disease–
mineral and bone disorder (CKD–MBD) in patients undergoing maintenance hemodialysis.
The kidneys keep blood levels of electrolytes including calcium and phosphate within the
normal range by finely handling their urinary excretion. Dysregulation of serum calcium,
phosphate, and parathyroid hormone (PTH) begins far before reaching end-stage renal
disease, even when kidney function is declined by half [8]. Importantly, biochemical
abnormalities are closely interrelated to altered bone turnover and mineralization, and
vascular calcification, leading to fractures [9,10] and cardiovascular disease [11], both
of which are serious and highly prevalent morbidities in dialysis patients. CKD–MBD
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is an insidious pathological process complicated in CKD that encompasses biochemical
abnormalities, bone abnormalities, and vascular calcification.

Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend serial
assessments of serum phosphorus, calcium, and PTH and present their target ranges [12].
However, these three key laboratory values are hard to control within the target range
at the same time despite technical advancements in dialysis-related apparatus and the
introduction of new medications. Indeed, more than half of patients on dialysis do not
achieve recommended target ranges of serum phosphorus, calcium, and PTH levels [13].
Since maintaining serum phosphate, calcium, and PTH within target ranges may reduce
cardiovascular events and mortality [14,15] in ESRD patients, their optimal control is of
paramount importance. One of the major barriers to correct laboratory abnormalities is that
the medication prescribed to control one parameter may cause other parameters to fall out
of the target range. To help clinicians prescribe the best set of medications, we developed a
computerized decision support system which provides recommendations mostly regarding
medication adjustment based on domain knowledge and past patient cases. A generic
process flow for the CKD–MBD evaluation and treatment is presented in Figure 1.

Figure 1. A generic process flow for the chronic kidney disease–mineral and bone disorder (CKD–
MBD) treatment regimen selection.

As CKD–MBD is not a single disease entity but encompasses a variety of altered
mineral and bone metabolisms, a patient is initially evaluated for CKD–MBD by measuring
serum calcium, phosphate, and PTH levels, and examining ectopic calcification with lateral
abdominal radiography and echocardiography. Then, considering CKD–MBD status and
associated clinical situations, an appropriate treatment plan consisting of dietary modifica-
tion and medications is established. The objective of the proposed CKD–MBD CDSS is to
assist clinicians in the selection of an appropriate treatment regimen, i.e., medication selec-
tion and dosage recommendations for the management of CKD–MBD in ESRD patients. In
this regard, we have focused on the expert-in-the-loop approach, i.e., clinicians provide
essential domain knowledge for decision modeling and recommendation generation.

The key contributions of the paper are as follows:

• Active case selection based on domain knowledge;
• Case selection based on reference cases identified through a patient improvement

indicator (PII);
• Case adaptation based on domain knowledge and statistical dispersion;
• The proposed system is validated on real-world clinical cases;
• The evaluation of usability aspects to demonstrate higher user experience utility for

clinicians.
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In order to address the aforementioned points, the study is designed in a collaborative
manner in which both domain experts (i.e., clinicians) and knowledge engineers work in
tandem to realize the proposed CDSS. The domain experts provide the relevant domain
knowledge, which is in turn modeled and enhanced by knowledge engineers. Most of the
CDSSs in the domain of CKD are based on black-box machine learning models [16–18].
Systems built on such models are generally applied for diagnostic applications where the
system provides a prediction along with a confidence score [19,20]. Although black-box
models generally exhibit higher accuracy, such data-driven models have limited utility
due to sparsity of data, such as in the case of medication intake where a small subset of
medications are prescribed more frequently than the others. Therefore, in this paper, we
have focused on hybrid knowledge modeling to combine expert knowledge with that of
clinical cases of patients for decision support in medication recommendations.

The abstract idea of the proposed case-based hybridization approach is depicted in
Figure 2. The proposed approach is comprised of three major operations, i.e., case-base
partitioning, case selection, and case adaptation. The major emphasis of the proposed
approach is to synthesize abstract domain knowledge with specific domain cases in order
to generate a comprehensive recommendation for a complex scenario.

Figure 2. Abstract diagram depicting the role of domain knowledge and clinical cases in the proposed
approach.

The main contribution of the study is a proposed hybrid methodology that combines
both explicit knowledge (i.e., acquired from domain experts in the form of a partial domain
model) and implicit knowledge (i.e., in the form of clinical cases) for complex multi-factor
recommendations. Therefore, the medication and dosing selection for CKD–MBD patients
is adopted as a case study.

The proposed approach is based on the case-based reasoning (CBR) framework, which
imitates a clinician’s thinking and attempts to solve new problems by reusing solutions that
have been used to address similar problems in the past. CBR works with specific cases from
past scenarios and adapts the outcomes and experiences to an unseen problem. The greater
interpretability of the recommendation is a key benefit of the CBR framework. Therefore,
clinicians can easily evaluate the CDSS recommendation and follow the line of reasoning
followed by the system.

Major differences in this case from a conventional CBR are the development of a
domain model and the leveraging of it for case-base partitioning. The case selection is
further refined using reference case selection using a Patient Improvement Indicator (PII).
A hybrid approach is used for case adaptation using domain based rules and statistical
techniques, such as interquartile range. The domain model only partially captures the
solution component (i.e., only medication selection is covered by the domain model),
we therefore demonstrate how to utilize the partial domain model in conjunction with
clinical cases for medication dosage selection. In this regard, both the domain model
and clinical cases are employed in a complementary manner through the hybridization
pipeline proposed in this paper. The proposed pipeline can be applied to any other medical
treatment domains that include medication prescription and dosing adjustment.
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2. Related Work

Medication management is a tedious and error-prone task for both clinicians and pa-
tients. Deep learning-based approaches are generally employed for processing unstructured
data, such as medication images and clinical texts, for the purpose of correctly identifying
medication information. To reduce medication identification errors by the patients, deep
learning-based techniques are leveraged that aid in prescription pill identification from mo-
bile images [21–25]. Similarly, deep learning techniques are also successfully applied to the
task of medication and dosage extraction from clinical texts, such as clinical notes [26–28]
and social media texts [29–31]. Moreover, some studies have explored deep learning appli-
cations for medication selection focusing on drug–drug interaction [32], dosage selection
from free clinical text processing published literature [33], and electronic health records [34],
selecting discharge medications based on patient information documented in admission
notes [35], among other sources. The aforementioned approaches benefited from training
models on a huge amount of data and/or leveraging pre-trained models already avail-
able for similar tasks. However, one major hurdle that limits the application of black-box
models in clinical practice is the lack of the interpretability of these approaches [36–38].
Alternatively, the proposed hybrid case-based approach provides interpretable medication
selection and dosage adjustment recommendations given the small amount of clinical data
with reasonably acceptable accuracy.

Therefore, in this section, we focus on those aspects of the CDSS that are within the
scope of the proposed methodology, such as expert knowledge acquisition, medication
selection and dosing adjustment.

