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Abstract: Monitoring drivers’ emotions is the key aspect of designing advanced driver assistance
systems (ADAS) in intelligent vehicles. To ensure safety and track the possibility of vehicles’ road
accidents, emotional monitoring will play a key role in justifying the mental status of the driver
while driving the vehicle. However, the pose variations, illumination conditions, and occlusions are
the factors that affect the detection of driver emotions from proper monitoring. To overcome these
challenges, two novel approaches using machine learning methods and deep neural networks are
proposed to monitor various drivers’ expressions in different pose variations, illuminations, and
occlusions. We obtained the remarkable accuracy of 93.41%, 83.68%, 98.47%, and 98.18% for CK+,
FER 2013, KDEF, and KMU-FED datasets, respectively, for the first approach and improved accuracy
of 96.15%, 84.58%, 99.18%, and 99.09% for CK+, FER 2013, KDEF, and KMU-FED datasets respectively
in the second approach, compared to the existing state-of-the-art methods.

Keywords: deep neural networks; advanced driver assistance systems (ADAS); face detection; K.L.T.;
MTCNN; facial expression recognition; driver emotion detection; DeepNet; machine learning

1. Introduction

The current way of human living relies on intelligent vehicles developed with artificial
intelligence. These smart vehicles make life easier for people who are busy in their daily
lives. The lifestyle controls human actions in most situations in their daily routine. The
most influenced situation of any human being that leads to severe damage to his life is the
effect of emotions while vehicle driving on roads.

A driver’s attention will get distracted when they are in the emotional stage which
will affect the alertness level and judging capability from normal conditions which are inad-
equate in safe driving. In total, 2.2% of fatalities are caused by vehicle crashes, according to
annual road crash statistics [1], and 90% of accidents are causing due to human errors of the
driver on roads. Studies proved that around 43% of crashes were avoided by co-passengers
who alerted the drivers by observing their emotions instantly. As the emotion controls the
mental status of the driver, it is essential to install an artificial intelligence system to assist
the drivers in alerting them to be free from the emotion that influences driving behaviors
and road safety. Therefore, the current generation of vehicles must include a function to
alert the driver depending on their state of emotion. Several technical developments have
been made in vehicles’ systems for a decade, which are accessible to the drivers inside
the vehicle to track the driver’s emotions before causing accidents. These systems assist
“ADAS” (advance driver assistance systems), which can help improve driver’s safety and
provide enough potential for the driver to react early before road accidents.

Detection of human emotion from the camera-captured images is a reliable monitoring
source for various safety and security applications. This can be achieved through facial
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expression recognition (F.E.R.). Presently F.E.R. [2] is the primary aspect in all sophisticated
applications like augmented reality, virtual reality-based systems, customer advertising
and marketing, and advanced driver assistant systems. Driver emotion detection based on
F.E.R. will become the prominent factor in developing intelligent ADAS for assisting safe
driving and ensuring the life security of the people on roads. Even though many research
papers have been designed to improve facial expression recognition of drivers for many
years, a few challenges are still affecting its performance from further developments such
as pose variations, illumination changes, and occlusions [3]. Tracking the driver’s emotion
in various angles in different illumination conditions is much needed to predict the correct
emotion or behavior of the driver. Occlusions like hair and sunglasses are also significant
factors influencing the drivers’ emotions and causing accidents. To prevent these, two
novel approaches are proposed to detect the occlusions, illuminations, and pose variations
involving driver emotion in which six to seven classes of expressions are being detected
from the driver in different illumination conditions. Adding these occlusions, illuminations,
and pose invariant-based emotion detection functionalities can enhance the capabilities of
the ADAS system for help in maintaining good driving behavior and road safety.

2. Related Works

Emotions like happiness, neutral, sadness, disgust, surprise, fear, and anger are usually
expressed by a person from his previous and or current performed actions. Some of them
are considered negative emotions that influence the driver’s behavior and lead to accidents.
These negative emotions trigger the loss of control over driving the vehicle, making the
destination unreachable.

Many research developments have been made to monitor the driver’s emotions,
thereby assisting the drivers in a smooth and safe driving behavior environment on roads.
Different behavioral and physiological signals have been involved and utilized for driver
emotion recognition. Using PERCLOS [4] (percentage eye openness tracking), speech [5],
face [6], blink [7,8], and body are the source signals to track and predict the driver’s emo-
tion in a behavioral approach. However, physiological signals like E.M.G. [9], E.E.G. [9],
E.C.G. [10], E.D.A. [11], PPG&RESP [12], CAN [13], etc., are used to track the driver’s
emotion also in a physiological approach. In 2003, Fernandez et al. [14] introduced a driver
monitoring system using the speech signal as a source and involving neural networks and
SVMs (support vector machines) as a classifier to predict the emotion. In 2007, Grimm
et al. [15] proposed a system to predict the driver’s mental state using the speech signal
and support vector regression method. Jones and Johnson et al. introduced two different
methods using statistical analysis and neural networks with the speech signal as an input
source to predict the driver emotion in the years 2008 [16], 2005 [17], and 2007 [18]. Schuller
et al. in 2008 [19] introduced an emotion recognition system in an automotive environment
using speech signals for emotion tracking. In 2010, Tawari and Trivedhi et al. [20] intro-
duced a speech-based emotion classification framework to predict drivers’ emotions. Boril
et al. in 2010 [21], 2011 [22] proposed different driver emotion monitoring systems using
G.M.M. (Gaussian mixture models) and SVM (support vector machines) classifiers with a
source of a speech signal. In 2012 [23], Alvarez et al. introduced emotional adaptive vehicle
user interfaces using logistic model trees, multilayer perceptron, naive Bayes, and logistic
regression methods to predict the driver’s emotions using speech signals. In 2011, Tews
et al. [24] proposed an emotional human–machine interaction system using a statistical
variance method to predict the emotions from the face. Paschero et al. [25] in 2012 intro-
duced a real-time classifier for a vehicle driver’s emotion recognition from the face using
the multi-layer perceptron method to classify emotions like happiness, anger, fear, sadness,
disgust, and surprise. In the same year, Moriyama et al. [26] introduced a driver emotion
recognition system to analyze aggressive moods of the driver from a facial analysis using
the mutual subspace method and principal component analysis (P.C.A.).

