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Abstract: Clinicians urgently need reliable and stable tools to predict the severity of COVID-19 infection
for hospitalized patients to enhance the utilization of hospital resources and supplies. Published COVID-
19 related guidelines are frequently being updated, which impacts its utilization as a stable go-to
resource for informing clinical and operational decision-making processes. In addition, many COVID-19
patient-level severity prediction tools that were developed during the early stages of the pandemic
failed to perform well in the hospital setting due to many challenges including data availability, model
generalization, and clinical validation. This study describes the experience of a large tertiary hospital
system network in the Middle East in developing a real-time severity prediction tool that can assist
clinicians in matching patients with appropriate levels of needed care for better management of limited
health care resources during COVID-19 surges. It also provides a new perspective for predicting patients’
COVID-19 severity levels at the time of hospital admission using comprehensive data collected during
the first year of the pandemic in the hospital. Unlike many previous studies for a similar population in
the region, this study evaluated 4 machine learning models using a large training data set of 1386 patients
collected between March 2020 and April 2021. The study uses comprehensive COVID-19 patient-level
clinical data from the hospital electronic medical records (EMR), vital sign monitoring devices, and
Polymerase Chain Reaction (PCR) machines. The data were collected, prepared, and leveraged by a
panel of clinical and data experts to develop a multi-class data-driven framework to predict severity
levels for COVID-19 infections at admission time. Finally, this study provides results from a prospective
validation test conducted by clinical experts in the hospital. The proposed prediction framework shows
excellent performance in concurrent validation (n = 462 patients, March 2020–April 2021) with highest
discrimination obtained with the random forest classification model, achieving a macro- and micro-
average area under receiver operating characteristics curve (AUC) of 0.83 and 0.87, respectively. The
prospective validation conducted by clinical experts (n = 185 patients, April–May 2021) showed a
promising overall prediction performance with a recall of 78.4–90.0% and a precision of 75.0–97.8% for
different severity classes.

Keywords: COVID-19; severity prediction; decision support systems; applied artificial intelligence;
hospital operations
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic has presented unprecedented
challenges and threats for health care systems worldwide [1–6]. Since the initial out-
break in early December 2019, the number of patients reported to have the disease has
exceeded 395 million in more than 160 countries, and the number of people infected is
probably much higher. As the end of January 2022, more than 5 million people have died
from COVID-19 [7].

Despite public health responses aimed at containing the disease and delaying its
spread, several countries have faced a critical care crisis, and more countries will almost
certainly follow [8–10]. As of February 2022, more than 10 billion doses of various vac-
cines have been administered globally [11]. Nevertheless, countries worldwide are still
experiencing surges in the number of COVID-19 cases, as well as successive waves of
the pandemic resulting from the virus and its continuously arising variants, in spite of
aggressive vaccination efforts [12,13]. Outbreaks lead to important increases in the demand
for hospital beds and shortage of medical equipment, and medical staff themselves are at
high risk of infection.

To alleviate the burden on health care systems, while providing the best possible
care for patients, efficient clinical diagnosis and prognosis of COVID-19 is of significant
importance. Recent studies on COVID-19 have proposed many statistical models that can
combine several variables or features to estimate the risk of infection or experiencing a
bad outcome from the infection. These models can be grouped into three main categories:
models to indicate the disease risk in the general population, diagnostic models to detect
COVID-19 in patients with suspected infection, or prognostic models for patients with
diagnosis of COVID-19 [14]. Models ranging from rule-based scoring systems to deep
learning models have been proposed and published [14].

Several studies for large observational cohorts of COVID-19 patients have reported
clinical characteristics that are associated with severe illness and death. However, these
findings are difficult to translate to the quantification of absolute risk in the context of
informing care at the level of individual patients [1,3,15–17]. Many clinical risk calculators
have been created [14,18–20] during the early stages of the pandemic. Nevertheless, there
are currently no reliable patient-level prediction tools in widespread use for COVID-19
due to many limitations in the existing prediction models [21]. These limitations include
disregarding important clinical information upon hospital admission as well as problems
related to model generalization and clinical validation [14,22].