2.1. Knowledge Acquisition for CDSS Development

A mind-map-based knowledge acquisition process is proposed by Yu et al. [39] for the
treatment of thyroid nodules. The authors proposed a consultative process between domain
experts and knowledge engineers in which a domain model is produced. A number of
clinical practice guidelines (CPGs) pertaining to the thyroid nodule treatment are analyzed
by the domain experts and, subsequently, an iterative decision tree (DT) model is generated
by the knowledge engineers for automating the decision-making process. The CDSS was
evaluated using retrospective medical records of 483 patients. The authors reported 78.9%
concordance between the CDSS recommendations and routine clinical practice.

A similar modeling approach is adapted by Choi et al. [40], in which a CDSS for
heart failure diagnosis is proposed. The authors proposed a hybrid knowledge modeling
approach in which both expert-driven and data-driven models are consolidated into a
single model. In this regard, the Classification and Regression Tree (CART) model is used
to build a decision tree from patients’ medical records. Moreover, the resulting model is
combined with the DT model produced by the domain expert. The authors reported higher
accuracy of the combined model as compared with both the expert-driven model and the
data-driven model.

Hussain et al. [41] proposed a knowledge validation and verification approach for
such cases when multiple stakeholders are involved in the knowledge modeling process
and diverse sources are consulted. A hybrid approach was used which consists of both the
domain expert knowledge as well as patients’ medical records. The resulting CDSS is used
for the treatment of oral cavity cancer patients. It was observed that knowledge verification
is an important aspect of expert-based knowledge modeling to address issues raised due
to various inconsistencies, e.g., non-standard terminologies. The authors evaluated four
different knowledge acquisition scenarios and reported higher classification accuracy for
the hybrid approach with formal knowledge verification.
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A knowledge based CDSS was proposed by Afzal et al. [42] for treating cancer patients.
In this regard, an automated knowledge acquisition approach was proposed to acquire
relevant data from head and neck cancer patients’ unstructured documents. Finally, a CART
model was used for treatment regimen prediction. The authors reported 69.0% accuracy in
correctly selecting the treatment recommendation with respect to routine clinical practice.

Bach et al. [43] proposed a clinical dashboard to facilitate co-decision making in the
management of non-specific low back pain patients. The system collects data from question-
naires and wearable devices to make predictions about the course of non-specific low back
pain treatment. A case-based approach is used to provide personalized recommendations
for patients. The knowledge acquisition and recommendation process are primarily based
on pain management guidelines, consultation with clinicians, and past patient cases.

Ali et al. [44] proposed a multi-modal-based interactive authoring environment for
expert knowledge acquisition that is also shareable. A case study on oral cavity lesions
treatment plan generation was presented in which expert-based knowledge in the form of
a mind-map was converted into a set of medical logic modules. In this study, the authors
attempted to automate the process for shareable knowledge creation in a user-friendly
manner. The proposed system was evaluated from both system-oriented and user-oriented
aspects.

Wit et al. [45] evaluated clinical rules in a standalone pharmacy-based CDSS for
hospitalized and nursing home patients. The authors investigated the utility of clinical rules
for reducing prescription errors. The knowledge acquisition process for creating clinical
rules was based on guidelines that are developed by both pharmacists and physicians. The
main objective of the study was to evaluate the clinical significance of automated alerts
in routine clinical practice. In this regard, the relevance was determined whether or not
the pharmaceutics contacted the physician for each alert. The authors reported that the
average efficiency of the CDSS was low, whereas a few clinical rules have an efficiency of
greater than 10%. A number of factors contributed to the low efficiency of the system, such
as alert fatigue and the daily recurrence of previously evaluated alerts, etc.

The aforementioned studies performed knowledge acquisition for developing the
expert-driven model. The main focus was on the completeness of the model, i.e., the
developed expert knowledge model is sufficient for providing a recommendation for a
given task, e.g., treatment selection. The main advantage of the proposed hybridization
approach is that it can synthesize partial domain models, i.e., the domain model is used
only to provide abstract level generic recommendations. The abstract recommendation is
refined using clinical cases that are relatively easy to acquire as compared to rigorously
constructing a detailed domain model for complex recommendations such as medication
selection and dosing adjustment. Moreover, the proposed approach of synthesizing a
partial domain model with clinical cases is also more practical where codified domain
knowledge, e.g., clinical practice guidelines, are not sufficiently available for the task at
hand. For example, in the domain of CKD–MBD management, the leading guidelines do
not provide a detailed recommendation model for dealing with medication selection and
dosing prescription. Therefore, general pointers are extracted through domain experts
to construct a generic model as per the recommendations of the guideline, while the
specialization of the recommendation is aided through the clinical practice of the clinicians
in the form of specific cases. Therefore, the main role of the proposed approach is to
combine the abstract domain model with that of specific clinical cases for final multi-
factor recommendation generation. Table 2 provides a summarized comparison of related
techniques for knowledge acquisition for domain model construction.



Int. J. Environ. Res. Public Health 2022, 19, 226 7 of 28

Table 2. Literature Comparison–Knowledge Acquisition.

Reference Area of Application Objective Characteristics Limitations

[39] Thyroid nodules Treatment

• Knowledge-based system
modeling

• Expert driven domain model
• Retrospective evaluation

• Complete knowledge model is
difficult to acquire

• Model evolution requires domain
expert involvement

[40] Heart disease Diagnosis
• Hybrid knowledge model
• Interpretable decision making
• Retrospective and pilot study

• Difficult to express domain
consensus for complex cases

• Combined model is prone to
overfitting

[41] Oral cavity cancer Diagnosis

• Hybrid knowledge model
• Model consistency evaluation

through formal methods
• Retrospective evaluation

• Complete domain model is
difficult to acquire for complex
decision tasks

• Combined model is prone to
overfitting

[42] Head and neck cancer Diagnosis

• Automated knowledge
acquisition from documents

• Interpretable decision model
• Offline and online evaluation

• Domain expert involvement is
required for data quality
validation

• Resulting model does not
incorporate domain knowledge
that is not reflected in selected
data

[43] Low back pain Treatment

• Co-decision making model
• Implicit knowledge modeling

through case-based framework
• Reference group selection

based on positive outcome

• Clinical guidelines are not
integral part of the case-based
model

• Data acquisition through
wearable devices is unreliable,
and self-reporting data are
subjective

[44] General healthcare Wellness
management

• Framework for domain model
enrichment

• Wellness concept model for
health management

• Model evaluated using
nominal group technique

• Only SNOMED CT is used for
standard terminology
harmonization

• Model evolution requires domain
expert involvement

[45] Standard medical care Treatment

• CDSS based on clinical rules
for pharmacy application

• Automated alerts for
prescription error reduction

• Retrospective evaluation

• Difficult to express domain
consensus for complex cases

• Model evolution requires domain
expert involvement

2.2. Medication Selection and Dosing Adjustment

A CDSS for the management of CKD–MBD in patients with ESRD who receive main-
tenance hemodialysis has the potential to improve different stages of prescription, such
as medication initiation, modification, monitoring, or discontinuation [46–48]. Further-
more, it is reported that the usage of CDSSs improves overall adherence to clinical practice
guidelines and streamlines the decision-making process of clinicians [49]. Vogel et al. [50]
compared the effectiveness of an outpatient renal dose adjustment alert through a com-
puterized provider order entry (CPOE) CDSS and a CDSS providing alerts to pharmacists.
The authors concluded that both types of CDSS resulted in low rates of potential medi-
cation errors. In prescriber-based CDSSs, a pre-defined process map is used to aid in the
decision-making of medication prescription and dosing.