Agarwal et al. [27] in 2013 introduced an emotion and gesture recognition model
for driver assistance with a soft computing tool for human center transportation using a
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fuzzy rules-based method from the face to predict happiness, surprise, sadness, and anger
expressions only. In 2014, Gao et al. [28] proposed an emotion recognition system for driver
safety using SVMs to predict anger and disgust expressions. Cruz and Renaldi et al. [29] in
2017 presented an expression analysis summary of motor vehicle operators using CNN
(convolutional neural networks) from the driver’s face. Ihme et al. [30] in 2018 proposed a
driver emotion recognition from the facial muscle activity using the correlation analysis
method. Hoch et al. [31] in 2005 introduced a bimodal fusion of emotional recognition
in an automotive environment from both face and speech signals using neural networks
and SVMs for speech classification, SVMs for facial classification, and the linear function
coefficient fusion method to predict the neutral, positive, and negative expressions of
the driver. In 2007, Tischler et al. [32] developed an application of emotion recognition
in automotive research using qualitative methods. In 2008, Schuller et al. [33] proposed
the detection of security-related effects and behavior in passenger transport using SVMs
from face and speech signals of a driver for tracking emotions. In 2012, Boril et al. [34]
proposed a multi-model driver’s emotion detection from speech and CAN (controlled area
network) signals using the Gaussian mixture mode for speech classification and multiple
interval thresholds for the CAN signal analysis. Physiological signals are also used to
detect the driver’s emotions. Jeong et al. [35] in 2007 introduced a driver’s emotion index
system using a qualitative method. In 2012, Begum et al. [36] proposed a professional driver
monitoring system based on a heart rate variability analysis. Later in 2015, Keshan et al. [37]
suggested the automobile driver detection system using machine learning approaches.
These techniques detect the driver’s emotion from an electrocardiogram (E.C.G.) signal.

Ooi et al. [11] in 2016 proposed a driver emotion recognition framework based on
electrodermal activity (E.D.A.) measurements with medical diagnosable physical sen-
sors [38] using SVMs to predict the driver’s emotions. In 2010, Nasoz et al. [39] introduced
a driver emotion system using K.N.N. (K-nearest neighbor), Markquardt backpropaga-
tion, and resilient backpropagation methods to predict the emotions from E.D.A., E.C.G.,
RESP (respiratory), and E.M.G. (electromyography) signals. Conzeti et al. [40] in 2012
proposed a bioinspired architecture for on-road emotion monitoring using recurrent neural
networks from a photoplethysmogram (P.P.G.) and E.D.A. signals. In 2014, Robodello
Mendez et al. [41] developed a body sensor network to detect emotions during the driving
environment from E.E.G., E.D.A. using P.C.A., and logistic regression methods. Neska
et al. [42] in 2018 proposed a driver emotion system using a random forest approach from
physiological functional variable selection signals such as E.M.G., E.C.G., and RESP. Malta
et al. [43] in 2011 also analyzed real-world driver’s emotions using the Bayesian network,
which combines both behavioral and physiological signals such as E.D.A. and the face.
Among all these works, some results [15,25,26,28,31,33] have proposed systems running in
a non-car environment, whereas works [20,29,37,40–42] have been conducted in a real-time
environment. Some results [14,16–18,24,30,38,39] have used a simulator environment.

By observing the environmental constraints, the recent driver emotion recognition sys-
tems have focused on behavior signals which consume fewer factors that can be considered
to design a system with high prediction accuracy.

M. Ali et al. [44] have proposed a multi-inception layer network to address the F.E.R.
problem across multiple databases such as CK+ with 93.2% accuracy and FER 2013 with
66.4% accuracy. Ch. Li et al. [45] proposed a multi-network fusion-based CNN with SVM
as the classifier and have achieved 70.3% on the FER 2013 dataset. A. Abinav et al. [46] pro-
posed a simple CNN with hyper parameter selectivity and have obtained a 65.7% accuracy
on the FER 2013 dataset. M. Riyaz et al. [47] proposed a CNN-based expression network
called “Exnet” for F.E.R. and have achieved the better accuracy of 73.5% on the FER 2013
dataset with their model among the pre-trained networks they used. M. Sherwin et al. [48]
proposed an F.E.R. system using attentional CNN and have achieved an accuracy of 70% on
the FER 2013 dataset. Z. Yuquian et al. [49] proposed a facial expression recognition system
using facial action unit feature map selection and sorting in deep CNN and have obtained
an accuracy of 88.2% on the KDEF dataset. Y. Liu et al. [50] developed a multi-view face
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expression recognition using multi-channel pose aware CNNs and have achieved 86.9%
accuracy on the KDEF dataset. R. Garcia et al. [51] proposed a deep CNN which can gen-
erate a feature vector for expression recognition with the illumination problem and have
achieved an accuracy of 95.5% on the KDEF dataset. P. Ramakrishna et al. [52] proposed a
real-time neural network with a spatial transformal layer and laplacian operators and have
achieved 88.1% accuracy on the KDEF dataset. S. Hari et al. [53] developed a deep learning
based F.E.R. system and achieved an accuracy of 96.6% on the KDEF dataset. M. Vijayalak-
shmi et al. [54] proposed a radial basis function neural network that integrates the shape
and texture feature descriptors for expression recognition and achieved an accuracy of
94.2% on the KDEF dataset. B. Hasani et al. [55] proposed a technique to extract temporal
relations of consecutive video sequence frames using 3D CNN as well as 3D inception
residual network layers to extract spatial relations within facial images using LSTM (long
short-term memory). Both the works achieved 93.2% on the CK+ dataset. S. Xie et al. [56]
proposed deep comprehensive multi-patches aggregation CNN using hierarchical features
and obtained an accuracy of 93.4% on the CK+ dataset. In 2018, Mira Jeong et al. [57]
developed a driver facial expression recognition system in real-time for safe driving to
monitor the driver’s emotions using a hierarchical, weighted random forest classifier. The
authors chose the benchmark datasets CK+ for expression recognition and KMU-FED for an
effective real-time driving environment. They achieved an accuracy of 92.2% with a single
weighted random forest classifier without hierarchy, 90.9% using a hierarchical, weighted
random forest classifier with normal information gain, and 92.6% using a hierarchical,
weighted random forest classifier with data similarity for information gain, on the CK+
dataset.