A major limitation in previous prognosis studies is that they were primarily conducted
on severe forms of the disease [22]. Research on asymptomatic, mild, or moderate COVID-
19 infections is limited [23,24]. From a practical perspective, and considering limited clinical
assessments on the hospital floor, triage decisions are mostly complicated by COVID-19’s
biphasic clinical course: patients who present initially with mild symptoms often return
later for admission, and many subsequently suffer adverse events, including ICU transfer,
mechanical ventilation, or mortality [25]. Thus, developing reliable methods to predict
COVID-19 infection severity levels will provide significant assistance for clinicians in
appropriately triaging and planning follow-up care for patients presenting for COVID-19
screening, facilitating improved allocation of limited health care resources.

In this paper, we develop and deploy a novel data-driven prognosis framework to
provide patient-level predictions for the severity of COVID-19 infection for patients at the
time of hospital admission. To overcome the limitations of current approaches and respond
to the continuous clinical demand for robust and individualized prediction of COVID-19
severity, we leverage a well-curated data registry of patients admitted with COVID-19
to one of the largest tertiary hospitals in the Middle East. Unlike many previous studies
that consider a single prediction model, in this study, we comprehensively evaluate and
compare four machine learning models. Moreover, the proposed prediction framework
was evaluated using concurrent and prospective validation data sets in order to ensure the
results’ generalizability.



Int. J. Environ. Res. Public Health 2022, 19, 2958 3 of 16

2. Materials and Methods
2.1. Data Sources

King Faisal Specialist Hospital and Research Centre (KFSH&RC) is located in the
Kingdom of Saudi Arabia (KSA) and is among the largest tertiary multi-hospital systems
and medical research centers in the Middle East region. Its main facilities are located in
Riyadh (the capital of KSA), Jeddah, and Madinah. Combined, the hospital has more than
1800 beds and 14,000 staff and clinical consultants. On average, it has 30,000 admissions
and 90,000 emergency room (ER) visits each year [26]. The Automated Multi-Dimensional
COVID-19 Registry System is a well curated registry system developed at KFSH&RC to
support research, operations, and health care intelligence. This data registry system was
used as the primary data source for those patients hospitalized with COVID-19 considered
in this study.

Our study cohort included two groups of subjects. The first group contained 1848 adult
patients admitted to the hospital between March 2020 and 6 April 2021. Of these, 49.32%
were male and the remaining 50.68% were female patients. Adult patients in this study
included only those who were of age ≥18 years at the time of their COVID-19 related
hospital admission. Using stratified sampling, this data set was split as follows: 75%
(1386 patients) was used for training and model development and 25% (462 patients) was
used for testing and model evaluation (concurrent validation). Patient data in the second
group were considered as a prospective validation set as the data were collected after the
end of the collection period for the original data set. Subjects in the second group included
185 adult COVID-19 patients admitted to the hospital between late April and May 2021.

The recorded data for each patient in both groups encompass clinical observations
collected from inpatient encounters. Patients’ race and ethnicity were excluded from
the study. In addition, all members of the patient population are from the same hospital.
Figure 1 shows the details of the study cohort and the data sets used for model development,
evaluation, and prospective validation.

Figure 1. Details of the study cohort and data sets used for model development, testing,
and validation.

COVID-19 hospital admission terms for subjects in this study included: general
admission, ICU admission, anesthesia and critical care medicine admission, chronic care
management admission, and critical care admission. For patients with multiple admissions,
we considered the earliest date and time of admission. Patients admitted with COVID-
19 were identified using the following severity stages: A = asymptomatic, B = mild,
C = moderate, and D = severe according to the guidelines of the U.S. National Institutes of
Health (NIH) [27], which are used in the KSA.
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2.2. Features

For each patient, the following features were considered:

1. Demographic features included the blood type, age, and gender of the patients
admitted with COVID-19. In addition, height and weight were used to compute the
Body Mass Index (BMI) as a demographic feature.

2. Vital signs included body temperature (axillary and oral temperature), heart rate,
and oxygen saturation at admission. Maximum heart rate, body temperature, and res-
piratory rate, as well as the minimum oxygen for a 24-h interval after admission, were
recorded and considered.

3. PCR cycle threshold (Ct) value was used to categorize patients in terms of the viral
load associated with the COVID-19 infection. Ct ≥ 34 was categorized as low viral
load, 26≤ Ct < 34 was categorized as medium viral load, and Ct < 26 was categorized
as high viral load. The Ct value taken was the closest before time of admission.