Hellden et al. [51] evaluated the impact of a CDSS on the general practitioners’ (GPs)
experience of drug dosing. The information-gathering process included a questionnaire
and a focus group discussion. The study presented favorable evaluations by GPs in terms
of ease of use and overall usefulness in medication dosing. Furthermore, primary care
physicians have reported higher acceptance of simple graphical user interfaces, along with
task-oriented clear navigation and concise advice.
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Pirnejad et al. [52] proposed a methodology for appropriate drug therapy recommen-
dations for kidney transplant patients based on clinical knowledge as well as international
recommendations.

Niazkhani et al. [53] proposed a context-aware CDSS for managing drug-laboratory
interactions in order to reduce medication errors. The main focus of the study was to
develop a user-friendly CDSS to accommodate drug-laboratory interactions (DLIs) while re-
ducing the alert fatigue of clinicians. The knowledge base was based on DLI-rules that were
extracted from pharmacology references and clinicians’ direct input. The overall efficacy of
the system was evaluated using the “Questionnaire for User Interface Satisfaction”.

Shemeikka et al. [54] proposed a CDSS to support prescriptions of pharmaceutical
drugs in patients with reduced renal function. The proposed system was integrated with
an electronic health record system (EHR) used in both hospitals and outpatient facilitates.
The evaluation of the system was based on a usability questionnaire and the frequency of
system logging. The main focus of this research was to integrate the CDSS in the Janus
toolbar for appropriate drugs therapy recommendations.

Awdishu et al. [55] proposed a CDSS for supporting medication prescription for CKD
patients. The system targeted 20 medications and aided clinicians in the drug therapy
discontinuation or dosage adjustment for adult patients with impaired renal function.
Medication alterations were based on reviewing primary literature and CPGs, among other
resources. The authors reported that the proposed CDSS achieved favorable results in
providing guidance on new prescriptions.

Ting et al. [46] proposed a hybrid case-based reasoning approach for medication
prescription recommendations. In this regard, the proposed approach combined results
from case-based modeling and Bayesian reasoning using a set of heuristic rules. Highly
recommended medications were those that were selected by both models. The main
focus was on utilizing the clinical experience of physicians along with modeling clinical
knowledge in the form of a Bayesian network.

Medication prescription recommendation is a non-trivial task that includes the selec-
tion of medication from among a number of alternate medications. Furthermore, medi-
cation dosage selection adds to the complexity of the task. For such complex scenarios,
clinical practice guidelines (CPGs) do not sufficiently capture the wide range of suitable
recommendations. Therefore, most of the studies utilizing domain knowledge can only
provide medication selection recommendations. In the proposed hybridization pipeline, we
demonstrate an approach which involves combining an abstract domain model with that
of clinical cases for medication dosing estimation. In this regard, the proposed approach
combines an expert-based model for medication selection and a statistical technique, such
as an interquartile range (IQR), for medication dosage estimation. Table 3 provides a
summarized comparison of related techniques for medication prescription.
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Table 3. Literature Comparison-Medication Prescription.

Reference Area of
Application Objective Characteristics Limitations

[50] Kidney disease Medication
selection

• CDSS based on pre-defined process
map

• Outpatient renal dose adjustment
using CDSS

• Retrospective evaluation

• Difficult to express domain
consensus for complex cases

• Model maintenance requires
domain expert involvement

[51] Primary healthcare Medication
selection

• A two-step drug recommendation
through CDSS

• Integrated into Janus web solution
• Evaluation through questionnaire

responses and focus group

• Complete domain model is difficult
to acquire for complex decision
tasks with multiple preferences

• Clinical experience of different
clinicians for dosing
recommendation is not integral
part of the CDSS

[52] Kidney patients Medication
selection

• CDSS for potential drug–drug
interactions (pDDIs)
recommendation

• Knowledge base construction for
pDDIs alert generation

• Prospective evaluation

• The knowledge does not provide
medication dosing
recommendation

• Difficult to express domain
consensus for complex cases

[53] Kidney patients Medication
selection

• Context-aware CDSS for
drug–laboratory interactions (DLIs)

• Knowledge base for DLIs
recommendations

• Prospective cross-sectional
evaluation using real clinical
patient data

• Complete domain model is difficult
to acquire for complex decision
tasks with multiple preferences

• Difficult to maintain complex
rule-based models, e.g., medication
adjustment

[54] Kidney patients Medication
selection

• Drug prescription for reduced renal
function patients

• CDSS is integrated in Janus toolbar
• Evaluation using questionnaire

technique

• Clinical experience of different
clinicians for dosing
recommendation is not integral
part of the CDSS

• Clinical experience of medication
selection is not reflected in the
model

[55] Kidney patients Medication
selection

• CDSS for drug therapy
selection/discontinuation

• Different alerts are designed based
on multiple domain sources

• Prospective evaluation using
randomized control trial

• The CDSS does not provide
medication dosing
recommendation

• Knowledge maintenance for new
medications would pose a major
challenge

[46] Standardmedical
care

Medication
selection

• Data-driven hybrid model using
case-based reasoning and Bayesian
reasoning, execute in parallel

• Heuristic rules to combine results
from both models

• The CDSS does not provide
medication dosing
recommendation

• Complete domain model is difficult
to acquire for complex decision
tasks reflecting multiple
preferences

3. Methodology

The proposed CDSS takes into account the laboratory and imaging test results of
patients and assists clinicians in selecting an appropriate treatment regimen. Treatment
recommendations in terms of medication selection and dosage adjustment are based on
similar patients and domain knowledge. The proposed hybrid approach is illustrated in
Figure 3. The expert knowledge is codified into a hierarchical structure such as a DT and it
is utilized for partitioning the past clinical cases into multiple groups.

Each case is composed of two components, i.e., problem component and solution
component, represented by X and Y. The problem component represents measurements for
multiple laboratory test results such as PTH, phosphate, and albumin-corrected calcium
levels along with the status of vascular calcification in the body. The solution component
specifies different prescribed medications along with the dosage. A new patient encounter,
Xt, is treated as a test case and assigned one of the recommendation groups.
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Figure 3. Schematic representation of the proposed hybrid knowledge modeling approach.

