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Abstract: PM2.5 pollution in China is becoming increasingly severe, threatening public health. The
major goal of this study is to evaluate the mortality rate attributed to PM2.5 pollution and design
pollution mitigation schemes in a southern district of China through a two-objective optimization
model. The mortality rate is estimated by health effect evaluation model. Subjected to limited data
information, it is assumed that the meta-analysis method, through summarizing and combining the
research results on the same subject, was suitable to estimate the percentage of deaths caused by
PM2.5 pollution. The critical parameters, such as the total number of deaths and the background
concentration of PM2.5, were obtained through on-site survey, data collection, literature search, policy
analysis, and expert consultation. The equations for estimating the number of deaths caused by
PM2.5 pollution were established by incorporating the relationship coefficient of exposure to reaction,
calculated residual PM2.5 concentration of affected region, and statistical total base number of deaths
into a general framework. To balance the cost from air quality improvement and human health risks,
a two-objective optimization model was developed. The first objective is to minimize the mortality
rate attributable to PM2.5 pollution, and the second objective is to minimize the total system cost over
three periods. The optimization results demonstrated that the combination of weights assigned to the
two objectives significantly influenced the model output. For example, a high weight value assigned
to minimizing the number of deaths results in the increased use of treatment techniques with higher
efficiencies and a dramatic decrease in pollutant concentrations. In contrast, a model weighted more
toward minimizing economic loss may lead to an increase in the death toll due to exposure to higher
air pollution levels. The effective application of this model in the Nanshan District of Shenzhen City,
China, is expected to serve as a basis for similar work in other parts of the world in the future.

Keywords: meta-analysis; two-objective optimization; air quality management; mortality rate;
Nanshan district

1. Introduction

With the rapid industrialization and urbanization and continuous improvement of
human infrastructure, many pollutants (such as PM, SO2, and CO) are released into the
atmosphere, deteriorating the living environment. The severity of air pollution has become
a global issue, playing a significant role in economic and environmental policymaking.
Among many atmospheric pollutants, PM2.5 is believed to be the main culprit behind
human morbidity/mortality [1]. Due to its small particle size, long transmission range,
long half-life, and overall toxicity, it can damage the human circulatory system [2,3]. The
Global Burden of Disease Report indicates that the number of deaths caused by long-term
exposure to PM2.5 in 2019 was about 4.2 million worldwide, accounting for 7.6 percent of
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the total deaths that year. The severity of air pollution, especially the health threat of PM2.5,
was emphasized in this paragraph.

Recently, the magnitude of PM2.5 pollution in China is becoming exceedingly seri-
ous. According to the aerosol inversion data from NASA satellites, the annual average
concentration of PM2.5 in China reached 80 µg/m3 between 2006 and 2015, eight times the
recommended air quality standard of the World Health Organization (WHO). PM2.5 pollu-
tion in China is characterized by a high annual and daily average concentration, resulting
in serious social and economic losses. The resulting Disability-Adjusted Life-Years (DALYs)
loss in China amounted to USD 16.09 million or 4.2 percent of the global DALYs loss. The
increase in PM2.5 concentration increases the risk of disease and death from arteriosclerosis,
heart disease, cerebral infarction, lung cancer, asthma, and chronic bronchitis. PM2.5 has
become the fifth major factor of mortality in China [4]. Therefore, it is critical to evaluate
the mortality effects of PM2.5 pollution to promote an air pollution prevention strategy
that is beneficial to people’s health in China. The pollution degree of PM2.5 and its health
damage in China were identified, which reflected the importance of health effect evaluation
of this pollutant.

At present, many large and medium-sized cities in China have carried out urban air
quality monitoring and forecasting. A series of measures have been taken to effectively
control air pollution, including relocating factories away from residential areas, gradually
prohibiting the utilization of small coal-fired boilers, and promoting cleaner energy. Addi-
tional steps such as improving the emission standards of automobile exhaust gas aimed at
fundamentally controlling and/or eliminating severe air pollution in urban areas were also
taken. Long-term control measures are restricted by their own characteristics, including
long implementation cycles and slow effects. Therefore, it is necessary to flexibly control air
pollution based on short-term effective treatment techniques to complement the long-term
control measures. It clarified the importance of short-term treatment techniques and laid
the foundation for the subsequent application of optimization model.

2. Literature Review
2.1. Summary of the Health Evaluation Attributed to PM2.5 Pollution

Several existing studies have investigated the health impact of exposure to PM2.5 in
the fields of toxicology, epidemiology, environmental science, economics, and geography.
In epidemiology, initial studies mainly evaluated the health effects of PM2.5 pollution
in their sample populations, which was then used as the basis for assessing the health
effects of PM2.5 in general [5]. The selected health endpoints in such studies included
total mortality, respiratory disease mortality, cardiovascular disease mortality, respiratory
disease incidence, and cardiovascular disease incidence. It has been confirmed that expo-
sure to increased PM2.5 concentrations leads to an increase in mortality; however, due to
differences in regional selections, research methods, and sample sizes between various
studies, the exposure–response coefficients of different epidemiological cases exhibited a
huge discrepancy [6–10]. The existing research results show that the meta-analysis method
can systematically evaluate and quantitatively analyze the health hazards caused by PM2.5
pollution by examining the existing results [8]. A large number of epidemiological studies
makes it possible to use meta-analysis to accurately calculate the exposure response coeffi-
cient, laying a foundation for quantifying the health effects of PM2.5 pollution [9,11–37]. For
example, Fu et al. [19] found a significant association between PM2.5 exposure and stroke,
dementia, Alzheimer’s disease, and Parkinson’s disease. Luo et al. [21] evaluated the effect
estimates of the relationship between short-term exposure to PM10 and PM2.5, and risk of
myocardial infarction through the meta-analysis approach. Liu et al. [27] calculated the
long-term effect of exposure to ambient PM on overall CVD (i.e., cardiovascular disease)
mortality according to the WHO’s interim targets. The study demonstrated that the long-
term ambient PM2.5 exposure level was positively associated with overall CVD mortality.
Therefore, governments should exert greater effort to improve air quality given its adverse
health implications. The studies mentioned above provide a reference for research on the
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health effects of PM2.5 pollution and a basis for policymakers to formulate evidence-backed
policies for dealing with the issue. However, these studies mainly focus on the present situ-
ation rather than mitigating air pollution and rarely address the design and implementation
of pollution control measures. The successful application of the meta-analysis method in
health effect evaluation demonstrated its feasibility and reliability. The health threat caused
by PM2.5 pollution should be incorporated into the pollution control management.