4. Health conditions of patients admitted with COVID-19 included 12 such conditions
that were used to describe the admitted patients. These conditions included in-
formation about specific chronic diseases and major treatments. Chronic diseases
considered included diabetes mellitus, hypertension, cancer, heart failure, coronary
arterial disease, chronic lung and kidney diseases, and human immunodeficiency
virus (HIV) infection. Furthermore, information about patients with obesity, chronic
use of steroids, solid organ stem cell transplant, and treatment with chemotherapy
for cancer was also considered. Each of these health conditions was evaluated in-
dependently, using a flag of Yes/No to represent the presence/absence for each of
them, respectively.

5. Severe acute respiratory infection (SARI) risk exposure which included two risk
levels. The first, directly exposed persons, included persons who were within two
meters of an asymptomatic patient without the use of an N95 respiratory mask and
without considering droplet and contact precautions. The other type of exposure risk
is denoted by non-directly exposed persons, including those who stayed in the same
environment with an asymptomatic patient before implementing airborne transmis-
sion precautions while implementing droplet and contact precautions. Based on this
criterion, patients were categorized into directly exposed (34%), indirectly exposed
(16%), and unknown (46%) groups. Unlike other features which were recorded by the
EMR system, this feature is patient reported data.

2.3. Data Preprocessing and Preparation

The collected data set included some missing feature values that represent unknown
values for these features in corresponding patients. Missing measurements is a very
common issue in medical data registries. Our analysis showed no systematic differences
between patients with missing data and those with complete data. Thus, missing data
in this study were assumed to be missing completely at random (MCAR) [28]. In this
study, missing values were imputed using a pipeline based on the K-nearest neighbors
(KNN) approach. For any missing patient feature, we identified the patient with features
that were closest in value to the features of the patient with the missing feature (i.e.,
the patient with the closest health state). Then, we used model-based imputation methods
to generate estimates for the missing parameters conditional on the given data that we had,
the observed relationship between variables, and constraints imposed by the underlying
distributions. Different modeling methods were evaluated and the method that provided
the minimum cross validation mean square error (MSE) over training data was selected
for imputation. Thus, each missing value was estimated using various regression models
(i.e., random forest (RF), Bayesian ridge, Extra Trees) by calculating the mean squared error
(MSE) and selecting the estimation method with least MSE for imputation.
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After that, the data were prepared for use with machine learning algorithms. The cate-
gorical feature variables were represented using the one-hot encoding approach, whereas
the numeric continuous feature variables were standardized by subtracting the mean value
from each of them so that the standardized values had a zero mean, and then by dividing
the result by the standard deviation (σ) so that the resulting distribution had unit variance.

Standardizing the features also enabled us to obtain a Z-score (with zero mean and
unit variance), which can be used for outlier detection and removal using standard Z-score
cut-off values. For each scaled feature, outliers were identified by a Z-score cut-off = 5σ.

The distribution of patients in the modeling data set included 13.1% asymptomatic,
38.2% mild, 41.6% moderate, and 7.2% severe patients. Two actions were taken to overcome
imbalance between the classes and avoid introducing bias into the prediction results
due to this imbalance. First, and upon discussing the matter with clinicians, we merged
asymptomatic (A) and mild (B) classes into one class, AB, due to their similarity. Then,
we oversampled the minority classes (classes C and D) so that all classes had equivalent
distribution (representation) within the training set. We intentionally removed outliers
prior to the oversampling process so that the outliers would not be emphasized in the
generated oversampled distribution. This is further illustrated in Figure 2.

Figure 2. Distribution of training data after merging classes A and B and oversampling minority classes.
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2.4. Prediction Philosophy and Classification Models

In this study, we aimed to predict the severity of COVID-19 infections using readily
available clinical data and physical examination findings at the time of admission to the
hospital. Thus, we posed this problem as a multi-class prediction problem. For each patient
j where j = 1, 2, . . .N, and N = 1848 is the number of patients in the study group, we
can construct the data tuple {xj, tj} where xj denotes the m-dimensional feature vector for
patient j, xj = [x1j, . . . , xmj]

T . This is composed of the features x1j, . . . , xmj, where m = 27 is
the total number of features extracted for each patient, tj is the target severity class label of
the patient j, tj ∈ {1, 2, . . . , K} where K is the number of severity classes considered in this
study (K = 3). The goal is to identify a classification model that can predict the severity
class label tj ∈ {1, 2, . . . , K} using the corresponding feature vector xj, for each patient
j ∈ N. To identify the most feasible model and ensure the generalizability of the proposed
framework, we evaluated four different machine learning models that support multi-class
predictions including multinomial logistic regression (a classical classification model well
known in the medical field) and three ensemble based learning algorithms.