In 2019, M. Patil et al. [58] developed a driver emotion recognition system to enhance
human–machine interface in vehicles, trained his model on the CK+ dataset, and achieved
86.7% only. In 2020, M Jeong et al. [59] proposed a lightweight multi-layered random
forest model for monitoring driver emotional status, trained his model on the CK+ dataset,
achieved 93.4% accuracy, and achieved 95.1% accuracy by training his network on the
KMU-FED dataset. In addition, the authors carried out the comparative experiments on
the KMU-FED dataset with state-of-the-art models and obtained accuracy such as 89.7%
for SqueezeNet [59], 93.8% for MobileNet V2 [59], 94.9% for MobileNetV3 [59], 90.5% for
the deep forest, 93.6% for deep random forests, and 91.2% for deep random forests without
the backpropagation model.

Although different models have been developed to monitor the human emotions
from the captured images with the help of machine learning [60] and deep learning tech-
niques [61], pose variation is also a crucial parameter that should be considered while
designing a driver emotion detection system. While designing the models, most of the
existing works did not consider this parameter as a significant factor and caused their
system to attain less accuracy in driver environmental datasets. To overcome this problem,
we have proposed two novel approaches to build an efficient driver emotion detection
system, including pose variation conditions, by training our models on the KDEF dataset
and achieved remarkable accuracies with the existing F.E.R. methods. We have attained
better accuracy on the real-time driving environmental dataset KMU-FED compared with
existing driver emotion detection works with this additional functionality.

In this paper, we design and implement a deep convolutional neural network (DCNN)
architecture. The design involves a neural network with different optimizers. SGDM sup-
ports speed up gradient vectors in the right direction, causing them to converge faster, and
the Adam optimizer combines better adaptive gradient and root mean square propagation
algorithms. This approach provides better optimization to tackle sparse gradients on noisy
conditions and monitor the driver’s emotions in different face rotation angles, occlusions
like eyeglasses, hair, and illumination conditions. This system aims to improve the effi-
ciency and performance of the algorithms used. Two novel algorithmic approaches have
been developed to monitor and detect emotion to ensure the safety of drivers and vehicles
while driving. The proposed algorithms involve preprocessing, segmentation, feature
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extraction, and classification. The captured images will pass through all stages, and the
corresponding class of expression will be detected at the final stage. The performance of the
proposed algorithms is compared with the state-of-the-art works using different benchmark
datasets and show good performance among them. Two proposed approaches are success-
fully applied to the real-time virtual driving environment dataset consisting of occlusions
and other illumination conditions and obtain better driver expression recognition accuracy.

3. Proposed System Methodology

In this section, we explain our two proposed approaches for driver emotion detection.
The system starts with image acquisition from the datasets, including NIR camera captured
real-time driving environment images that are pre-processed for noise removal and image
enhancement. In the first approach, the face is detected, and the corresponding ROI (region
of interest) is extracted using the Viola–Jones algorithm from the pre-processed image using
Haar features. As the KLT (Kanade Lucas Thomasi) algorithm is the fastest among the
traditional techniques to monitor the motion estimation and object tracking functions, it
has been utilized to track and extract the feature points from the detected face and perform
efficiently in real-time processing. The detected ROI from the KLT is given as an input to the
deep neural network, which can reduce the neural network’s workload and will enhance
the accuracy in classification. In the second approach, we have included the multi-task
cascaded convolutional neural networks for more efficient face and landmark detection by
passing the pre-processed image through three different neural networks that are cascade-
connected. The processed image area is fed to the deep neural network to extract more
robust features from them that help in classifying the expressions with high accuracy, as
shown in Figure 1. Different optimization and parameter settings were considered while
designing and training the two approaches to detect the emotion recognition of the driver,
as explained in Section 4.
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3.1. Pre-Processing

The pre-processing stage of the proposed algorithm involves image resizing, noise
removal, and image enhancement. Whenever the image from the dataset is given as input
to the preprocessing stage, the image will immediately be resized and sent to the next block
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for noise removal. The 2D Gaussian and median filters are applied to remove noise from
the image in the noise removal stage.

3.1.1. 2D Gaussian Filter

A smoothing mechanism is used to blur the image using the Gaussian function called
Gaussian blur or Gaussian smoothing [62]. Mathematically, blurring an image using the
Gaussian function equals convoluting the image with the Gaussian function.

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

where x, y are the distance coordinates from the origin in the horizontal and vertical
axis, respectively, and σ is the standard deviation of the Gaussian distribution shown in
Figure 2 [63].
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3.1.2. Median Filter

It is a nonlinear digital filtering method commonly used to remove the noise from an
image by preserving the edges under certain conditions during image pre-processing. It
works on replacing each pixel with the median of neighboring pixels. The neighbor pattern
is called a window, which slides pixel by pixel over an entire image.

3.1.3. Image Enhancement

This pre-processing block improves the image by increasing the contrast of the low-
intensity pixel regions and blurs an image with the smoothening technique.

Histogram Equalization

To improve the contrast of an image, histogram equalization [64] is used. This process
can be achieved by effectively distributing an image’s most pixel intensity values. This
technique increases the image contrast globally by normalizing the histogram of the image.
Later wiener filter [65] is applied to remove the blur from the image.