2.2. Summary of Pollution-Mitigation Optimization Aiming at Air Pollutants

Environmental engineering research uses optimization techniques to address the miti-
gation of PM2.5 pollution. This research often focuses on designing a suitable combination
of pollution control measures by establishing the quantitative relationship between the
emission of harmful substances and the atmosphere and cost and benefit [38–47]. For
example, Carnevale et al. [38] established a nonlinear optimization model and applied it
to the study of O3 pollution control in large cities in northern Italy; the model focused on
the decontamination costs and improvement of the air quality index. Pisoni and Volta [40]
formulated a two-objective optimization model for tackling the pollution control issue of
PM10, where the health impacts of PM10 pollution were considered as external cost. Zhen
et al. [41] developed an interval-parameter fuzzy programming mixed integer program-
ming method for supporting the energy systems management and air pollution mitigation
control under multiple uncertainties. Huang et al. [47] developed a multi-pollutant cost–
benefit optimization system based on a genetic algorithm for generating regional air quality
control strategies. Although such studies have made significant advancements in regional
air pollution control, management task allocation, and cooperative income distribution,
they still fall short of the goal of minimizing population health damage. In sum, there are
advantages of optimization models for pollution control and its potential improvement.

Therefore, based on a comprehensive view of existing epidemiological and environ-
mental engineering studies, the lacunae in the research work consists of the following
two parts: (i) the use of meta-analysis to analyze the results of multiple studies on PM2.5
pollution and the population health in recent years to systematically and quantitatively
define the relationship coefficient of PM2.5 pollutant exposure to population death and
accomplish the health impact assessment; (ii) establishing a two-objective optimization
model to determine the most reasonable and effective treatment plans, taking into account
constraints such as socio-economic activity, environmental quality, technical feasibility, and
cost. This study focused on the Nanshan District of Shenzhen in southeast China, which is
expected to serve as a basis for similar work in other parts of the world in the future. Two
important parts of this research work were described in this paragraph.

3. Method

In this section, Section 3.1 introduces the formulation process of the health evaluation
model based on the meta-analysis method. Four critical steps, including the literature
search, literature screening, determination of exposure-response relationship coefficient,
and the calculation of mortality caused by PM2.5 pollution, are described in detail. These are
expected to set a good example for the application of meta-analysis method in other cases.
Section 3.2 describes the formulation and solution process of the two-objective optimization
model. The detailed introduction of model components, including two objective functions
and all constraints, are provided in this section. Moreover, the conversion of two-objective
optimization model to single-objective one and the LINGO software (Shenzhen, China) are
also introduced to facilitate applications in other regions.

3.1. The Establishment of Health Evaluation Model Using Meta-Analysis Method

With the presence of the PM2.5 health effect database in China, it is necessary to
collect new data from previous research and use meta-analysis to derive a robust estimate
of the exposure-response coefficient of atmosphere PM2.5 to population mortality and,
finally, construct the PM2.5 health effect evaluation model. The health hazards caused by
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atmospheric PM2.5 pollution were quantitatively evaluated, providing a scientific basis for
relevant policymaking. The meta-analysis method is firstly used to summarize and combine
research results on the same subject under specific conditions. The main function of the
meta-analysis method was introduced. The main procedure and steps of the meta-analysis
method are presented as follows.

3.1.1. Literature Search

Endnote literature retrieval was used as a basis for meta-analysis. The following terms
were searched within the title, abstract, or keywords of both English and Chinese studies:
‘PM2.5’, ‘particulate matter’, ‘ambient air pollution’, ‘mortality’, ‘dose–response’, and ‘short-
term health effect’. We searched several academic databases such as the Chinese Periodical
Network (CNKI), PubMed, and Web of Science to ensure that only the peer-reviewed scien-
tific literature was selected. From these sources, we collected the epidemiological literature
on the relationship between PM2.5 pollution and daily mortality of residents published
worldwide between 2000 and 2019 and extracted the exposure-response relationship coeffi-
cient at the 95% CI (i.e., confidence interval). It is noticed that the statistical analysis model
involved in the selected literature was based on the time series of Generalized Additive
Model (GAM) and Generalized Linear Model (GLM).

3.1.2. The Inclusion and Exclusion Criteria of Candidate Literature Studies

A comprehensive literature search was conducted to obtain an estimate based on recent
epidemiological studies worldwide according to the following criteria: (i) the endpoint of
the health effect involved in the literature was defined as the total mortality of residents
studied, and the exposure–response relationship was established as being between the
total mortality of the residents and the PM2.5 concentration; (ii) upon review, studies with
redundant information, those that were based on data from earlier studies published
before 2000, or those without data on relative error and conclusions drawn with at least
a 95% CI were excluded; (iii) all eligible data were statistically entered into our database
of the relationship between PM2.5 and human health effects, as an exposure-response
relationship, where it was expressed as the percentage of the change of total mortality
when the concentration of PM2.5 increased by 10 µg/m3. According to the inclusion and
exclusion criteria mentioned above, we found and assessed 15 articles (five in Chinese
and ten in English), including 20 datasets, covering 12 research areas in China, shown in
Table 1 [48–62]. The process of literature screening is described in this paragraph.

Table 1. Information of 15 peer-reviewed articles with the relationship coefficient of exposure to
reaction (i.e., β) used for the meta-analysis.

Serial Number of Included Literatures Authors Research Area Published Period β 95% CI

[57] Yang et al. Guangzhou 2012 0.009 (0.0055~0.0126)
[51] Geng et al. Shanghai 2013 0.0057 (0.0012~0.0101)
[50] Chen et al. Shanghai 2013 0.0017 (0.0002~0.0035)
[49] Chen et al. Shanghai 2011 0.0047 (0.0022~0.0079)
[48] Chen et al. Shanghai 2011 0.0047 (0.0022~0.0072)
[58] Li et al. Shanghai 2013 0.0043 (0.0014~0.0073)
[56] Wu et al. Guangzhou 2018 0.0055 (0.0024~0.0086)
[61] Zhang et al Shenzhen 2016 0.0069 (0.0055~0.0083)
[54] Zhou et al Fuzhou 2018 0.0017 (−0.0009~0.0043)
[52] Feng et al Changsha 2018 0.00518 (0.00065~0.00994)
[60] Lin et al Dongguan 2016 0.0052 (0.0024~0.008)
[60] Lin et al Foshan 2016 0.0091 (0.0061~0.0122)
[60] Lin et al Guangzhou 2016 0.0057 (0.0042~0.0073)
[60] Lin et al Jiangmen 2016 0.007 (0.0047~0.0093)
[60] Lin et al Shenzhen 2016 0.001 (−0.0004~0.0024)
[60] Lin et al Zhuhai 2016 0.0014 (−0.0006~0.0034)
[53] Hu et al Zhejiang Province 2018 0.0061 (0.0034~0.0089)
[62] Li et al. Pearl river delta 2017 0.0054 (0.0015~0.0092)
[55] Zhu Huizhou 2017 0.0095 (0.0013~0.0179)
[59] Shi Guangzhou 2015 0.012 (0.0063~0.0177)

Notes: CI = Confidence interval.
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3.1.3. The Heterogeneity Analysis and the Determination of Exposure-Response
Relationship Coefficient

This analysis utilized the ‘metagen’ command of the ‘meta package’ in ‘R’ software.
When extracting the data from the literature, the resident mortality rate that varied with
an increasing PM2.5 concentration and its relative standard error (SX) was directly used
to test the consistency of the database results. If the homogeneity test was accepted, the
fixed-effect model was selected. Conversely, if the homogeneity test was rejected, the
results were inconsistent, and a stochastic utility model was used. The result was described
as the percentage increase in the total death rate per 10 µg/m3 increase in PM2.5, expressed
as β. Since the p-value was less than 0.0001, and I2 = 100%, the random-effects model was
selected. The difference was statistically significant, indicating heterogeneity among the
studies. Using the random-effects model, we found lower-bound and upper-bound values
of 0.0033 and 0.0067, respectively, indicating that the percentage of total mortality increased
by 0.47% when the PM2.5 concentration increased by a certain unit (10 µg/m3 in this case).
The software implementation of meta-analysis method and its output result are provided
in this paragraph.