Moreover, each medication recommendation group is denoted by Ti, where i refers to
the number of pre-specified partitions by the domain experts, and k represents any specific
partition that contains Xt. In the proposed CKD–MBD CDSS, the entire case base is divided
into 33 mutually exclusive partitions, starting from T1 up to T33 (refer to Table A1). X′

and Y′ represent cases from partition Tk that are treated as similar cases for the given Xt.
Moreover, a subset of reference cases, m, are selected from the Tk partition containing n
cases where m ≤ n. All similar cases are assigned an outcome value based on the PII and
only those cases are selected as reference cases that have a PII > 0. Reference cases along
with domain knowledge-based adaptation rules are used for prescription recommendation
denoted by Ŷ. Ŷ represents a set of selected medications along with their dosage range, e.g.,
Medication <Cinacalcet>: = 25 mg/day–50 mg/day. The IQR is used for estimating dosage
ranges for multiple selected medications. The prescription recommendation is provided
to the clinician that may further refine the dosage. Afterwards, a final prescription, Y”,
is provided to the new patient case, Xt.

A comprehensive recommendation scenario depicting key stages of the proposed
recommendation system is depicted in Figure 4. A patient’s laboratory and imaging tests
are evaluated through the domain model, and an abstract recommendation is subsequently
generated based on the patient’s type, i.e., negative for cardiovascular calcification (type-
II), and patient’s group, i.e., T1. A set of similar cases are acquired from the case-base
pertaining to both type-II and T1 patients. Each retrieved case is assigned a case out-
come score using the PII. A set of references cases are selected i.e., cases having a PII
> 0. Prescribed medications of the selected cases are processed using both adaptation
rules acquired from domain knowledge, such as “start or increase medication class A”,
“maintain medication class B”, and “decrease or stop medication class C”, etc. IQR is
applied on prescribed medication dosages when generating lower and upper bounds, e.g.,
medication A1: 25 mg/day–50 mg/day, where A1 is one of the medications in medication
class A. Adaptation rules are used for medication class level recommendations, i.e., initia-
tion/continuation/discontinuation of a medication class, while clinical cases are used for
estimating the lower and upper bounds of dosages for specific medications.

The major advantages of the proposed approach are as follows:

• Domain theory-based patient categorization enhances the confidence of clinicians;
• Each group is denoted by a variable-sized neighborhood;
• Easily identifiable patient groups that have an insufficient number of associated clinical

cases;
• Easily identifiable treatment regimens that are effective for similar patient cases;
• Medication dosage adjustment support based on domain theory along with evidence

from past clinical cases;
• The enhanced interpretability of the medication selection and dosage adjustment

recommendation by clinicians.

A multi-level data flow diagram (DFD) of the proposed CKD–MBD CDSS is shown in
Figure 5. The proposed CDSS is composed of three main tasks, i.e., case-base partitioning,
case selection, and case adaptation. An abstract domain model is used to partition the
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case-base in a pre-determined set of groups, i.e., abstract recommendations. One major
advantage of eager partitioning is the active identification of those partitions that lack a
sufficient number of clinical cases in the case repository. Case selection deals with retrieving
similar cases for a given test case and selecting a set of reference cases from the selected
partition. Finally, case adaptation is applied to a set of reference cases with the help of
adaptation rules. Adaptation rules are based on domain knowledge. The IQR is used
as a measure of statistical dispersion of the selected medication dosages. In this regard,
a final recommendation is generated specifying the lower and upper bounds for the dosage
values.

Figure 4. Medication selection and dosage adjustment scenario based on the proposed approach.

Figure 5. Data flow diagram depicting the relationship between processes and data.
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3.1. Active Case Partitioning through Domain Knowledge

Domain knowledge (DK) plays a critical role in the development of CDSSs. It primarily
deals with specifying key concepts and the relationships among the concepts. In the
proposed system, DK is used for a priori partitioning of the case-base into multiple patient
groups. The process of DK acquisition and codifying it into a domain model is depicted in
Figure 6. DK is also used for generating generic medication intake recommendations that
are also used in case adaptation operations for medication selection. The benefits derived
from active case partitioning include the variable size of each partition (i.e., neighborhood
size is not defined a priori) and, as the relevant cases are localized, this therefore reduces
the run-time processing for retrieving similar cases every time a new test case is received.

Figure 6. A simplified process for domain-model construction based on clinical practice guidelines
for CKD–MBD management.

The final output of the knowledge acquisition process is a domain-decision model
that is similar to a DT structure. Over the course of multiple consultations, the domain
experts develop a domain-decision model based for the most part on KDIGO CKD–MBD
guidelines [12]. The domain model provides sufficient knowledge to group patient case-
base into multiple categories. The domain model is converted into production rules of the
form IF-THEN. Figure 7 illustrates a mind-map depicting a domain model for CKD–MBD
patients.

As recommended in the KDIGO guidelines, all hemodialysis patients are subject to
lateral abdominal radiographs and echocardiography in order to evaluate vascular and
valvular calcification, respectively. The severity of vascular calcification is graded on the
abdominal aorta by a validated method [56], while valvular calcification is assessed in a
dichotomous manner, i.e., its presence or absence.

In the proposed CDSS for CKD–MBD management, hemodialysis patients are broadly
categorized into two types based on the degree of ectopic calcification (as shown in Table 4):
type-I patients who have valvular calcification or at least a moderate degree of vascu-
lar calcification (calcification score > 5 out of 24), and type-II patients who are negative
for valvular calcification and have a mild degree of vascular calcification (calcification
score ≤ 5) at most. The novel approach of the proposed CDSS is that a strict target range
of PTH is set for type-I patients, whereas a relatively lenient target range of PTH recom-
mended by KDIGO is set for type-II patients. Patient type categorization is performed by
domain experts through the consultative method as mentioned in Section 2.1 as a part of
the domain knowledge acquisition process.
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Figure 7. Mind-maps for expert-based domain models for (a) type-I and (b) type-II CKD–MBD
patients along with (c) a sample mind-map structure for representing a CPG-based domain-model
(Ca refers to albumin-corrected calcium).

Table 4. Relevant clinical parameters and their target ranges.

Clinical Parameter Target Range

PTH (type-I patient) 150~300 pg/mL
PTH (type-II patient) 130~600 pg/mL

Phosphate 3.5~5.5 mg/dL
Albumin-corrected Calcium 7.5~10.2 mg/dL

In this regard, the resultant domain model accommodates both types of patients. There
are three key attributes to the domain model, i.e., PTH, albumin-corrected calcium, and
phosphate levels in the body (Figure 5). Furthermore, there are in total 33 patient groups
identified by the domain experts. Each group is associated with a generic recommendation.
A template for the multi-factor generic recommendation is provided in Table 5. ‘Dialysate
Calcium Concentration’ is a non-medication factor that can be modified according to the
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partition to which the patient belongs. The recommendation against each factor is provided
in general terms, such as whether to initiate (or increase) a particular medication/dialysate
calcium concentration or discontinue (or decrease) the medication/dialysate calcium con-
centration. Table 6 provides a generic recommendation template. As it can be seen from
the table, each factor can take on one of the available treatment options.

Table 5. A sample generic recommendation.

Management Class Treatment Options

Calcimimetics Start or Increase Cinacalcet
Calcitriol Stop Calcitriol

Vitamin D and Analogs Stop Vitamin D and Analogs
Calcium-based Phosphate Binder Stop CPB

Non-Calcium-based Phosphate Binder Start or Increase NCPB
Dialysate calcium concentration Reduce by 0.25 mmol/L

Table 6. Generic Recommendation Template.