Let us assume the image given as f. It is represented as matrix mr by mc with pixels
intensities 0 to L − 1 range, where L represents the number of possible intensity values and
is mainly equal to 256. The normalized histogram of the image f is represented by p. Then

pn =
number of pixels with intensity n

total number of pixels
n = 0, 1, . . . , L − 1 (2)
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The histogram equalized image g will be defined by

gi,j = floor(L − 1)∑ f i,j
n=0 Pn, (3)

where floor() rounds down to the nearest integer.

3.2. First Proposed Approach for Driver Emotion Detection Using Viola–Jones Face Detection and
K.L.T. Feature Tracking with a Deep Neural Network
3.2.1. Face Detection and R.O.I. (Region of Interest) Extraction

Facial image segmentation is crucial in the conventional face expression recognition
system. This block is used to detect the face from a pre-processed input image with the
help of the Viola–Jones algorithm. The corresponding region of interest is obtained by
locating the output’s facial landmarks like the nose, mouth, and eyes. The generated region
of interest of an image will be fed to the feature extraction block for further processing in
the proposed architecture.

Viola–Jones Face Detection Algorithm

It is a prevalent technique for real-time object detection developed by Paul Viola
and Michael Jones [66]. There are two stages involved in this algorithm: training and
detection. It is developed to detect the frontal faces rather than the faces turned upwards,
sideways, and downwards. Before the face is detected, the input image will be converted
into grayscale to make the work easier to process with less data. It uses Haar features to
search the face inside the box. The box will move from left to right in a tile-wise manner.
This algorithm uses three different Haar features to identify the face, namely edge features,
line features, and four rectangle features. After detecting the features, the algorithm starts
training to identify them by adjusting to a minimum threshold value to classify a feature.
Cascade classifiers are used to train the algorithm, and it involves stages. These stages are
trained using a boosting technique to train the classifiers at high accuracy to detect a face
from an image.

Two types of Haar feature masks are represented in Figure 3. The extracted window
features are in 24 × 24 pixels that slide on the image locations for face detection. Around
162,336 features will be generated from the movement of the scaled Haar masks for the
window; many of them are not useful, so the AdaBoost algorithm is used to choose a small
number of features by creating a strong classifier with a linear combination of the weak
classifier with weights. The weak learner feature f can be represented as

h(x, f , p, θ) =

{
1, i f p f (x) < pθ
0, otherwise

(4)

where x is 24 × 24 pixel image, θ is a threshold, and p is a parity.
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There are three steps involved in the learning algorithm: training all the weak clas-
sifiers and selecting the efficient weak classifier to become a strong classifier component.
Then the collected weak classifiers are combined with the other weak learners, which
are confirmed as the most efficient in the earlier stage. Next, the weighted error will be
calculated to modify the latest weights for the next iteration.

The further weak learners will concentrate on the toughest ones in the training set,
and the strong classifier is formed from a combination of the T weak classifier with the
selection criteria of

h(x) =
{

1 i f ∑T
t=1 αtht(x) ≥ 1

2 ∑T
t=1 αt

0, otherwise
(5)

αt =
1
2

ln
(

1 − et

et

)
(6)

The weights become larger to a weak classifier with a small amount of error value,
and smaller to a weak classifier with a larger error value in classification.

Attention cascade will be created due to the selection of strong classifiers which
can obtain a higher detection rate with a smaller classification error. At this cascade
configuration shown in Figure 4, the strong classifier will filter and reject the negative
windows which contain negative images or non-face images. The configuration will become
complex for further stages to achieve a higher detection rate by eliminating negative images
with strong classifiers, which will perform higher classifications than previous stages in the
cascade structure.
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3.2.2. Feature Extraction with K.L.T. (Kanade Lucas Tomasi)

It is one of the best tracking algorithms which is used for feature tracking. The facial
detection process requires more computation time. It can cause the detector to fail at the
training stage of the classifier when trying to detect the face during continuous motions.
Hence, it is necessary to have an optimum algorithm to track the face for features. This
algorithm [67] is highly efficient to maintain less computation and a high accurate classifier
at the training stage. It works by obtaining feature points [68] through Harris corner
detection. The centers of the obtained feature points will help in the tracking process of
the facial region. It collects the spatial intensity information to search directly for the best
match. This algorithm is based on a gradient weight local search with the approximation of
the image second derivative. It involves three steps starting from calculating ‘G’, structure
scalar matrix, ‘λ’ pixel cornerness of an image, and maximum cornerness ‘λmax’ and
maintaining λ > λmax (5–10%). The computation starts from the first partial derivative of
image function I(u,v) in vertical and horizontal directions.

Ix (u, v) =
∂I
∂x

(u, v) and Iy (u, v) =
∂I
∂y

(u, v) (7)
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The three computed values for horizontal, vertical, and both direction locations in
image (u,v) are:

A(u,v) = Ix
2(u,v) (8)

B(u,v) = Iy
2(u,v) (9)

C(u,v) = Ix(u,v) ∗ Iy(u,v) (10)

These values can form a gradient matrix ‘G’ and are represented as:

G =

[
A C
C B

]
(11)

G is a scalar matrix, which means there exist scalars λ1 and λ2; vectors v1, v2 such that

A ∗ vi = λi ∗ vi (12)

The gradient matrix is in sparse matrix form. So, the power method is used to find the
largest eigenvalue, and the expected eigenvalue is λi ≥ 0. The corner point in the image
will be given by the maximum eigenvalue.

λ = max(|λ1|,|λ2|) (13)

3.2.3. Classification

We have opted for the current popular deep neural network, which has achieved good
remarks in multi-level class expression classification. This deep neural network is designed
to overcome the gradient dissipation by including ReLU as the change in activation function
and batch normalization. If the network layers increase, the network can perform effectively
in extracting features, though the extraction process is more complicated. Thus, a deeper
model yields better results. Another problem is that when the network layers are deep,
then the network’s accuracy can be degraded, but the deep neural network [69] is designed
to overcome this problem also since the network layers’ depth increases relatively with the
magnitude order.