3.1.4. The Calculation of Mortality Caused by PM2.5 Pollution

Equations (1) and (2) were used to calculate the mortality rate of residents from
exposure to PM2.5 pollution. The major parameters involved in this process were sourced
from several ways. For example, the relationship coefficient of exposure to reaction (i.e., β)
was generated by meta-analysis method; the average PM2.5 concentration of affected areas
was calculated based on precursors’ conversion ratios to PM2.5 and Gaussian dispersion
model, where the related description of Gaussian dispersion model can be referred to
Appendix A; total base number of deaths for affected areas was collected from local
statistical yearbook.

I = I0 × exp[β× (C− C0)] (1)

∆I = I − I0 = I{1− 1/exp[β× (C− C0)]} (2)

where β is the relationship coefficient of exposure to reaction, which equals to 0.0047; C
is the daily average PM2.5 concentration, which is calculated based on the conversion
ratio between precursor pollutants (i.e., PM, SO2, and NOx) and PM2.5 and the Gaussian
dispersion model. C0 is the reference concentration of PM2.5, I is the health effect under
actual air pollution concentration, I0 is the population health effect under the reference
concentration, and 4I is the number of deaths caused by the excessive concentration of
PM2.5. By referring to the Shenzhen Nanshan District statistical yearbook, Shenzhen Health
Statistical Yearbook, and Shenzhen Statistical Yearbook, particularly those belonging to
the year 2018, the latest resident mortality data (including the total number of deaths and
average mortality rate) of Shenzhen residents were obtained. The total base number of
deaths for the Nanshan District was estimated as 1353 people. In addition, the reference
concentrations available for Shenzhen include the natural background concentrations of air
pollutants, the minimum concentration observed in the past epidemiological literatures,
and the hygienic standards established by government agencies. In this study, considering
the present air quality in Nanshan District and the air quality requirement in the future, the
reference concentration was determined to be 10 µg/m3.

3.2. The Formulation of the Two-Objective Optimization Model

A multi-objective optimization model aiming at minimizing the total pollution con-
trol cost and the number of deaths caused by PM2.5 pollution was developed under the
constraints of environmental quality, and the economic and technical feasibility of control
measures. The model is formulated as follows:

Objective Function

• (i) Minimization of the mortality rate attributable to PM2.5 pollution
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Minimize f1 =
P

∑
p=1

K

∑
k=1

∆Ipk (3)

• (ii) Minimization of total system cost over three periods

Minimize f2 =
I

∑
i=1

J

∑
j=1

K

∑
k=1

cjkxijk +
I

∑
i=1

S

∑
s=1

K

∑
k=1

cskxisk +
I

∑
i=1

N

∑
n=1

K

∑
k=1

cnkxink (4)

where f 1 is total number of deaths, p is the affected area, P is total number of affected area,
f 2 is total system cost, i is the type of pollution source, I is total number, j is the type of
control measure for PM (total suspended particulate), J is total number, k is planning period,
K is total number, cjk is the operational cost of the control measure j during the period k, xijk
is total PM amount allocated from the emission source i to the control measure j during the
period km s is the control measure for sulfur dioxide (i.e., SO2), S is total number, csk is the
operational cost of the control technique s during the period k, xisk is treated SO2 amount
sourced from the emission source i of the control technique s during the period k, n is the
control measure for nitrogen dioxide (i.e., NOx), N is total number, cnk is the operational
cost of the control measure n during the period k, xink is total NOx amount sourced from
the emission source i disposed by the control measure n during the period k.

This function is subject to:

• (I) The limitations in the pollutant treatment

J

∑
j=1

xijk = Gidk , ∀i, k (5)

S

∑
s=1

xisk = Giok , ∀i, k (6)

N

∑
n=1

xink = Gink , ∀i, k (7)

where Gidk is PM emitted by source i during the period k, Giok is SO2 emitted by source i
during the period k, and Gink is NOx emitted by source i during the period k.

• (II) The regulations of the emission sources

J

∑
j=1

(1− ηj)xijk ≤ eidk ∀i, k (8)

S

∑
s=1

(1− ηs)xisk ≤ eisk ∀i, k (9)

N

∑
n=1

(1− ηn)xink ≤ eink ∀i, k (10)

where ηj is the removal efficiency of PM for the control measure j. eidk is the permissible
PM emission for the pollution source i during the period k; ηs is the removal efficiency of
SO2 for the control technique s. eisk is the permissible SO2 emission for the pollution source
i during the period k; ηn is the removal efficiency of NOx for the control measure n. eink is
the permissible NOx emission for the pollution source i during the period k.

• (III) The constraints of environmental load capacity:

I

∑
i=1

J

∑
j=1

tipρd(1− ηj)xijk +
I

∑
i=1

S

∑
s=1

tipρs(1− ηs)xisk +
I

∑
i=1

N

∑
n=1

tipρn(1− ηn)xink ≤ apk, ∀p, k (11)
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where tip is the transfer coefficient from the emission source i to the receptor zone p,
which is evaluated using Gaussian dispersion model and Pasquill–Gifford curves; ρd is
the conversion ratio between PM and PM2.5; ρs is the conversion ratio between SO2 and
PM2.5; ρn is the conversion ratio between NOx and PM2.5. The above three conversion
ratios were determined based on chemical composition analysis and source apportionment
results provided by local environmental protection agency and study result of relevant
research [63–66]. apk is the maximum allowable PM2.5 concentration of the receptor zone p
during the period k.

• (IV) Nonnegative constraints:

xijk, xisk, xink ≥ 0, ∀i, j, s, n, k (12)

Next, the weight summation approach was used to address the two objectives (3)
and (4). New objective function (13) was established by allocating two weight coefficients
(w1 and w2) to the original two objectives (f 1 and f 2), where the comparison between two
coefficients reflected the relative importance of the two objectives.

Minimize f = w1
f1 − f1,min

f1,max − f1,min
+ w2

f2 − f2,min

f2,max − f2,min
(13)

where f 1,min, f 1,max, f 2,min, and f 2,max are the minimum and maximum possible values
obtained through solving the optimization model, while two objectives f 1 and f 2 are solved
as a single objective function, respectively.