2.4.1. Multinomial Logistic Regression (MLR)

MLR generalizes traditional LR to multiclass problem [29]. MLR implements a linear
predictor function f (xj, k) = ω(k)xj, where f (·) obtains the score of xj belonging to class k,
depending on the vector of logistic regressors corresponding to the kth class, defined as
ω(k) = [ω

(k)
0 , ω

(k)
1 , . . . , ω

(k)
m ]. MLR is formally defined by the following probability density

function (PDF) [30]

p(tj = k|xj; Ω) =
exp(ω(k)xj)

ΣK
k=1exp(ω(k)xj)

(1)

where Ω = [ω(1); . . . ; ω(K)] comprises the logistic regressors of all classes. Indeed, the main
goal of the MLR is to estimate the Ω set from the training data set.

Considering the MLR as a set of independent binary regressions, the method runs
K− 1 models and selects one label (normally the Kth class) as the “pivot” and separately
regress the remaining K− 1 labels against the pivot by the following equation:

p(tj = k|xj)

p(tj = K|xj)
= exp(ω(k)xj) (2)

where the index k ∈ {1, 2, . . . , K− 1} has been corrected and K is the pivot label. The MLR
is interpreted as a set of K− 1 independent logistic regression models for the probability of
tj = k versus the probability of the pivot label tj = K. Recognizing that all class probabilities
must sum to one ΣK

k=1 p(tj = k) = 1, we can generalize Equation (2) to express the pivot
class probability as follows:

p(tj = K|xj) =
1

1 + ΣK
k=1exp(ω(k)xj)

(3)

Paragraph format ω(k) ∈ Ω are calculated using a regularized maximum likelihood
estimation. Regularization is controlled by a hyperparameter that is tuned to reject complex
models and improve generalization of the estimated MLR model over unseen data. The final
solution for the best estimate of the unknown model parameters can be found using iterative
search procedures, such as gradient-based optimization algorithms [31].
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2.4.2. Random Forest (RF)

RF is an ensemble machine learning method that constructs a multitude of decision
trees at training time and outputs the class that is averaged or voted by every individ-
ual tree [32]. RF was proposed by Breiman in 2001, who added an additional layer of
randomness to the bagging method [32].

Bagging, or bootstrap aggregating, is an ensemble algorithm designed to improve
the stability and accuracy of individual predictive models such as trees [33]. Bagging
helps decision trees reduce their variance, making RF one of the most popular ensemble
tree models, mainly due to its stability and robustness with data sets of any size. When
training an RF, individual decision trees are trained using different samples of the instances
(bagging method), whereas at each split, the learning algorithm randomly samples a subset
of the features and chooses the best split among them. Finally, multiple base classifiers
are combined into an RF model, and the final model classification result is obtained by
majority voting.

Previous theoretical and experimental studies have shown that the RF has high pre-
diction accuracy and generalization performance [34]. It has good robustness for noisy
data and missing values. Most importantly, it does not suffer from overfitting because
it uses the predictions’ average of all decision trees participating in the classification or
regression process, canceling out the biases. Model hyperparameters that were tuned for
the RF include the maximum allowable depth per tree, maximum number of features per
node split, and the number of estimators (trees) in the forest.

2.4.3. Extreme Gradient Boosting (XGBoost)

XGBoost is a scalable machine learning ensemble system for tree boosting proposed
in 2016 [35]. Gradient boosting is the original XGBoost model; it improves weak classifier
models sequentially and makes them strong classifiers [36]. The idea behind this algorithm
is to construct multiple decision trees based on feature splitting nodes. As a decision
tree-based model, XGBoost learns sequentially from residuals using the residual fitting
approach to increase the accuracy of data classification. Each time a decision tree is
constructed, the residual predicted by the last model is fitted, so that the objective function
is reduced (i.e., performance is improved). In other words, gradient boosting technique
sequentially generates a new model to predict the residual of previous tree models and
gradually increases performance thereby [35]. Finally, many weak decision tree classifiers
are integrated into a strong classifier, and each leaf node of each tree corresponds to a score.
When a sample is predicted, the model will find the corresponding leaf nodes in each tree
based on the characteristics of the sample. The predicted value of the sample is the sum
of the score of all leaf nodes. Model hyperparameters that were tuned for the XGBoost
include the learning rate, maximum depth per tree, and the number of estimators (trees).