Deep Neural Network (DeepNet)

Deep neural networks are introduced with a new concept called multi-layers’ deep
connections, shown in Figure 5. Using this concept, the number of connections increases,
which will increase the computation time of the network, and the accuracy though the
layers are very deep.
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Zero padding is a method to allow the user to maintain the original size of the input
image. It happens during the padding of zeros as a border of pixels around the input image
edges. After padding, it will be fed to the convolution layer in which the convolution kernel
with its parameters is to be learned. The convolution kernel should be smaller compared to
the input image size. The input image is convolved with each kernel to obtain a feature
map during the convolution process. The acquired feature map is superimposed with the
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depth dimension to find the output image at the convolution layer. After receiving the
feature map from the convolution layer, the further step is to integrate and classify the
features. These features will be fed as an input to the softmax classifier, consuming extensive
computation time. To overcome this problem, a pooling layer is used to reduce the feature
dimension. It is a process of providing abstractive information. In addition, it reduces
parameters, features, and the matrix size, which is generated by the convolution layer
to simplify the complexity in calculation at the convolution layer. Two main operations
are performed, namely average pooling and max pooling. The average pooling usually
reduces the increased variance due to neighborhood size and restores the background data
information of an image. Average pooling also guarantees the integrity of the information
transmitted and decreases parameter dimensions. Max pooling chooses features with
good classification for easy recognition and nonlinear characteristics. In addition, max
pooling reduces the parametric error in the convolution layer, which creates a change in
the calculated mean value. For instance, if the feature to identify is a car, then until there is
a car in any part of the area of an image, it will consider there is a car in the whole image.

The batch normalization layer is an optimization method used in the training phase. A
batch is the set of images that are trained on the network. The purpose of normalization is
for the input data to make the neural network learning process to learn the data distribution.
After the training data distribution has differed from the testing data, the generalization
capability of the network will be degraded, which in turn affects the training speed of the
network due to another factor of training different batches of data with various distributions.
Selecting different parameters such as parameter initialization, learning rate, and weight
attenuation coefficient, etc., manually will consume most of the time. To adjust these
parameters, automatically updated, batch normalization is used. The main principle of this
batch normalization layer is to perform a normalization process for each layer acting as
input, and a separate normalization layer is added to each layer. The rectified linear unit,
in short ReLU, is the activation function used to append the nonlinear factors and make a
nonlinear combination of inputs to make the deep neural network classification capability
stronger. A piece-wise function makes all negative values zero and does not change all the
positive values. For instance, if the input value is negative, the output will be zero. The
neuron will not get activated, which means only a few neurons will get activated with the
positive values, making the network efficient in computation.

3.3. Proposed Algorithm for Driver Emotion Detection Using a Multi-Task Cascaded
Convolutional Neural Network with a Deep Neural Network

We have used the same pre-processing blocks in the second proposed algorithm and
used multi-task cascaded convolutional neural networks for face and facial landmark
detection.

3.3.1. Multi-Task Cascaded Convolutional Neural Networks

The critical stages in the conventional face expression recognition system are face
detection, feature extraction, and expression classification. The main stage is feature ex-
traction, which influences the network’s accuracy. The traditional convolutional neural
network architecture gives a better classification with some challenges like pose variations
and occlusions affecting the accuracy of the network. To improve the accuracy of the net-
works, multi-task cascaded convolutional neural networks [70] are used for face detection
and facial landmark detection. There are three neural networks present in the multi-task
cascaded neural networks, which are cascaded in three stages. The first stage utilizes a
shallow convolutional neural network to rapidly generate candidate windows. The second
stage filters the generated candidate windows to pass through a complex convolutional
neural network. At the third stage, the third convolutional neural network, which is more
complex than the previous two networks, will be used to filter further to identify the facial
landmark locations. Before proceeding with the input image to the three-staged cascaded
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neural network, the input image needs to be scaled in different sizes to construct an image
pyramid, as shown in Figure 6.
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First Stage

The first network is a fully convolutional neural network shown in Figure 7, will
be used to produce the candidate window and border regression vectors. Bounding box
regression [71] is a reliable method to predict the box localization if the target detects an
object of a class that was already defined. The overlapped regions are combined after the
bounding boxes are determined. At the final output, candidate windows will reduce the
size of the candidates’ volume.
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Second Stage

The obtained candidates from the first stage will be given to refining the convolutional
neural network, shown in Figure 8. In this network, the fully connected layer is present at
the output stage of the architecture. This refines the convolutional neural network, further
filters candidates, applies calibration on bounding box regression, and uses non-maximum
suppression to combine the overlapped candidates. It generates a four-element bounding
box created for face detection, and a ten-element bounding box vector created for facial
landmark localization.
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Third Stage

It is the last stage in which the output neural network is used shown in Figure 9. The
output network performs as the same as a refined neural network in the second stage. It
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filters the candidates further to provide more details about the face, and five positions
related to five facial landmarks will be detected.
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Every neural network in multi-task cascaded convolutional neural networks will
generate three parts at their stages, and the corresponding loss will also have three parts.
Cross-entropy loss function is used directly for detecting faces from an image:

Ldet
i = −

(
ydet

i log(pi) +
(

1 − ydet
i

)
(1 − log(pi))

)
(14)

where pi is the input image probability and det is the original label in ydet
i .

Common Euclidian distance is used to find the loss function for boundary box regres-
sion and can be calculated as:

Ldet
i =

∣∣∣∣∣∣ŷbox
i − ybox

i

∣∣∣∣∣∣
2

2
(15)

The network predicted coordinate is ŷbox
i and the coordinate of actual real background

is ybox
i .