Subject to:
J

∑
j=1

xijk = Gidk , ∀i, k (14)

S

∑
s=1

xisk = Giok , ∀i, k (15)

N

∑
n=1

xink = Gink , ∀i, k (16)

J

∑
j=1

(1− ηj)xijk ≤ eidk ∀i, k (17)

S

∑
s=1

(1− ηs)xisk ≤ eisk ∀i, k (18)

N

∑
n=1

(1− ηn)xink ≤ eink ∀i, k (19)

I

∑
i=1

J

∑
j=1

tipρd(1− ηj)xijk +
I

∑
i=1

S

∑
s=1

tipρs(1− ηs)xisk +
I

∑
i=1

N

∑
n=1

tipρn(1− ηn)xink ≤ apk, ∀p, k (20)

Finally, the optimal treated amounts of three types of pollutants corresponding to
various control measures were provided by solving the single-objective model. The overall
framework of the model is shown in Figure 1. The model is a typical linear programming
problem, which can be solved using various tools and software, such as Excel, Lingo, Matlab,
and the LINGO software. This study used the LINGO software (version 11.0) developed
by LINDO Systems Incorporation. It has many advantages, including convenient input,
user-friendly operation, and fast running speed when solving linear programming, integer
programming, and other programming problems. LINGO has been widely used in various
scientific modeling fields for many years. Section 3.2 described the formulation and solution
process of two-objective optimization model. The definition of two objective functions, the
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implications of all constraints and the explanations of model parameters are provided in
this section. The conversion of the two-objective optimization model to the single-objective
one and the LINGO software are also introduced in this section.
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4. Case Study
4.1. Introduction of the Study Area

The Nanshan District is located in the western part of the Shenzhen Special Economic
Zone. Figure 2 demonstrates the location of Nanshan District. This district faces Shenzhen
Bay in the east, Pearl River Estuary in the west, Dachan Island in the south, and Yuen Long,
Hong Kong, across the sea. Nanshan district has a total area of 192 km2, a total population
of 1.5 million, and gross domestic product of USD 78.13 billion in 2019. Thus, it is evident
that this district is a densely populated region with large-scale economic development. In
recent years, along with rapid urbanization and industrialization in the Nanshan District,
various environmental problems have also emerged. The annual average values of SO2
and PM10 in the Nanshan District have reached 0.01 and 0.05 mg/m3, respectively, with
yearly growth rates of approximately 15% and 7%, respectively [67]. This phenomenon
is largely attributed to the production and supply of electricity and heating industries,
which accounted for 91.95% of the total emissions. Notably, the Mawan power plant
and the Nanshan thermal power plant in this district have been identified as the largest
contributors to exhaust gas pollutants (i.e., SO2 and dust pollutants), accounting for 70% of
total atmospheric pollutant emissions in the entire city. Therefore, mitigating atmospheric
pollutant emissions in the Nanshan District could improve the air quality not only in the
district but also throughout Shenzhen city. The partial pollutant treatment technologies
and measures are unable to tackle regional air pollution effectively. Thus, developing
system engineering and analysis technologies have promising applications in the field of
environmental pollution control.



Int. J. Environ. Res. Public Health 2022, 19, 344 9 of 22

Int. J. Environ. Res. Public Health 2022, 19, x  9 of 22 
 

 

4. Case Study 

4.1. Introduction of the Study Area  

The Nanshan District is located in the western part of the Shenzhen Special Economic 

Zone. Figure 2 demonstrates the location of Nanshan District. This district faces Shenzhen 

Bay in the east, Pearl River Estuary in the west, Dachan Island in the south, and Yuen 

Long, Hong Kong, across the sea. Nanshan district has a total area of 192 km2, a total pop-

ulation of 1.5 million, and gross domestic product of USD 78.13 billion in 2019. Thus, it is 

evident that this district is a densely populated region with large-scale economic devel-

opment. In recent years, along with rapid urbanization and industrialization in the 

Nanshan District, various environmental problems have also emerged. The annual aver-

age values of SO2 and PM10 in the Nanshan District have reached 0.01 and 0.05 mg/m3, 

respectively, with yearly growth rates of approximately 15% and 7%, respectively [67]. 

This phenomenon is largely attributed to the production and supply of electricity and 

heating industries, which accounted for 91.95% of the total emissions. Notably, the 

Mawan power plant and the Nanshan thermal power plant in this district have been iden-

tified as the largest contributors to exhaust gas pollutants (i.e., SO2 and dust pollutants), 

accounting for 70% of total atmospheric pollutant emissions in the entire city. Therefore, 

mitigating atmospheric pollutant emissions in the Nanshan District could improve the air 

quality not only in the district but also throughout Shenzhen city. The partial pollutant 

treatment technologies and measures are unable to tackle regional air pollution effec-

tively. Thus, developing system engineering and analysis technologies have promising 

applications in the field of environmental pollution control.  

Guangming District

Dongguan City

Longhua District

Baoan District

Nanshan District

Futian District

Luohu District

Yantian District

Longgang District
Dapeng District

Pingshan District

Huizhou City

Hong Kong Special Administrative Region

 

Figure 2. The location of Nanshan District. 

4.2. The Utilization of System Engineering Technology  

System analysis is the act of performing qualitative and quantitative research on a 

regional system or facility system. Figure 3 reflects the specific components and processes 

of air quality management in the Nanshan district based on the system engineering tech-

nology.  

Figure 2. The location of Nanshan District.

4.2. The Utilization of System Engineering Technology

System analysis is the act of performing qualitative and quantitative research on
a regional system or facility system. Figure 3 reflects the specific components and pro-
cesses of air quality management in the Nanshan district based on the system engineering
technology.

4.2.1. The Investigation and Analysis of the System Status

Firstly, the study area’s social, economic, and environmental situation was estimated to
define the direction for future development and identify the major issues that should be fo-
cused on during the regional development process. The investigation results indicated that
the Nanshan District should primarily focus on improving economic growth, expanding
the production scale of its enterprises, and striving for further development of its society
and economy in concert with technological innovations. However, previous experience
shows that when regional economic development is promoted by production expansion, a
series of environmental and public health issues also emerge. Recently, the frequent haze
phenomenon has attracted the attention of the local authorities. Therefore, it is essential to
determine the enterprises’ development scale and pollutant-reduction amounts to facilitate
coordinated development of the society, economy, and the environment by minimizing
economic costs and the population death toll.