2.4.4. Extremely Randomized Trees (Extra Trees)

The extremely randomized trees (Extra Trees) classifier is an ensemble learning method
that was proposed in 2006 [37]. Extra Trees build multiple decision trees in a forest and
aggregate their votes to output the classification result. In this method, the nodes are split
using random subsets of features rather than best splits. The Extra Trees classifier differs
from the RF classifier in constructing the decision trees in the forest and selecting the split
point. By comparing the execution time and computational cost, the Extra Trees algorithm
is faster than the RF algorithm because it selects the optimal split randomly instead of
searching for it at each node. Model hyperparameters tuned for Extra Trees include the
maximum depth per tree, minimum number of training samples per node split, and the
number of estimators (trees).
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2.5. Evaluation of Prediction Results

In this study, recall (Re), precision (Pr), and F1 score were applied to assess the per-
formance of the proposed modeling framework in predicting each of the severity classes
k ∈ {1, 2, . . . , K}. Re is the fraction of patients who were correctly predicted to fall into
severity class k out of all patients with target class label k. Pr is the fraction of patients who
were correctly predicted to fall into severity class k out of all patients who were predicted
for this severity class. The F1 score is the harmonic mean of Re and Pr and can account for
the Re/Pr tradeoff, providing a more comprehensive snapshot of the overall performance
of the proposed modeling framework.

Additionally, the receiver operating characteristics (ROC) curve was used to illustrate
the diagnostic ability to predict each severity class [38]. The area under receiver operating
characteristics curve (AUC) was used as a measure of the classification’s model overall
ability to predict different severity classes. A greater AUC indicates a more useful and
effective classification model.

3. Experiments and Results
3.1. Classification Performance over Test Set of Patients

The training data set was used for model development. To tune the hyperparameters
for each model, we performed a grid search with a five-fold cross-validation using the
training data set. We repeated this 10 times to ensure optimality of the hyperparameter
selections. Table 1 shows the optimal selection for each of the tuned hyperparameters per
each model. The testing data set was isolated and used only to evaluate and compare the
performance of the developed models.

Table 1. Optimal hyperparameter settings for the different machine learning models considered in
this study.

Model Hyperparameter Best Selection

MLR Reg. penalty L2 Norm
Reg. Coeff. 1

RF
max_depth 60
max_features Auto
n_estimators 800

XGBoost
learning_rate 0.1
max_depth 9
n_estimators 100

Extra Trees
max_depth 100
n_estimators 500
min_samples_split 5

Figure 3 and Table 2 show test ROC results and the corresponding AUC performance
for the classification models employed in this study. The ensemble methods show a clearly
improved AUC performance over the MLR method. Among the three tree-based classification
models, the RF classifier shows the best classification results (for three severity classes) as well
as the respective micro- and macro-averages for the AUC values. Thus, the RF classifier was
selected to implement and deploy the severity prediction system at KFSH&RC.

Table 2. AUC Results for different classification models using test patient data (concurrent validation).

AUC/ROC Results Using Test Patient Data

Model Stage AB Stage C Stage D Micro-avg. Macro-avg.

MLR 0.83 0.66 0.78 0.82 0.76
XGBoost 0.82 0.72 0.88 0.85 0.81

Extra Trees 0.84 0.73 0.85 0.86 0.81
RF 0.86 0.75 0.88 0.87 0.83
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Figure 3. ROC for different classification models over test patient data: (a) RF classifier, (b) Extra
Trees classifier, (c) multinomial logistic regression, (d) XGB classifier.

3.2. Implementation and Evaluation over Prospective Validation Data

The proposed system was implemented and further developed into an intelligent
software engine for COVID-19 patient severity level assessment and prediction at the time
of admission to the KFSH&RC. Furthermore, the proposed prediction framework was
prospectively validated on a data set of 185 patients as shown in Figure 1.