Key point decision loss function:

Llandmark
i =

∣∣∣∣∣∣ŷlandmark
i − ylandmark

i

∣∣∣∣∣∣
2

2
(16)

Here in the above equation, the network predicted coordinate is ŷlandmark
i and the

coordinate of the actual real key point is ylandmark
i . The final total loss is formed by adding

the three losses that are multiplied by their weights.
This algorithm improved the classification accuracy by utilizing MTCNN for face

detection and facial landmarks extraction. Later, the obtained will be given to DeepNet for
classification to predict the driver’s emotion.

This paper proposes two novel deep network approaches to detect driver’s emotions.
The first approach utilizes the Viola–Jones face detection method for frontal face and
different angular faces’ detection. Viola–Jones face detection is limited to frontal face
detection and obtaining facial landmarks. The corresponding facial features are being
detected and tracked by the Kanade Lucas Tomasi method, which are given to the deep
neural network for emotion detection. Connecting these methods to a deep neural network
brings higher accuracy in detecting a driver’s emotions in different angular rotations of the
face and various illumination condition scenarios with partial occlusions like sunglasses
and hair involved. The achieved accuracy improves with the second novel deep network
approach. We use multi-task cascaded neural networks for face detection and alignment
with facial landmark detection in various angular rotations. The obtained features are
trained and classified using a deep neural network with ReLU modified to a combination
of batch normalization and leaky ReLU to avoid the occurrence of a dying ReLU problem
at ReLU, which causes some neurons to die during training. Due to this problem, stochastic
gradient descent (S.G.D.) optimization cannot affect the network with the property of the
gradient becoming zero even though the input value is negative. So, to overcome this, we
use the Adam optimizer, which is faster, stable, and converges faster than S.G.D.
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4. Experimental Results

Various databases are introduced to evaluate the facial expression recognition perfor-
mance from image sequences and are used for developing different applications. From
those databases, we have chosen the most used and popular benchmark datasets for facial
expression recognition, such as the extended Cohn Kanade database (CK+) [72], facial
expression recognition (FER) 2013 [73], and Karolinska directed emotional face (KDEF) [74].
As we focused on driver emotion detection, we also have chosen the KMU-FED [75]
database in which driver face expression recognitions are captured in a real-time driving
environment. Firstly, we explained the databases utilized for performance evaluation
and further explained the obtained results by comparing them with the state-of-the-art
methods. We have considered the model’s true positive and true negative outcomes for
the performance evaluation metrics’ calculation. This driving emotion detection model is
developed using MATLAB in a system environment that includes an Intel 9th Generation
i5-9300H Quad-Core Processor with 12 G.B. of RAM in the Windows 10 operating system
and executed on a NVIDIA GeForce GTX 1650 GPU.

The parameter settings for the training of our two proposed approaches on all four
databases are shown in Table 1. For the first approach, we have chosen a stochastic gradient
descent optimizer with momentum having a learning rate of 0.01 for the first proposed
approach and an Adam optimizer with a learning rate of 0.001 for the second proposed
approach with cross-entropy as loss function, ReLU as the activation functions in both of
them, and trained to a maximum number of 100 epochs.

Table 1. Parameter settings used to train our deep network approaches on all four databases.

Databases Parameters First Approach-Values Second Approach-Values

Image Size 256 × 256 256 × 256

Optimizer Stochastic Gradient
Descent (S.G.D.) Adam

CK+ Loss Function Cross-Entropy Cross-Entropy
FER 2013 Activation Function ReLU ReLU

KDEF Batch Size 128 128
KMU-FED Learning Rate 0.01 0.001

Epochs 100 100
Momentum 0.9 0.9

Validation Frequency 30 30

4.1. Databases

(I) CK+

It is known as the “Extended Cohn-Kanade Database” [72], one of the most widely
used databases for evaluating face expression recognition systems. It is an extensively
utilized facial expression database provided in a laboratory-controlled environment. This
database shown in Figure 10 contains 593 image sequences from a total number of 123 sub-
jects in the age range from 18 to 50 years, including a variety of genders and origins of
81% Euro-American, 13% Afro-American, and the remaining 6% are others. The involved
images have a facial shift from a neutral expression to the targeted peak expression with a
pixel resolution of 640 × 480 and 640 × 490 in grayscale.
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(II) FER 2013

The facial expression recognition 2013 (FER 2013) [73] database shown in Figure 11
was introduced in ICML Challenges in representation learning in 2013. It includes differ-
ent images captured in a wild environment and created using Google image search API
(application program interface), and the corresponding faces are automatically registered.
It contains 35,887 images with a pixel resolution of 48 × 48. These images have more
variations such as facial occlusions with hand, partial occlusions like hair, eyeglasses, and
images in low illumination conditions, and face angular rotations.
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(III) KDEF

It is known as the Karolinska directed emotional face (KDEF) [74] database, consisting
of 4900 static face images captured from 35 female and 35 male subjects. Each subject’s
facial expression is captured twice in five different face angles of −90◦, −45◦, 0◦, 45◦, and
90◦, which results in 980 image sets for each angle. This database was initially developed
for psychological and medical research purposes in Sweden, but currently, it is the most
suitable dataset for the performance evaluation of emotion recognition experiments.

(IV) KMU-FED

To evaluate and verify the performance of our proposed approaches for driver emotion
detection in a real-time driving environment, we have selected the Keimyung University
facial expression of drivers (KMU-FED) [75] database. KMU-FED contains the captured
facial expression images in an actual driving environment, shown in Figure 12. These
drivers’ facial expression images in the dataset are captured using the NIR (near-infrared)
camera installed on the dashboard or the steering wheel. Twelve subjects were involved
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and generated 55 image sequences with different illumination condition variations like
front light, left light, right light, and back light with partial occlusions like hair or eyeglasses.
The images have a pixel resolution of 1600 × 1200.
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4.2. Performance Evaluation
4.2.1. Experiments on CK+ Database