4.2.2. The Determination of System Boundary

The system boundary mainly comprises determining the scope of time and space,
which is the key to formulate the optimization model for tackling practical problems. This
is because the number and types of parameters are directly dependent on the determination
of the space scope. The overlarge scope may result in many parameters and complex
relationships, which is adverse to formulate and solve the optimization model. Conversely,
oversimplification leads to the optimization model being inconsistent with the actual
system situation, which may influence the effectiveness. Therefore, based on the site survey
and available data, the spatial scope for our system was defined as the entire Nanshan
District (22◦24′~22◦39′ north latitude and 113◦47′~114◦01′ east longitude). The time scope
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was set to three years (2020–2022), which was further split into three planning periods with
each period including one year (i.e., k = 1 for 2020, k = 2 for 2021 and k = 3 for 2022).
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4.2.3. The Identification and Analysis of System Elements

Ideally, all PM2.5 sources (including primary, secondary, fixed, mobile, local, and exter-
nal sources) in the region should be considered as the control target. However, this may
cause excessive computational burden and lead to unfavorable control schemes for external
and mobile sources. Therefore, five major fixed emission sources, including Shenzhen
Nanshan Thermal Power corporation, Shenzhen Mawan Power corporation, Nanshun
Oil corporation, Guangdong Yaopi Glass corporation, and Shenzhen Huajing Glass cor-
poration, were chosen as the major control sources. The on-site survey and statistical
results provided by EIA (Environmental Impact Assessment) reports demonstrated that the
pollutants discharged from the above-mentioned five sources mainly included PM, SO2,
and NOx, which are considered the precursor pollutants that contributed to PM2.5. It was
assumed that the remaining sources met the emission standards. The contribution of such
sources to ambient PM2.5 was estimated based on the percentage composition of the source
identification. According to the local scenario and operational cost and efficiency of related
technologies, four types of control technologies were selected for three types of pollutants
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that contributed to PM2.5. Among them, the dust removal technology includes the bag
collector (BF), cyclone collector (CL), wet collector (WS), and electrostatic collector (EP).
The desulfurization technologies were composed of limestone-gypsum (LG), spray drying
(SD), circulating fluidized bed (CFB), and limestone injection (LI), respectively. The denitra-
tion technologies consisted of selective catalytic reduction (SCR), selective non-catalytic
reduction (SNCR), SCR + SNCR, and low nitrogen combustion (LNB) + SNCR technologies.
In addition, according to the distribution of functional zones, it was determined that the
affected areas included four categories, namely residential areas, industrial areas, health re-
sorts, and scenic areas. The relationship between the emission intensity of pollutant sources
and pollutant concentration within the affected region was estimated using a Gaussian
diffusion model.

4.2.4. The Critical System Parameters

The overall objective of this study was to facilitate collaborative development amongst
social, economic, and environmental factors using an optimization model. The same was
done using predetermined system boundaries, combined with the development goal and
environmental problems of the Nanshan district. Table 2 provides the relevant information
of five sources, which are mostly obtained from on-site investigation and data statistics.
Moreover, their discharge standards were regulated by an environmental protection agency
based on the types of industries. Each emission source should ideally be equipped with
effective emission reduction measures to satisfy the ever-increasing demand for improved
environmental quality. The treatment cost and efficiency of candidate technologies (as
shown in Table 3) were mainly determined based on the field investigation, literature
review, and expert consultation. Given the impact of discount rates and other factors,
the costs are expected to rise in the future. Moreover, as the living standard continues
to improve, the pollution load capacity of the affected region should be maintained at a
lower level and decreased gradually. In this study, the annual mean concentration of PM2.5
regulated by the Ambient Air Quality Standards released by China (GB3095-2012) was
used as a reference. The residential and industrial regions execute the secondary standards
with concentration limits of 35, 31.5, and 28 µg/m3 for the three periods. In contrast, the
other two regions are compelled to use the primary standards of 15, 13.5, and 12 µg/m3

during the three periods. From the perspective of system analysis, Section 4.2 provides the
detail information on system status, boundary, elements, and critical parameters.

Table 2. The parameter information related to the five emission sources.

Emission Sources Average Discharge Height (m) Pollutants
Discharge Amounts (t/d)

k = 1 k = 2 k = 3

Power plant Co. Ltd. (Shenzhen, China)
(PPC)

50 PM 5.57 6.13 6.41
50 SO2 69.31 76.24 79.71
50 NOx 14.54 15.99 16.72

Power plant
(Shenzhen, China)

(PP)

210 PM 3.84 4.22 4.42
210 SO2 47.70 52.47 54.86
210 NOx 70.69 77.75 81.29

Oil Co. Ltd.
(Shenzhen, China)

(Oc)

20 PM 0.11 0.12 0.12
20 SO2 0.10 0.11 0.12
20 NOx 0.79 0.86 0.90

Glass Co. Ltd. 1 (Shenzhen, China)
(Gc1)

120 PM 0.31 0.34 0.36
120 SO2 1.62 1.78 1.86
120 NOx 0.67 0.74 0.77

Glass Co. Ltd. 2 (Shenzhen, China)
(Gc2)

30 PM 0.09 0.09 0.10
30 SO2 0.08 0.09 0.09
30 NOx 0.63 0.70 0.73
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Table 3. The treatment cost and efficiency of twelve candidate technologies.

Pollutants Technologies Indicators
Planning Period

k = 1 k = 2 k = 3

PM

Bag filter (BF)
OC 281.25 323.44 351.56

TE 0.98 0.98 0.98

Electrostatic precipitator (EP)
OC 173.28 199.27 216.60

TE 0.93 0.93 0.93

Cyclones (CL)
OC 54.69 62.89 68.36

TE 0.65 0.65 0.65

Wet scrubbers (WS)
OC 112.50 129.38 140.63

TE 0.91 0.91 0.91

SO2

Limestone gypsum (LG) OC 515.63 592.97 644.53

TE 0.95 0.95 0.95

Spray drying (SD)
OC 437.50 503.13 546.88

TE 0.7 0.7 0.7

Circulating fluid bed (CFB)
OC 343.75 395.31 429.69

TE 0.9 0.9 0.9

Limestone injection (LI)
OC 375.00 431.25 468.75

TE 0.6 0.6 0.6

NOx

Selective Catalytic Reduction (SCR)
OC 225.00 258.75 281.25

TE 0.8 0.8 0.8

Selective non-catalytic reduction
(SNCR)

OC 340 391 425

TE 0.5 0.5 0.5

SCR + SNCR
OC 312.50 359.38 390.63

TE 0.75 0.75 0.75

Low nitrogen burning (LNB) + SCR
OC 410.94 472.58 513.67

TE 0.94 0.94 0.94

Notes: OC = Operational costs, USD/t; TE = Treatment efficiency, %.

5. Results and Discussion
5.1. Result Analysis

Tables 4–6 provide the model solutions under different weight combinations, pre-
sented as the treatment quantity for various candidate control technologies over three
planning periods. Based on the weight summation approach, the priority is to set diverse
weight combinations, i.e., assigning different values to w1 and w2, where the former is
used to reflect the importance of population health, while the latter indicates the impor-
tance of minimizing economic costs. Generally, a high weight value denotes the higher
significance of the relevant objective, with w1 plus w2 always equal to 1. A total of nine
weight combinations were evaluated in this study, which were w1 = 0.1 and w2 = 0.9,
w1 = 0.2 and w2 = 0.8, w1 = 0.3 and w2 = 0.7, w1 = 0.4 and w2 = 0.6, w1 = 0.5 and w2 = 0.5,
w1 = 0.6 and w2 = 0.4, w1 = 0.7 and w2 = 0.3, w1 = 0.8 and w2 = 0.2, and w1 = 0.9 and
w2 = 0.1, respectively. The purpose of assessing different weight combinations was to
reflect the impact of various combinations on the decision variables and objective values of
model results. Among them, the decision variables under four scenarios were included in
Tables 4–6. As illustrated in the three tables, different weights greatly influence the results,
which is reflected in the quantity of treatment recommended for each candidate technology
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during different planning periods. This paragraph introduced the nine weight combina-
tions and emphasized the influence of weight combination on the treatment scheme.