Management Class Available Treatment Options

Calcimimetics [Start or Increase Cinacalcet], [Decrease Cinacalcet], [Stop or Decrease
Cinacalcet], [As it is]

Calcitriol [Start or Increase Calcitriol], [Stop Calcitriol], [Decrease or Stop Calcitriol],
[Consider Calcitriol], [As it is]

Vitamin D and Analogs [Consider Vitamin D Analogs], [Decrease or Stop Vitamin D Analogs], [As it is]
Calcium-basedPhosphate Binder [Start or Increase CPB], [Stop CPB], [Decrease or Stop CPB], [As it is]

Non-Calcium-basedPhosphate Binder [Start or Increase NCPB], [Stop NCPB], [Decrease or Stop NCPB], [As it is]

Dialysate CalciumConcentration [Increase by 0.25 mmol/L], [Reduce by 0.25 mmol/L], [Maintain Current
Calcium Concentration]

Active case partitioning through domain knowledge serves two purposes, i.e., it par-
titions cases into multiple groups, and it also provides generic medication intake recom-
mendations for each category (refer to Table A1). It is also important to note that one of
the main objectives of the domain model construction is to include CKD–MBD guidelines
in the decision-making process. The overall domain model for type-I and type-II patients
has resulted in 432 production rules (see Figure 7). The production rules are useful in
automating the reasoning process and maintaining the knowledge base.

3.2. Reference Case Selection Using the PII

One of the important contributions made in this paper is the development of the PII
as a case scoring function. The main objective of the PII is to provide a summarized view
to the clinician regarding the overall health status of the patient, i.e., patient-important
outcome. The PII is comprised of three individual factors i.e., PTH, calcium, and phosphate
levels in the body. A patient may visit multiple times over the period of treatment, and at
each visit the aforementioned three clinical measurements are used to calculate the PII. The
operation of PII computation is depicted in Figure 8 and the formula for its calculation is
provided in Equation (1).

PII = ∑m
i Ci

m
(1)

where, m refers to the total number of clinical measurements, i refers to the i-th mea-
surement, C refers to a Boolean value, i.e., either 0 or 1. Each Ci value refers to a binary
decision, i.e., whether the given test results are within a target range or not. For example,
for patients with at least a moderate degree of vascular calcification (i.e., patient type-I),
the ideal PTH level is between 150~300 pg/mL [57], while target ranges of phosphate and
albumin-corrected calcium are 3.5~5.5 and 7.5~10.2 mg/dL, respectively.
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Figure 8. The Patient Improvement Indicator (PII) for selecting reference cases.

The PII is bounded between 0 and 1. PII values closer to 1 indicate a better patient-
important outcome, as depicted in Figure 8. The PII differs for different patients: seeing
as the normal range of PTH varies with the type of patient, PII is therefore calculated
accordingly.

All the patient cases are assigned their respective PII values, except for corner cases,
such as a patient having only a single encounter or the latest encounter of the patient. These
cases are treated as corner cases because no subsequent patient encounter is available to
calculate the PII value. It is important to note that for evaluating the efficacy of medication
dosage prescribed on encounter i, the laboratory test results from the subsequent patient
encounter, i + 1, are required, as shown in Figure 8.

The PII is used to differentiate cases based on their outcome, i.e., whether the patient’s
condition (indicated by laboratory test results) improved given a certain prescription or
not. The main purpose is to select a set of reference cases that have a positive impact on the
outcome, i.e., improvement is recorded in the patient’s laboratory test results. Equation (1) is
used to assign an outcome score to a clinical case. An important contribution of the PII is to
refine case selection operation, i.e., select cases among similar cases based on their outcome.
The refined selection provides a set of reference cases for medication dosage estimation.
A similar approach was adopted by Bach et al. [43], whereby the authors initially retrieved
a set of similar patients in the domain of low back pain therapy recommendations, and
later a reference patient group was identified for further recommendation tuning. The
reference group was comprised of patients with positive outcomes, such as decreased
pain, improved pain self-efficacy, and better mood. In the case of the CKD–MBD domain,
treatment prescription (i.e., medication and dosage selection) for a similar set of patients
may vary as per the clinicians’ decisions. The PII is therefore used to qualify different
prescribed past treatments according to their efficacy.

3.3. Case Adaptation through Domain Knowledge and Clinical Cases

The main objective of the case adaptation operation is to provide medication intake
recommendations to the physician. In this regard, domain knowledge and high prospect
cases are used for generating recommendations. As stated earlier, domain knowledge is
used for both case-base partitioning as well as generic recommendation generation. Case
adaptation refines the expert-based generic recommendation through processing similar
cases and statistically analyzing the co-occurrence of medication dosages.

Case adaptation is the final step in the proposed methodology, through which a more
precise treatment recommendation is generated that deals with both medication selection
and dosage recommendation. Table 7 shows an example of a sample relationship between
the generic recommendation and dosage recommendation. As it can be seen that dosage
recommendation relies on directions from generic recommendations, i.e., whether to select
a particular class of medication or not. Moreover, the final dosage recommendation is based
on the most frequent medication and its dosage among high prospect similar cases. It is
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important to note that, when using IQR statistics, situations in which similar cases take on
different medication dosages for a given medicine are reflected in the final recommendation
as a dosage range having both lower bound and upper bound values, as shown in Figure 9.

Table 7. A sample medication dosage recommendation with respect to generic recommendation.

Generic Recommendation Dosage Recommendation Reference Dosage Range

Calcimimetics: Start or Increase Cinacalcet: 25 mg/day–50 mg/day Cinacalcet: 0~100 mg/day

Calcitriol: Stop Calcitriol Calcitriol, po: 0 ug/day Calcitriol, po: 0~2.0 ug/day
Calcitriol, iv: 0~10 ug/week

Vitamin D and Analogs: Stop
Vitamin D and Analogs

Paricalcitol, iv: 0 ug/week
Alfacalcidol: 0 ug/day

Paricalcitrol, iv: 0~50 ug/week
Alfacalcidol: 0~3 ug/day

Calcium-based Phosphate Binder:
Stop CPB

Calcium Carbonate: 0 mg/day
Calcium Acetate: 0 mg/day

Calcium Carbonate: 0~3750 mg/day
Calcium Acetate: 0~6000 mg/day

Non-Calcium-based Phosphate Binder:
Start or Increase NCPB

Sevelamer: 800 mg/day
Lanthanum: 0 mg/da

Sevelamer: 0~13,000 mg/day
Lanthanum: 0~3750 mg/day

Dialysate Calcium Concentration:
Maintain current dialysate calcium

concentration

Dialysate Calcium Concentration:
1.25 mmol/L

Dialysate Calcium Concentration:
1.25~1.75 mmol/L

Figure 9. Medication dosage selection and dosage adjustment based on domain knowledge and
interquartile range (IQR).

It is important to note that the dosage recommendation is calculated based on the
direction from generic recommendations and high prospect similar cases. In this regard, as
indicated in Table 7, the generic recommendation for Calcimimetics is “Start or Increase”,
Cinacalcet is therefore recommended between 25 mg/day and 50 mg/day. Dosage range
estimation is based on IQR of high prospect similar cases.