In order to verify the effectiveness of the two proposed approaches for driver emotion
detection, firstly we have compared their performance with the state-of-the-art approaches
which have used the CK+ database to develop face expression recognition systems earlier:
(1) D.N.N. utilizing multi-inception layers [44]; (2) the inception-resnet network which used
LSTM to enhance the 2D inception-resnet module [55]; (3) single weighted random forest
without hierarchy [57]; (4) hierarchical weighted random forest with normal information
gain [57]; (5) hierarchical weighted random forest with data similarity for information
gain [57]; (6) facial expression recognition using hierarchical features with deep comprehen-
sive multi-patches aggregation convolutional neural networks [56]; (7) using lightweight
multi-layer random forests for driver emotion monitoring [59]; (8) first proposed deep
network approach using Viola–Jones face detection and Kanade Lucas Thomasi feature
extraction with deep neural network; (9) second proposed deep network approach using
multi-task cascaded neural networks and deep neural network represented in Table 2 and
in which it shows the better accuracies that are achieved using deep neural networks and
recurrent neural networks. However, using classification algorithms like random forests
with weights, hierarchy, and lightweight multi-layered random forests have achieved a
maximum accuracy of 93.4% which is achieved with our first proposed approach and the
accuracy is improved to 96.1% with our second proposed approach which is 5.2% greater
than the accuracies obtained by the state-of-the-art methods on the CK+ database.

Table 2. Comparison of proposed approaches with the state-of-the-art methods on CK+ database.

Comparison Methods Accuracy (%)

DNN [44] 93.2
Inception-Resnet and LSTM [55] 93.2

Single-WRF [57] 92.2
Hierarchical W.R.F. with Normal Information Gain [57] 90.9

Hierarchical W.R.F. with Data Similarity [57] 92.6
DCMA-CNN [56] 93.4

LMRF [59] 93.4
First Proposed Approach 93.4

Second Proposed Approach 96.1
Performance accuracies of different methods adapted from different papers.
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4.2.2. Experiments on the FER 2013 Database

To evaluate the performance of the proposed two approaches, we have compared the
recognition accuracy of the proposed approaches with the seven state-of-the-art approaches
which use either deep neural networks or conventional machine learning algorithms: (1) a
D.N.N. that utilizes various inception layers [44]; (2) a convolutional neural network which
involves multi-network fusion [45]; (3) simple CNN models to evaluate the effects on
accuracy due to kernel size and filters [46]; (4)–(6) an efficient approach called eXnet [47]
for emotion recognition in the wild; (7) an attentional convolutional neural network called
deep-emotion [48]; (8) the proposed first deep network approach using Viola–Jones face
detection and Kanade Lucas Tomasi feature extraction with a deep neural network, and the
second proposed deep network approach using multi-task cascaded neural networks and
deep neural networks with different optimizers involved.

From Table 3, implementing facial expression recognition using deep neural net-
works [44] in which the network’s depth is increased by adding inception layers has
obtained accuracy which is 17.2–18.1% less than our proposed approaches. However, CNN-
M.N.F. [45] is a multi-network fusion from Tang’s network in which support vector machine
classifier and Caffe-ImageNet, a deep level based neural network, have implemented but
achieved an accuracy of 13.3–14.2% less than that of our proposed approaches. Simple
CNN models [46] with hyperparameter selectivity for improved accuracy have achieved
17.83–18.73% less than our proposed approaches. An efficient convolutional neural shallow
network architecture called Expression Net [47] that reduced the layers for fast performance
achieved 10.1–11% less accuracy than that of our proposed approaches. The authors trained
the pre-trained networks eXnet-Resnet [47], eXnet-DeXpression [47] with the same parame-
ters in which the expression network eXnet was built earlier and achieved 13.4–16.5% less
accuracy when compared to our proposed approaches and deep-emotion [48]. Our network
is created using an attentional convolutional neural network to apply attention to special
regions, which are crucial for facial expression detection, and has achieved 13.6–14.5%
less accuracy than our first and second proposed approaches. From the comparison, we
observed that our proposed approaches obtained better accuracies than the works that
utilized deep neural networks with machine learning methods involved and a fusion of
multi-networks and feature-oriented attentional neural networks.

Table 3. Comparison of proposed approaches with the state-of-the-art methods on FER 2013 database.

Comparison Methods Accuracy (%)

D.N.N. [44] 66.4
CNN-MNF [45] 70.3

Simple CNN Model [46] 65.7
eXnet [47] 73.5

eXnet-Resnet [47] 71.1
eXnet-DeXpression [47] 68.0

Deep-Emotion [48] 70.0
First Proposed Approach 83.6

Second Proposed Approach 84.5
Performance accuracies of different methods adapted from different papers.

4.2.3. Experiments on KDEF Database

For performance evaluation, we have compared our two proposed approaches with
the state-of-the-art methods that used the KDEF database earlier in Table 4: (1)–(2) a deep
convolutional neural network AlexNet which is pre-trained before taken, and classification
is completed with the proposed two feature selection schemes to choose either the selection
of facial action units by training with binary action unit detectors for every feature map and
sort them [49] or detecting the feature maps in the areas inside the face areas found by the
deconvolutional neural network [49] and this selection of feature maps are influencing the
classification robustness, but both these schemes achieved accuracy which is 10.2–12% less
than that of our first proposed approach, and 10.9–12.7% less than our second proposed
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approach; (3) a multi-view facial expression is recognized by multi-channel pose aware
convolutional neural network [50] and has achieved accuracy which is 11.5–12.2% less than
that of our proposed approaches; (4) a CNN [51] which is pre-trained with deep stacked
convolutional auto encoder (DSCAE) which will generate a feature vector for expression
recognition by overcoming the illumination problem and has achieved better accuracy
compared to the other five state-of-the-art methods but still 2.9–3.6% less than that of our
proposed approaches; (5) adding the gradient and laplacian inputs to an image given to
CNN [52] helps in recognizing the facial expression but with accuracy which is 10.2–10.9%
less than that of our proposed first and second approaches; (6) a usage of the Haar classifier
before feeding into the deep neural network can reduce convergence time more than others
without having it and it achieved the best accuracy compared to the other state-of-the-art
methods but still 1.8–2.5% less than that of our first and second proposed approaches [53];
(7) a radial basis function neural network [54] which uses a feature integration of shape
descriptors and texture features for expression recognition has achieved accuracy which is
9.6–10.3% less than that of our first and second proposed approaches.