Table 4. The optimal treated PM magnitude of various techniques.

ES T w1 = 0.7 and w2 = 0.3 w1 = 0.6 and w2 = 0.4 w1 = 0.4 and w2 = 0.6 w1 = 0.3 and w2 = 0.7

PPc

k = 1 BF (5.57) BF (5.57) BF (5.57) BF (5.57)
k = 2 BF (6.13) BF (6.13) BF (6.13) BF (6.13)
k = 3 BF (6.41) BF (6.41) BF (6.41) BF (6.41)
Sum BF (18.11) BF (18.11) BF (18.11) BF (18.11)

PP

k = 1 BF (3.84) BF (3.84) WS (3.84) WS (3.84)
k = 2 BF (4.22) BF (4.22) WS (4.22) WS (4.22)
k = 3 BF (4.42) BF (4.42) WS (4.42) WS (4.42)
Sum BF (12.48) BF (12.48) WS (12.48) WS (12.48)

Oc

k = 1 BF (0.11) WS (0.11) WS (0.11) WS (0.11)
k = 2 BF (0.12) WS (0.12) WS (0.12) WS (0.12)
k = 3 WS (0.12) WS (0.12) WS (0.12) WS (0.12)

Sum BF (0.23)
WS (0.12) WS (0.35) WS (0.35) WS (0.35)

Gc1

k = 1 BF (0.31) BF (0.31) BF (0.31) BF (0.31)
k = 2 BF (0.34) BF (0.34) BF (0.34) BF (0.34)
k = 3 BF (0.36) BF (0.36) BF (0.36) BF (0.36)
Sum BF (1.01) BF (1.01) BF (1.01) BF (1.01)

Gc2

k = 1 BF (0.09) BF (0.09) WS (0.09) WS (0.09)
k = 2 BF (0.09) BF (0.09) WS (0.09) WS (0.09)
k = 3 BF (0.10) BF (0.10) WS (0.10) WS (0.10)
Sum BF (0.28) BF (0.28) WS (0.28) WS (0.28)

Notes: ES = emission sources, where the abbreviations of emission source and candidate technology are consistent
with those in Tables 2 and 3, respectively. The number inside parentheses represents the treated amounts (t/d) of
relevant technology.

Table 5. The optimal treated SO2 magnitude of various techniques.

ES T w1 = 0.7 and w2 = 0.3 w1 = 0.6 and w2 = 0.4 w1 = 0.4 and w2 = 0.6 w1 = 0.3 and w2 = 0.7

PPc

k = 1 LG (69.31) LG (69.31) LG (69.31) LG (69.31)

k = 2 LG (76.24) LG (76.24) LG (76.24) LG (42.17)
CFB (34.07)

k = 3 LG (79.71) LG (79.71) LG (68.55)
CFB (11.16)

LG (68.69)
CFB (11.02)

Sum LG (225.26) LG (225.26) LG (214.10)
CFB (11.16)

LG (180.17)
CFB (45.09)

PP

k = 1 CFB (47.70) CFB (47.70) CFB (47.70) CFB (47.70)
k = 2 CFB (52.47) CFB (52.47) CFB (52.47) CFB (52.47)
k = 3 CFB (54.86) CFB (54.86) CFB (54.86) CFB (54.86)
Sum CFB (155.03) CFB (155.03) CFB (155.03) CFB (155.03)

Oc

k = 1 CFB (0.10) CFB (0.10) CFB (0.10) CFB (0.10)
k = 2 CFB (0.11) CFB (0.11) CFB (0.11) CFB (0.11)
k = 3 CFB (0.12) CFB (0.12) CFB (0.12) CFB (0.12)
Sum CFB (0.33) CFB (0.33) CFB (0.33) CFB (0.33)

Gc1

k = 1 LG (1.62) LG (1.62) CFB (1.62) CFB (1.62)
k = 2 LG (1.78) CFB (1.78) CFB (1.78) CFB (1.78)
k = 3 LG (1.86) CFB (1.86) CFB (1.86) CFB (1.86)

Sum LG (5.26) LG (1.62)
CFB (3.64) CFB (5.26) CFB (5.26)

Gc2

k = 1 CFB (0.08) CFB (0.08) CFB (0.08) CFB (0.08)
k = 2 CFB (0.09) CFB (0.09) CFB (0.09) CFB (0.09)
k = 3 CFB (0.09) CFB (0.09) CFB (0.09) CFB (0.09)
Sum CFB (0.26) CFB (0.26) CFB (0.26) CFB (0.26)

Notes: ES = emission sources, where the abbreviations of emission source and candidate technology are consistent
with those in Tables 2 and 3, respectively. The number inside parentheses represents the treated amounts (t/d) of
relevant technology.



Int. J. Environ. Res. Public Health 2022, 19, 344 14 of 22

Table 6. The optimal treated NOX magnitude of various techniques.

ES T w1 = 0.7 and w2 = 0.3 w1 = 0.6 and w2 = 0.4 w1 = 0.4 and w2 = 0.6 w1 = 0.3 and w2 = 0.7

PPc

k = 1 LNB + SCR (14.54) LNB + SCR (14.54) LNB + SCR (14.54) LNB + SCR (14.54)
k = 2 LNB + SCR (15.99) LNB + SCR (15.99) LNB + SCR (15.99) LNB + SCR (15.99)
k = 3 LNB + SCR (16.72) LNB + SCR (16.72) LNB + SCR (16.72) LNB + SCR (16.72)
Sum LNB + SCR (47.25) LNB + SCR (47.25) LNB + SCR (47.25) LNB + SCR (47.25)

PP

k = 1 LNB + SCR (70.69) LNB + SCR (70.69) LNB + SCR (70.69) SCR (70.69)
k = 2 LNB + SCR (77.75) SCR (77.75) SCR (77.75) SCR (77.75)
k = 3 LNB + SCR (81.29) SCR (81.29) SCR (81.29) SCR (81.29)

Sum LNB + SCR (229.73) SCR (159.04)
LNB + SCR (70.69)

SCR (159.04)
LNB + SCR (70.69) SCR (229.73)

Oc

k = 1 LNB + SCR (0.79) LNB + SCR (0.79) SCR (0.79) SCR (0.79)
k = 2 SCR (0.86) SCR (0.86) SCR (0.86) SCR (0.86)
k = 3 SCR (0.90) SCR (0.90) SCR (0.90) SCR (0.90)

Sum SCR (1.76)
LNB + SCR (0.79)

SCR (1.76)
LNB + SCR (0.79) SCR (2.55) SCR (2.55)