Table 3 shows the per-class performance of the proposed COVID-19 severity prediction
system in predicting the severity of 185 COVID-19 admissions in the period from late April
to May 2021. As the table shows, the proposed prediction tool shows a very good overall
performance in predicting COVID-19 severity levels at admission, providing excellent
assistance to clinicians and the clinical decision-making process regarding treatment and
resource allocation plans for newly admitted patients. Interestingly, the highest recall
(Re) values were achieved during the combined Stage AB, which indicates the model has
an excellent ability to rule out those who do not need close monitoring and treatment.
Accordingly, this will improve resource allocation and utilization for those who are in
urgent need of close health care supervision. Furthermore, the model has superior Pr
values in predicting severe COVID-19 cases, which will also have a significant impact on
clinical decisions to directly prepare those assessed as being in the severe class for advanced
treatment protocols.
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Table 3. Severity prediction performance over prospective validation data.

RF Classification Performance over Validation Set

Severity Stage Re Pr F1-Score

Stage A (Asymptomatic) + Stage B
(Mild) 90% 75.0% 81.8%

Stage C (Moderate) 78.4% 69.0% 73.4%
Stage D (Severe) 78.9% 97.8% 87.4%

3.3. Feature Importance in Predicting COVID-19 Severity

Overall, the best preforming model for prediction in this study was the RF classifier.
This model is not only applicable in regression and classification but also has excellent
behavior in feature ranking and selection. In other words, RF can be used to sort features
with respect to their contribution in predicting the target COVID-19 severity classes [39].

Despite providing sensible means for feature selection for many applications, RF
feature importance may be unreliable in situations where features vary in their scale of mea-
surement or number of categories, which is very common in biomedical applications [40].
Thus, for model inspection purposes, we considered the standard RF feature importance
analysis, as well as an alternative RF implementation, that provides unbiased variable
selection and ranking in the individual classification trees which is called the permutation
feature importance method [40]. It is a model inspection technique that can be used for
any fitted estimator when the data are structured or tabular, and it is especially useful for
non-linear and opaque estimators [40]. The permutation feature’s importance is defined
to be the decrease in a model score when a single feature value is shuffled randomly [32].
This procedure breaks the relationship between the feature and the target, so a decrease
in the model score indicates how much the model depends on the feature. This technique
is model agnostic and can be calculated many times with different permutations of the
feature. In this study, we considered permutation feature’s importance using RF as a base
estimator since this was the best performing model among those considered earlier.

Figure 4 shows the feature importance ranking for predicting the severity of COVID-19
infection using the standard RF importance method and with permutation. It is clear that
the respiratory rate and the blood oxygen saturation levels are the most important factors
in predicting the severity of COVID-19 infection for patients admitted to the hospital.
Despite the differences in ranking between the two methods, both give high importance for
temperature, heart rate, age, and BMI.
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Figure 4. Feature importance in predicting COVID-19 severity: (a) standard RF feature importance
and (b) permutation feature importance.

4. Discussion

In this study, we rigorously developed and prospectively validated a data-driven
framework to predict the severity of COVID-19 infection in patients admitted to the hospital.
The prediction model uses readily available clinical data and physical examination findings
at the time of admission to the hospital as inputs to the prediction framework. Unlike
previous studies that considered only one prediction model, our study comprehensively
evaluated and compared four machine learning models including an MLR model and three
tree-based ensemble learning models (XGBoost, Extra Trees, and RF). Our results indicate
that the RF model obtained the best prediction performance. Data from 1386 patients were
used for model training and optimization. The proposed prediction system shows excellent
discrimination results in both concurrent validation (n = 462, March 2020–6 April 2021)
and prospective validation (n = 185, late April–May 2021).

Several previous studies developed prognosis models for COVID-19 [25,41–52]. Neverthe-
less, these models were limited to predicting severe illness [41,42,44,52], mortality [45–50,53],
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or (less frequently) the length of stay in hospital for COVID-19 patients [45–50]. The
majority of these studies considered various patient lab measurements as features for
prediction [41,43,45,46,48,52,53], while others considered features from lung tomogra-
phy/radiography images [25,41,43,46,51,52]. Not only that the majority of these models
were limited to predicting adverse conditions but they were also based on small patient co-
horts (median, n = 189 [25]), developed for the inpatient and not accounting for outpatient
screening, and have rarely been prospectively validated [44,47,51,54] .