3.4. CKD–MBD CDSS Execution Process

The execution process workflow pertaining to the medication prescription is depicted
in Figure 10. Patients are assigned a unique Medical Record Number (MRN) at the registra-
tion stage. Afterwards, both current and previous laboratory tests are acquired for patient
type selection as well as patient group identification (through the domain-decision model).
The medical laboratory tests include measurements for phosphate, calcium, albumin, and
PTH. A set of reference cases is selected based on the PII of similar cases. Furthermore,
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if only a single case is available in the selected case set, then it is provided to the physician
without any modification. When there are multiple selected cases in the set, then a case
adaptation operation takes place that generates a single medication prescription recommen-
dation based on the multiple reference cases. Before persisting with the medication dosage,
the clinician may choose to modify the contents of the recommendation, such as adjusting
the medication dosage from the recommended one. The system automatically logs the
concordance between the generated recommendation and the clinician’s prescription.

Figure 10. Process flow for CKD–MBD CDSS pertaining to the treatment regimen selection.

The categorization of patients has two aspects, i.e., patient type selection and patient
group selection. Patient type selection requires medical imaging results such as lateral
abdominal radiography and echocardiography in order to determine the degree of ectopic
calcification. The aforementioned imaging tests are conducted once every year. Patients
are divided into two types, i.e., positive for vascular calcification and negative for vascular
calcification. Patient group selection, on the other hand, is performed using the domain
model, as shown in Figure 7. The group selection decision is taken every month, i.e., at each
encounter with the patient. Furthermore, PTH laboratory medical results are conducted
every three months, and both albumin-corrected calcium and phosphate tests are performed
every month. Current and previous laboratory test results are required for patient group
selection through the domain model. There are 33 different patient groups identified by
clinicians within the scope of CKD–MBD management.

4. Experimentation and Results

The CKD–MBD CDSS is evaluated using two perspectives, i.e., system perspective and
user perspective. In the case of the system perspective, the evaluation is performed in terms
of compliance between the CKD–MBD CDSS medication recommendation and routine
clinical practice. The usability aspects of the proposed system are evaluated in terms of
recommendation generation, assistance in preventing accidental dosage errors, and serial
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trend visualization of key measurements such as PTH, phosphate, and albumin-corrected
calcium.

4.1. System-Centric Evaluation

To validate the system, we performed an experiment in which we established a concor-
dance between the CDSS generated recommendations and that of physician’s prescribed
medication. We have 850 clinical cases extracted from 66 patients (each patient had at
most 13 encounters) from Kyung Hee University Hospital, Seoul, South Korea. The gen-
der ratio of the patients was 70:30, where 70% of the patients were male. Furthermore,
the distribution of clinical cases between type-I and type-II patients was 374 and 476,
respectively.

4.1.1. Domain Model Compliance

The domain model is primarily based on KDIGO CKD–MBD guidelines. As men-
tioned earlier, the generic recommendation is based on the domain model; therefore, it is
worthwhile evaluating the compliance between the routine practice and the domain model.
The recommendation consists of general directions for clinicians regarding the initiation,
modification, or discontinuation of a certain medication class, as indicated in Table 6. The
evaluation results, as provided in Figure 11, show the overall compliance between the
clinical cases and the generic recommendation. It can be seen in Figure 11 that in general
most of the recommendation factors have complied with the routine clinical practice as
well. Therefore, the domain model-based generic recommendation plays an important
role in the dosage estimation task. Figure 12 shows a breakdown of the compliance rate of
six medication classes that are part of the overall recommendation. In the non-compliant
cases, “decrease” slightly dominated, e.g., the system recommended to “maintain” while
the clinician decreased the dosage.

A confusion matrix based on the compliance evaluation between domain model and
routine clinical practice is provided in Figure 13. “Maintain” remained the most domi-
nant label in the recommendation across the medication classes. The average discrepancy
across all the medication management classes for the “start/increase”, “maintain”, and
“stop/decrease” out of 850 cases is 97.50 cases, 42.16 cases, 82.83 cases, respectively. More-
over, NCPB had major discrepancies among all the medication classes, specifically in the
“start/increase” recommendation.

Figure 11. Cardinality of compliance among domain model and routine clinical practice for multi-
factor recommendations.
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Figure 12. Compliance among different medication management classes along with dialysate calcium
concentration.

Figure 13. Confusion matrix indicating compliance between domain model and routine clinical
practice.

4.1.2. Evaluation for Dosage Recommendation

The medication dosage recommendation is the main objective of the CKD–MBD CDSS.
In this regard, both domain knowledge and similar past cases are used to assist clinicians
in dosage prescription. The clinical case-base consists of 600 cases whereas 250 cases are
used to evaluate the recommendation system’s efficacy with respect to the routine clinical
practice of clinicians. There are 107 cases for type-I patients and 143 cases for type-II
patients in the test dataset. Table 8 provides evaluation results based on the test data,
indicating concordance between the dosage recommendation and clinical practice.

Concordance =
∑

j
i(System ∩ Clinician)

j
(2)

The evaluation procedure is based on comparing the recommended dosage with that
of the clinician’s prescription using Equation (2), where i starts from 1 and j is the total
number of factors in the recommendation, i.e., 10. Seeing as the recommended dosage is
based on the IQR, i.e., 1st quartile and 3rd quartile, in most of the cases the recommendation
is therefore in the form of a range of values, i.e., lower bound of the dosage and upper
bound of the dosage. In such cases, the evaluation is based on whether the prescribed
medication dosage is within the recommended dosage range or not. “In-Range” cases are
those in which the prescribed medication is within the recommended range; otherwise
they are regarded as “Out-of-Range” cases. Furthermore, not all medications are present
in all the cases, i.e., Cinacalcet is present in 49 cases out of a total of 250 test cases, and
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so on. Concordance for Cinacalcet is 85.71%, Calcitriol (po) is 81.81%, Calcitriol (iv) is
66.66%, Paricalcitol (iv) is 82.24%, Calcium Carbonate is 76.47%, Calcium Acetate is 81.81%,
Sevelamer is 76.12%, Lanthanum is 55%, and Dialysate calcium concentration is 98.40%.
As Alfacalcidol does not include any case in the test set, it is therefore not part of the
average concordance calculation. The average concordance of the medication dosage
recommendation, as reported in Table 8, is 78.27%.

Table 8. Concordance evaluation for the medication dosage recommendation.

Management Class Total
Cases

Present
Cases

In-Range
Cases

Out-of-Range
Cases

† Cinacalcet 250 49 42 7
Calcitriol, po 250 11 9 2
Calcitriol, iv 250 15 10 5

Paricalcitol, iv 250 148 122 26
† Alfacalcidol 250 0 0 0

† Calcium
Carbonate

250 34 26 8

† Calcium
Acetate

250 11 9 2

† Sevelamer 250 155 118 37
† Lanthanum 250 20 11 9

Dialysate Calcium
Concentration 250 250 246 4

† Cinacalcet, alfacalcidol, calcium carbonate, calcium acetate, sevelamer, and lanthanum are orally taken tablets.