Gc1

k = 1 LNB + SCR (0.67) LNB + SCR (0.67) LNB + SCR (0.67) LNB + SCR (0.67)
k = 2 LNB + SCR (0.74) LNB + SCR (0.74) LNB + SCR (0.74) SCR (0.74)
k = 3 LNB + SCR (0.77) LNB + SCR (0.77) LNB + SCR (0.77) SCR (0.77)

Sum LNB + SCR (2.18) LNB + SCR (2.18) LNB + SCR (2.18) SCR (1.51)
LNB + SCR (0.67)

Gc2

k = 1 LNB + SCR (0.63) LNB + SCR (0.63) LNB + SCR (0.63) SCR (0.63)
k = 2 LNB + SCR (0.70) SCR (0.70) SCR (0.70) SCR (0.70)
k = 3 LNB + SCR (0.73) SCR (0.73) SCR (0.73) SCR (0.73)

Sum LNB + SCR (2.06) SCR (1.43)
LNB + SCR (0.63)

SCR (1.43)
LNB + SCR (0.63) SCR (2.06)

Notes: ES = emission sources, where the abbreviations of emission source and candidate technology are consistent
with those in Tables 2 and 3, respectively. The number inside parentheses represents the treated amounts (t/d) of
relevant technology.

For example, when w1 = 0.7 and w2 = 0.3, the pollutant PMs generated from PP source
over three periods are largely handled by BF with the highest efficiency and treatment cost,
with treatment quantities of 3.84, 4.22, and 4.42 t/d, respectively. However, the weight
combination of w1 = 0.3 and w2 = 0.7, WS, which has a lower treatment efficiency and
treatment cost, plays a major role in dealing with the same pollutants, with treatment
amounts of 3.84, 4.22, and 4.42 t/d, respectively. A similar situation also occurs for the
Gc2 source, where the pollutants at w1 = 0.7 and w2 = 0.3 are disposed through BF, being
0.09, 0.09, and 0.10 t/d, respectively. On the contrary, as w1 is decreased (i.e., 0.3) and w2
is increased (i.e., 0.7), BF is unused. Correspondingly, the pollutant is treated by the WS
technique. This difference is due mainly to the first weight combination implying that
population health is the priority objective. Therefore, applying the BF technique, which has
the highest efficiency and cost, is most preferred. Compared to the first weight combination,
the second is more focused on the total system cost, leading to the WS technique playing
a more central role. It reflected the influence of weight combination on the utilization of
PM-treated technology.

In addition, this trend is also remarkably evident in selecting the treatment technology
for the other two pollutants. Concerning SO2, an increased w1 value requires the technology
with a higher treatment efficiency to be used more frequently (i.e., LG). When w1 = 0.7
and w2 = 0.3, the pollutant SO2 sourced from PPc source in three periods is treated by
the LG technique, being 69.31, 76.24, and 79.71 t/d, respectively. Conversely, the lower-
efficiency technology (CFB) plays the complementary role under w1 = 0.3 and w2 = 0.7
for minimizing the total cost, where, in the second period, the treatment amounts of the
two techniques (i.e., LG and CFB) were 42.17 and 34.07 t/d, respectively; while those
in the third period were 68.69 and 11.02 t/d, respectively. Similarly, the pollutant NOx
generated by PP source under w1 = 0.7 and w2 = 0.3 was treated using combined technology
(i.e., LNB + SCR), with the highest treatment efficiency of 70.69, 77.75, and 81.29 t/d,
respectively. Conversely, the SCR technique with the low treatment efficiency is a major
option at w1 = 0.3 and w2 = 0.7. The same variation also appears in the Gc1 source. When
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w1 = 0.7 and w2 = 0.3, it is disposed of through the LNB + SCR technique over three periods,
with the treated amounts of 0.67, 0.74, and 0.77 t/d, respectively. When w1 = 0.3 and
w2 = 0.7, the amounts allocated to the combined technique in the first period is 0.67 t/d;
those treated by SCR in the other two periods are 0.74 and 0.77 t/d, respectively. This reflects
the influence of weight combination on the utilization of candidate treated technology of
two pollutants (SO2 and NOx).

The tendency that emerged in total treated quantities of various techniques better
reflects the influences of predetermined weight combinations on the treatment schemes
than the results in a single period. As demonstrated in Table 4, it is obvious that along with
w1 declining and w2 growing, the quantity of pollutants disposed of would decrease and
increase accordingly for high-efficiency and low-efficiency technologies. Taking the PP
source as an example, the total amount disposed of by BF over three periods under four
weight combinations was 12.48, 12.48, 0, and 0 t/d, respectively. The quantities disposed of
by WS were found to be 0, 0, 12.48, and 12.48 t/d, respectively. Similarly, for the Gc2 source,
the total amount disposed of by BF generally showed a decreasing trend of 0.28, 0.28, 0,
and 0 t/d, respectively; as opposed to the figures for WS, which showed an increasing
trend of 0, 0, 0.28, and 0.28 t/d, respectively. This disparity can be largely attributed to the
fact that the treatment cost and efficiency of BF are higher than those of WS. This describes
the variation in total treated quantities of various techniques in order to better reflect the
influence of predetermined weight combinations on the treatment schemes.

Figure 4 reflects the residual PM2.5 concentration after the treatment process of four
affected regions over three periods under nine weight combinations. It is evident that the
PM2.5 concentration in each period satisfies the respective air quality requirements based
on the optimization model. With the decrease on w1 and increase on w2, the PM2.5 concen-
tration in four regions showed a stringent increasing trend. For example, in the second
period, the pollutant concentrations under all scenarios for residential and scenic regions
were 13.43, 13.45, 13.45, 13.54, 13.54, 13.55, 13.79, 13.79, and 13.79 t/d, respectively, and 5.89,
5.93, 5.93, 6.16, 6.16, 6.19, 6.30, 6.30, and 6.30 µg/m3, respectively. A similar situation also
occurred in the third period of the industrial area, with pollutant concentrations increasing
from 13.35 to 15.39 µg/m3. The reason behind the increase in the PM2.5 concentration is
that the decrease in w1 and increase in w2 results in more attention to the system economy
than the population health. Therefore, the technologies with both inexpensive and low-
efficiency abatement technologies were used more frequently. It can be concluded that
the reduction of economic cost is at the expense of the increase in pollutant concentration,
which in turn may adversely impact people’s health. For example, under nine different
weighting scenarios, the mortality number in industrial areas is 19, 21, 22, 26, 26, 27, 35,
37, and 37 µg/m3, respectively. Similar growth in mortality is also reflected in the scenic
area, with numbers increasing from 7 to 11 µg/m3 for w1. The variation in residual PM2.5
concentration of affected regions under nine weight combinations and the related reasons
are analyzed in this paragraph.