Table 4. Comparison of proposed approaches with the state-of-the-art methods on KDEF database.

Comparison Methods Accuracy (%)

TLCNN [49] 86.4
TLCNN-FOS [49] 88.2

MPCNN [50] 86.9
DSCAE-CNN [51] 95.5

STL + GRADIENT + LAPLACIAN RTCNN [52] 88.1
DL-FER [53] 96.6
RBFNN [54] 88.8

First Proposed Approach 98.4
Second Proposed Approach 99.1

Performance accuracies of different methods adapted from different papers.

4.2.4. Experiments on KMU-FED Database

For evaluating our proposed approaches in a real-time driving environment, we have
compared with the seven state-of-the-art methods in Table 5: (1) hierarchical weighted ran-
dom forest classifier with the geometrical feature vectors generated from facial landmarks
are used to classify the facial expressions from an input image in the real-time driving
environment and achieve the accuracy which is 4.1–5.0% less than that of our proposed
first and second approaches [57]; (2) a connected convolutional neural network [76] which
consumes both low level and high level features has achieved a better accuracy in seven
state-of-the-art methods but still 0.8–1.7% less than that of our proposed first and second
approaches’ accuracy; (3)–(6) to know the performance evaluation of KMU-FED database
with deep neural networks SqueezeNet [59], MobileNetV2 [59], MobileNetV3 [59] which
are pre-trained earlier are taken to train with KMU-FED database and achieve an accuracy
that is 8.4–9.3%, 4.3–5.2%, and 3.2–4.1% lower than our first and second approaches, respec-
tively, a light weight multi-layered random forest [59] classification model involving the
combination of angle and distance ratio feature vectors which does not involve any deep
neural network has achieved an accuracy that is 3–3.9% lower than our proposed deep net-
work approaches; (7) a pre-trained deep convolutional neural network, VGG16 [77] taken
and trained with driving dataset with different angles and illumination differences achieves
an accuracy that is 3.9–4.8% less than our novel proposed deep network approaches. By
comparing with all the state-of-the-art methods, our proposed approaches have achieved
better accuracy than the existing works. However, they have used machine learning-based
classification models or deep convolutional neural network models.
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Table 5. Comparison of proposed approaches with the state-of-the-art methods on KMU-FED database.

Comparison Methods Accuracy (%)

Facial Landmarks + WRF [57] 94.0
CNN [76] 97.3

SqueezeNet [59] 89.7
MobileNetV2 [59] 93.8
MobileNetV3 [59] 94.9

LMRF [59] 95.1
VGG16 [77] 94.2

First Proposed Approach 98.1
Second Proposed Approach 99.0

Performance accuracies of different methods adapted from different papers.

4.3. Emotion Recognition Results

In the process of evaluating the performance of our classification model, we con-
structed the confusion matrices of our high accuracy obtained proposed approach for the
CK+, FER 2013, KDEF, and KMU-FED databases, respectively, as represented in Figure 13.
The first figure, i.e., Figure 13a, shows that angry, disgusted, sad, and surprised expressions
were classified with high accuracy. In contrast, the afraid expression was classified with sig-
nificantly less accuracy compared to the other expressions for the CK+ database. Figure 13b
represents the confusion matrix for the FER 2013 database, a wild database involving
most of the possible challenges affecting the facial expression classification. The disgusted
expression was classified with high accuracy, and the angry expression was classified with
low accuracy compared to the remaining expressions in the database. In Figure 13c, angry,
happy, surprised, and neutral expressions were highly accurate, whereas the sad expression
was classified with low accuracy in the KDEF database. Lastly, Figure 13d represents the
KMU-FED database in which the images were captured in a real-time driving environ-
ment with different illumination changes and partial occlusions involved while driving.
The expressions angry, happy, sad, and surprised were classified with high accuracy, and
disgusted was classified with lesser accuracy than the expressions in the database. The
highest accuracy in classifying the four expressions, namely angry, which causes aggressive
driving, happy which causes the anxiety in driving behavior, sad which can influence
negative driving behavior, and surprised which can intensify the emotional level of driving
can show that our deep network approaches are well suitable to be used in developing
an automobile surveillance system application [78] to monitor these crucial emotions of a
driver, as our proposed deep network approaches are focused on driver emotion detection.
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5. Conclusions

This paper proposes novel deep network approaches to determine the driver’s emo-
tions in a real-time driving environment through facial expression recognition to assist
advanced driver assistance systems in intelligent vehicles. These deep network approaches
are evolved by detecting the face from captured images by Viola–Jones, and the correspond-
ing features are tracked using the Kanade Lucas Tomasi method. The faces are then fed to
the deep neural network for classification and recognition as described in the first proposed
approach. In contrast, the second approach has used multi-task cascaded convolutional
neural networks for face detection alignment and tracking the features which are given to
the deep neural network. These two approaches are trained with different optimizers on the
selected benchmark datasets. The work presented in this paper achieves the state-of-the-art
result to solve the problems of emotions reflecting a driver’s behavior such as the changes
in illumination, side angle positions of the sunlight, occlusions like hair and sunglasses, and
different angular face rotations. To assess our proposed approaches’ detection capability,
we have conducted experiments on four benchmark databases CK+, FER 2013, KDEF, and
KMU-FED, which address the above-mentioned challenges.

Due to the COVID-19 pandemic, another challenge has been raised for face emotion
detection because of face masks and face coverage. This problem has been discussed in
other works [79–82] addressing the challenge. However, none of them include machine
learning techniques to solve the problem. This study can be extended for future work by
proposing computer vision and machine learning approaches for detecting the driver’s
facial emotions from the masked faces. Moreover, extra experiments can be investigated to
improve and utilize more state-of-the-art techniques to match the runtime requirements of
this application.
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