4.2. User-Centric Evaluation

The usability of the system is yet another important consideration apart from its
efficacy. Systems that have bad user experiences, such as unnecessary complexity, workflow
inconsistency, and distraction, lead to cognitive burdens on the user and results in limited
usability. In this paper, we have also evaluate the usability aspect of the proposed system.

The system is evaluated by 11 participants with different experience levels and ex-
pertise with healthcare applications. The system is evaluated in an end-to-end manner
including tasks such as patient registration to the final recommendation generation and
prescription persistence.

The CDSS features under evaluation include user interfaces for recommendation gener-
ation, consistency of the user interfaces, timeliness of the relevant information, visualization
of the clinical parameters, medication dosage-related pop-ups, among others.

Participants’ responses are acquired through a widely popular user experience evalua-
tion questionnaire. Questionnaires are widely used as a research instrument for effective
user experience evaluation. The User Experience Questionnaire (UEQ) compares the level
of experience and assessed scale means of participants with a benchmark dataset of 4818
people across 163 studies on various services [43].

Figure 14 lists a number of key items describing a distinct quality aspect of an in-
teractive product identified by usability experts. UEQ contains six user experience (UX)
aspect scales with 26 items. Items belonging to a specific group are similar in meaning but
represent different aspects of the system for a given aspect scale. The Cronbach’s alpha
coefficient is a well-known metric for determining the average value per item [58]. Figure 14
demonstrates that the 50 percent mean values are more than or equal to 1.5, confirming the
proposed system’s substantial positive impact on the UX of the participants.
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Figure 14. Scale mean value per item for multi-aspect user experience (UX) evaluation.

The overall six scales are attractiveness, perspicuity, efficiency, stimulation, and nov-
elty. In this regard, attractiveness is a pure valence dimension. Furthermore, perspicuity,
efficiency, and dependability are pragmatic quality aspects (goal-directed), while stimula-
tion and novelty are hedonic quality aspects (not goal-directed). Attractiveness represents
an overall impression of the system. Perspicuity characterizes ease of familiarity with the
system, efficiency represents whether users can solve their task without unnecessary effort.
The dependability aspect denotes if user feels in control of the interaction. Stimulation
represents whether it is an exciting and motivating product to use or not. And finally,
novelty characterizes whether the system catches the interest of users or not?

As shown in Figure 15, the analysis of UEQ support is used to determine the means of
stimulation, attractiveness, perspicuity, dependability, efficiency, and novelty scales [58,59]
in the 0 to 2 range. The value of the dependability scale is close to 2.0, [60] indicating that
the proposed system induces confidence in the decision-making of the participants.

The 95% confidence intervals for the UEQ scale mean are used to evaluate the confi-
dence interval (a measure of the precision of mean estimation) [61]. The mean confidence
scores calculated are 1.452, 1.529, 1.475, 1.581, 1.456, 1.512 for attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty, respectively, as shown in Figure 15.

The UEQ tool compares the UX of the proposed system with that of other services [61].
As indicated in Figure 16, the system provides higher dependability due to the transparency
of its decision-making along with the inculcating of domain knowledge. Moreover, other
aspects such as perspicuity, efficiency, and stimulation are also in the “Good” range,
indicating a general acceptance across the participants. The attractiveness aspect of the
system is “Above Average”, while the novelty aspect is also reasonably high, indicating
participants’ interest in using the system [62].
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Figure 15. User Experience Questionnaire (UEQ) scale values for key 6 aspect dimensions.

Figure 16. CKD–MBD CDSS Benchmark Analysis.

5. Discussion

The domain model plays a critical role in the proposed methodology as it guides
the case adaptation operation along with providing it with a subset of relevant cases for
estimating the medication dosage. The compliance between the clinical practice and the
domain model depends on the overall compliance rate, which is generally high due to
the fact that some of the highly frequent recommendations have a high compliance rate.
In this regard, it is observed that among 33 different generic recommendations, only a
few of the recommendations are more frequent, as shown in Figure 17. The medication
dosage is mostly kept consistent, avoiding abrupt changes from one encounter to another,
whichcorroborates long-term treatment regimens. Therefore, both T16 and T17 recommend
to “maintain” the medication dosage in general, while suggesting little changes in the med-
ication selection and dosing. The aforementioned observation also explains the relatively
higher frequency of these two recommendations.

The striking gap between real-world practice and algorithm-directed recommendation
lies in non-calcium-based phosphate binders (NCPB). In most cases, physicians did not
increase the dosage of NCPB despite elevated serum phosphate levels. The side effects
of NCPB, which frequently causes nausea, vomiting, and abdominal discomfort, may be
behind this lack of increases in dosage. It could also be the case thay physicians were
likely to be reluctant to actively prescribe NCPB due to pill burden, since more than six
tablets a day are required to meet recommendations in some cases. Our results reflect the
practical difficulties of lowering elevated phosphate levels which are encountered by most
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physicians. Moreover, in some cases, the serum phosphate levels remained slightly higher
than the upper limit of the target range, prompting the system to increase NCPB dosage
while the clinician opted to maintain the current dosage. This behavior is due to the crisp
nature of the rule-base, with little tolerance for on-the-edge cases.

Figure 17. Top 10 frequent generic recommendations.

As recommended by the KDIGO guidelines, dialysate calcium concentration in most
cases was 1.25 mmol/L, and “maintain” was the most frequent recommendation. Since
dialysate calcium concentration was usually unchanged, the overall compliance rate was
the highest. In a few exceptional cases of severely low blood calcium levels, “increase” was
provided as a last resort.

In the case of medication dosage recommendations, a high level of concordance is
found for Cinacalcet. This can be explained by Cinacalcet being a single medication option
available for prescription in the class of Calcimimetics within the scope of the proposed
system. In all other medication classes, there are at least two medication options available,
e.g., both Sevelamer and Lanthanum fall under the medication class of NCPB, whereas
the CPB medication class includes medications such as Calcium Carbonate and Calcium
Acetate.

In terms of user-centric evaluation, the proposed system obtained a high score on de-
pendability. This can be attributed to several reasons, such as adopting domain knowledge
in decision making, indicating the selected relevant cases, quantifying patient-important
outcomes in the form of the PII, and evaluating the system with real-world patient data.
The perspicuity aspect of the system, on the other hand, is also underscored by these
results, as the system is user-friendly to navigate and the required information for decision
making is readily available. The attractiveness of the system can be enhanced by improving
the user interfaces (UI), such as de-cluttering the UI elements from the recommendation
panel and demarking clear boundaries when multiple information panels are displayed in
close proximity, such as in the cases of laboratory test results, prescribed medications, and
recommended medications.