In addition to decision variables, the influence caused by various weight combinations
also affects the objective values. The variations in the death toll and total system cost under
different weight combinations are depicted in Figure 5. It is evident that with the increase
in w2, the death toll exhibited a gradual increase from 80 to 122 Person. Conversely, total
system cost decreased from 37 to 26.58 × 104 USD, respectively. The above variations
reflect a trade-off between system economy and health risk. The low treatment cost is
accompanied by a high mortality rate. Conversely, the huge investment is favorable to
reducing the pollutant concentration, thereby alleviating the damage to population health.
Currently, population health issues have gained more attention with rapid economic
growth. Therefore, the treatment scheme with high w1 and low w2 (w1 = 0.9 and w2 = 0.1) is
recommended for generating the pollution control strategies. This paragraph described the
variation in two objective functions and analyzed the trade-off between system economy
and health risk.
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5.2. Discussion

There are insignificant differences in the coefficient of the exposure–response relation-
ship calculated using the meta-analysis approach in this study compared to other studies
performed in areas adjacent to the study region. For example, the coefficient value for the
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Guangdong Province is reported to be 0.0060 [54–57,59,60,63]. The factors causing this
difference mainly include the exposure level, chemical constituents of pollutants, urban
sources, and population characteristics. For example, the higher tolerance to pollution ex-
posure of people living in places with severe air pollution might reduce mortality. However,
mortality would still increase significantly in the region as the population ages. Another
possible factor causing the differences in the health evaluation results could come from
the shape of the exposure–response function applied in this study. The function used in
this study was derived from research conducted in the cities of developed countries with
a relatively lower PM2.5 concentration. Other functions, such as the integrated exposure–
response (IER) model [68,69] can also be incorporated into the optimization model. Finally,
some parameters included in this optimization model had uncertainties associated with
them, such as the pollutant emissions from sources, the treatment efficiency and operational
cost of candidate control technique, and the transfer coefficient. These uncertainties were
simplified as deterministic parameters in this study, possibly resulting in differences from
other studies. Therefore, introducing various types of uncertainty optimization techniques—
including interval, fuzzy, and stochastic programming models—may ensure the robustness
and reliability of this optimization model. The potential improvement of the proposed
health effect evaluation model and optimization model for pollution control is discussed in
this paragraph.

6. Recommendation

The serious economic loss, health threat, and air-quality degradation caused by PM2.5
pollution has aroused a wide attention globally. The research results of this study revealed
the necessity of combining the health effect evaluation based on meta-analysis method
and the air pollution control with aid of the optimization model, and it emphasized the
importance of the balance between the high economic cost and people’s health threat. Some
recommendations were provided based on the research findings: (i) for the local residents, it
is necessary to obtain an in-depth insight into the health damage caused by PM2.5 pollution,
which is beneficial to strengthen awareness of human health and environmental protection;
(ii) for the administrators of government agency, this study helps them to identify the major
pollutants sources and design effective pollution-mitigation measures. It is suggested
that the health risk evaluation be incorporated into the process of air pollution control
planning and management, with emission and ambient air-quality standards being properly
designed in order to avoid unnecessary socio-economic losses.

7. Conclusions

Several measures, including keeping factories away from residential areas, gradually
banning the use of small coal-fired boilers (or remolding them to use clean energy), as
well as improving emission standards for automobile exhaust, have been taken by several
cities in China for addressing severe air pollution in urban areas. Nevertheless, long-
term control measures are flawed owing to their long implementation cycles and slow
effects. Therefore, along with long-term control measures, there is an urgent need to devise
short-term pollutants abatement methods.

This study determines the best combination of treatment technologies through an op-
timization model for solving the air pollution issue. In contrast to the traditional pollution-
control optimization models, this study used the meta-analysis method to estimate the
increased percentage in the death toll caused by an increase in PM2.5 concentration. Ad-
ditionally, the study also estimated the death toll in combination with preset background
concentration, the total number of deaths, and actual contamination concentration. Death
toll reduction, one of the major objectives of the optimization model, took the health loss
into account while preserving the system’s economy. The model results indicate that the
low health risk level could be achieved by employing high-efficiency treatment technolo-
gies, raising the reduction ratio of pollutants, and reducing the pollutant residues within
the affected area, although this approach would cost a significant sum of money. People’s
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livelihood has gradually become the most valued issue in China, compared to economic
development, as was previously the case. Therefore, the solution at w1 = 0.9 and w2 = 0.1 is
recommended for helping to formulate PM2.5 reduction strategies. The effective application
of this model in the Nanshan District of Shenzhen City, China, is expected to be a good
example for similar work in other parts of the world in the future. The optimization model
proposed in this study still needs to be improved in some aspects, such as selecting an
appropriate exposure–response function and addressing uncertain optimization methods
to tackle more complex issues in the future.
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Appendix A. Gaussian Diffusion Model

Appendix A.1. The Atmospheric Diffusion Model

The atmospheric diffusion model is a physical and mathematical model for reflecting
the transport and diffusion process of air pollutants in the atmosphere. Due to the flat
cushion surface in Nanshan District, the pollutant diffusion almost obeys the normal
distribution and the distance among the pollutant sources and affected areas is less than
ten kilometers; thus, as the most commonly used diffusion model, the Gaussian diffusion
model was selected to simulate the continuous point source diffusion of the flat terrain
elevation and calculate the PM2.5 concentration in affected areas.

Appendix A.2. The Determination of Major Parameters

The ground concentration model of the Gaussian diffusion mode is suitable to calculate
the maximum ground concentration of air pollutant, where the critical step is to determine
the effective stack height and atmospheric diffusion parameters.

Appendix A.3. The Calculation of Effective Stack Height

He = h + ∆H (A1)

where He is the effective stack height (m); h is the geometric height of stack (m); and ∆H is
the plume rise height (m), which is obtained based on the Equation (A2):

∆H = n0 ∗Qh
n1 ∗ hn2 ∗U−1

h (A2)

where n0 is the coefficient of plume thermal condition and surface condition; Qh is the
thermal emission rate of exhaust gas (kJ/s); n1 is the heat release rate of plume; n2 is the
height index of discharge source; and Uh is the wind speed at the height h (m/s), which is
calculated as follows:

Uh = U10 ∗ (h/10)p (A3)
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where U10 is the wind speed at the height of 10 m (m/s) and p is the index.

Appendix A.4. The Estimation of Atmospheric Diffusion Parameters

The atmospheric diffusion parameters are the function of downwind distance, atmo-
spheric stability and ground roughness, as described by two Equations (A4) and (A5),
which are formulated as follows:

σy = γ1 ∗ xa1 (A4)

σz = γ2 ∗ xa2 (A5)

where σy is the transverse diffusion parameter perpendicular to the dominant wind direc-
tion; σz is the vertical diffusion parameter; x is the distance between pollutants source and
affected area (m); and γ1, γ2, α1, and α2 are empirical regression coefficients at distance x.

Appendix A.5. The Calculation of Ground Concentration at Normal Wind Speed

Considering the ground position of the pollutant sources as the origin, the downwind
ground concentration at the distance x is calculated as follows:

C(x, 0, 0, He) =
Q

πUhσyσz
exp

[
−1

2

[
He

2

σz2

]]
(A6)

where C is the ground concentration at the distance x, mg/m3, and Q is discharged magni-
tude of pollutants (mg/s).
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