The present study is distinct from previous studies in many aspects. First, we use a
large data set of COVID-19 patients with diverse severity stages ranging from asymptomatic
to severe. This data set was leveraged by a panel of clinical and data experts to develop a
multi-class data-driven framework that is optimized to predict different COVID-19 severity
levels and not only limited to critical illness and death. Second, our study uses COVID-19
patient-level clinical data that is easily accessible and commonly available at the hospital
floor. The proposed approach eliminated the need to utilize complex laboratory values
that would limit the applicability of the model to specific lab input values which might
not be readily available. More importantly, the performance of the proposed framework
is not dependent on adjustable cut-off thresholds applied on lab measurements which is
a significant limiting factor as thresholds might not be generalizable to different patient
populations [22]. Finally, we validated our model on a prospectively collected patient
cohort, providing an assessment of model generalizability with reduced (minimal) bias.

Our analysis shows that simple data extracted from EMR, vital signs, and PCR ma-
chines are of significant importance in predicting the severity of COVID-19 infection at the
time of hospital admission. In particular, our results show that respiratory rate and blood
oxygen saturation levels are the most significant predictors for the severity of a COVID-19
infection. Interestingly, this agrees with previous research findings [17] despite differences
in patient demographics and data analysis methods. Other variables that were found to
significantly contribute to the disease severity include advanced age, heart rate, tempera-
ture, and obesity (high BMI), which also have been identified as significant risk factors in
some recent studies [3,4,25,55–57]. Similar to [25], our results indicate that hypertension
and diabetes mellitus are not significant predictors for COVID-19 severity.

The proposed system showed promising prediction performance in both concurrent
and prospective validation. Furthermore, it has been further developed to an intelligent
software engine for COVID-19 patient severity level assessment and prediction at the time
of admission to KFSH&RC. Nevertheless, and similar to other clinical decision support
systems, it does not totally replace physician judgment. Rather, it will significantly help to
improve risk stratification for COVID-19 patients and enhance medical decisions regarding
testing, hospitalization, and follow-up. The proposed prediction framework will also assist
providers in matching patients with appropriate level of needed care for better management
of scarce hospital resources during COVID-19 surges.

Our study has some limitations. Although the study is based on a data registry system
from a large tertiary hospital system, it is still a single health care system. Consequently,
this may limit the generalizability of the proposed severity prediction tool to other health
care systems. Another limitation of this study is that it did not consider patients who were
not admitted to the hospital. As a result, we may not have captured hospitalizations and
deaths that occurred outside KFSH&RC. Nevertheless, we believe most patients would
have been readmitted to KFSH&RC and the electronic medical records (EMR) would have
captured details of their clinical status.

Future efforts will focus on incorporating more data from other healthcare systems into
the prediction system in order to extend its use to regional and national levels. Additionally,
we plan to further improve the performance of the prediction framework using features
from the respiration and blood oxygenation waveforms. We plan to use the dynamic
changes in breath amplitudes and inter-breath intervals as well as the frequency and
depth of oxygen desaturations [58–60] in order to improve the overall performance of the
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prediction framework and particularly improve the ability to predict the class of moderate
COVID-19 infections.

5. Conclusions and Future Work

Despite more than 10 billion doses of different types of vaccines that have been admin-
istered globally, the world still experiences continuous surges in the number of COVID-19
cases resulting from the virus and its continuously arising variants. This paper provides a
new perspective for predicting patients’ COVID-19 severity levels at the time of hospital
admission using comprehensive data collected from the hospital electronic medical records
(EMR), vital sign monitoring devices, and Polymerase Chain Reaction (PCR) machines.
Our study comprehensively evaluates and compares 4 machine learning models using
a training data set of 1386 patients (March 2020–April 2021). Data-driven models that
were investigated included multinomial logistic regression (MLR) and three tree-based
ensemble learning models (XGBoost, Extra Trees, and RF). Our results indicate that the best
prediction performance was obtained with the RF model. Moreover, experiments showed
excellent discrimination results in concurrent validation (n = 462 patients, March 2020–
April 2021) and prospective validation (n = 185 patients, April–May 2021). The proposed
framework was developed into a real-time severity prediction tool in KFSH&RC which
significantly assisted in matching patients with appropriate level of needed care during
COVID-19 surges.

Furthermore, our results show that respiratory rate and blood oxygen saturation
levels are among the most significant predictors for the severity of COVID-19 infections.
Future work may focus on extending the framework to analyze continuous waveforms
of respiration and blood oxygenation to improve the prediction performance as well as
integrating patient data from several health care centers in order to extend the use of this
prediction framework into a large scale.
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