In terms of limitations, the proposed system heavily relies on domain knowledge.
Acquiring accurate and consensus-based knowledge from domain experts would therefore
pose a challenge when adopting the proposed methodology where CPGs are not readily
available. Furthermore, in the context medication dosage estimation, all the pre-defined
partitions must have member cases associated with them. In the case of a partition that
does not contain any clinical case, the dosage estimation operation cannot be efficiently
performed.
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6. Conclusions

CDSSs assist clinicians and healthcare providers in both complex decision-making
and addressing routine healthcare tasks. CDSSs process and analyze healthcare data,
e.g., laboratory and imaging test results, in addition to medication history in order to
provide prompts and reminders at the point of care. Applied to CKD–MBD management,
CDSSs can assist clinicians in the selection of appropriate treatment protocols and tailored
recommendations based on the status of vascular calcification.

In this study, a hybrid knowledge modeling approach is proposed that incorporates
both domain knowledge and patients’ clinical cases for complex decision making, such
as appropriate initiation, modification, monitoring, or discontinuation of the medication.
Furthermore, we propose a PII which provides an overall summary of the patient record
over a period of time. The PII is helpful in identifying past similar cases that have positive
patient-important outcomes, e.g., patient laboratory tests that have improved with the
prescribed medication regimen, so that similar patients may also be recommended the
same medication regimens. Medication dosage estimation is performed on reference
cases (acquired from similar patient cases) using the IQR to assist clinicians in selecting
appropriate dosing.

The proposed system is evaluated based on 250 clinical cases from hemodialysis
patients and the overall concordance is found at 78.27% between the system-provided
recommendations and the routine clinical practice. A widely used user experience evalua-
tion tool, UEQ, is used to evaluate the proposed systems’ usability aspects with respect to
clinicians. The usability assessment is based on clinicians who have independently evalu-
ated the system. The dependability and perspicuity of the system scored highly, while its
attractiveness remained relatively low across the participants. This shows that the system
provides useful recommendations along with initiative workflows that seamlessly align
with clinical workflows, whereas information displaying panels can be further improved to
de-clutter the user interface.

We intend to expand the automated decision-making framework to other comorbidi-
ties of CKD–MBD, such as cardiovascular disease, osteoporosis, diabetes, among others.
Moreover, patient data from multiple medical centers will be acquired to reflect sufficient
diversity of different treatment approaches adopted by clinicians. Bayesian reasoning along
with deep learning approaches are some of the candidate approaches that will be evaluated
for hybridization along with domain knowledge.
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Appendix A

Table A1; Complete list of 33 mutually exclusive partitions (generic recommendations).

Table A1. A list of 33 generic recommendations.

Rcode Calcimimetics Calcitriol Vitamin D
and Analogs CPB NCPB Dialysate Calcium

Concentration

T1 Start or
Increase Stop Stop Stop Start or

Increase
Reduce by 0.25 mmol/L,
If more than 1.5 mmol/L

T2 Start or
Increase Stop Stop Stop As it is Reduce by 0.25 mmol/L If

more than 1.5 mmol/L

T3 Start or
Increase Stop Consider Vitamin

D and Analogs Stop Decrease or Stop Reduce by 0.25 mmol/L If
more than 1.5 mmol/L

T4 Start or
Increase Stop Consider Vitamin

D and Analogs Stop Start or
Increase

Maintain current dialysate
calcium concentration

T5 Start or
Increase As it is Consider Vitamin

D and Analogs As it is As it is Maintain current dialysate
calcium concentration

T6 Start or
Increase As it is Consider Vitamin

D and Analogs Stop Decrease or Stop Maintain current dialysate
calcium concentration

T7 As it is As it is Consider Vitamin
D and Analogs As it is Start or

Increase
Maintain current dialysate

calcium concentration

T8 As it is Consider
Calcitriol

Consider Vitamin
D and Analogs As it is As it is Maintain current dialysate

calcium concentration

T9 As it is Consider
Calcitriol

Consider Vitamin
D and Analogs Decrease or Stop Decrease or Stop Maintain current dialysate

calcium concentration

T10 Decrease Consider
Calcitriol

Consider Vitamin
D and Analogs

Start or
Increase As it is Increase by 0.25 mmol/L

T11 Decrease Start or
Increase

Consider Vitamin
D and Analogs

Start or
Increase As it is Increase by 0.25 mmol/L

T12 Decrease Start or
Increase

Consider
Vitamin D and

Analogs
As it is Decrease or Stop Increase by 0.25 mmol/L

T13 As it is Stop Stop Vitamin
Dand Analogs Stop Start or

Increase
Reduce by 0.25 mmol/L If

more than 1.5 mmol/L

T14 As it is Stop Stop Vitamin D
and Analogs Stop As it is Reduce by 0.25 mmol/L If

more than 1.5 mmol/L

T15 As it is Stop Stop Vitamin D
and Analogs Stop Decrease Reduce by 0.25 mmol/L If

more than 1.5 mmol/L

T16 As it is As it is As it is As it is Start or
Increase

Maintain current dialysate
calcium concentration

T17 As it is As it is As it is As it is As it is Maintain current dialysate
calcium concentration

T18 Stop or
Decrease As it is As it is As it is Decrease Maintain current dialysate

calcium concentration

T19 Stop or
Decrease As it is As it is Start or

Increase
Start or
Increase Increase by 0.25 mmol/L

T20 Stop or
Decrease

Start or
Increase As it is Start or

Increase Decrease or Stop Increase by 0.25 mmol/L

T21 Stop or
Decrease

Start or
Increase As it is As it is Stop Increase by 0.25 mmol/L

T22 Decrease or Stop Stop Stop Stop Start or
Increase

Reduce by 0.25 mmol/L If
more than 1.5 mmol/L

T23 Decrease or Stop Stop Stop Stop As it is Reduce by 0.25 mmol/L If
more than 1.5 mmol/L

T24 Decrease or Stop Stop Stop Stop Decrease Reduce by 0.25 mmol/L If
more than 1.5 mmol/L

T25 Decrease or Stop Decrease or Stop Decrease or Stop Stop Start or Increase Maintain current dialysate
calcium concentration
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Table A1. Cont.

Rcode Calcimimetics Calcitriol Vitamin D
and Analogs CPB NCPB Dialysate Calcium

Concentration

T26 Decrease or Stop As it is Decrease or Stop As it is Decrease or Stop Maintain current dialysate
calcium concentration

T27 Decrease or Stop As it is Decrease or
Stop Stop Decrease or Stop Maintain current dialysate

calcium concentration

T28 Decrease or Stop As it is Decrease or
Stop As it is Start or

Increase
Maintain current dialysate

calcium concentration

T29 Decrease or Stop Decrease or Stop Decrease or
Stop As it is As it is Maintain current dialysate

calcium concentration

T30 Decrease or Stop As it is Decrease or
Stop Stop Decrease or Stop Maintain current dialysate

calcium concentration

T31 Decrease or Stop Decrease or Stop Decrease or
Stop

Start or
Increase

Start or
Increase Increase by 0.25 mmol/L

T32 Decrease or Stop Decrease or Stop Decrease or
Stop

Start or
Increase Increase by 0.25 mmol/L

T33 Decrease or Stop Start or
Increase

Decrease or
Stop Decrease or Stop Decrease or Stop Increase by 0.25 mmol/L
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