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Abstract: With social networking enabling the expressions of billions of people to be posted online,
sentiment analysis and massive computational power enables systematic mining of information
about populations including their affective states with respect to epidemiological concerns during
a pandemic. Gleaning rationale for behavioral choices, such as vaccine hesitancy, from public
commentary expressed through social media channels may provide quantifiable and articulated
sources of feedback that are useful for rapidly modifying or refining pandemic spread predictions,
health protocols, vaccination offerings, and policy approaches. Additional potential gains of sentiment
analysis may include lessening of vaccine hesitancy, reduction in civil disobedience, and most
importantly, better healthcare outcomes for individuals and their communities. In this article, we
highlight the evolution of select epidemiological models; conduct a critical review of models in terms
of the level and depth of modeling of social media, social network factors, and sentiment analysis;
and finally, partially illustrate sentiment analysis using COVID-19 Twitter data.
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1. Introduction
Brief Background

Pandemics negatively impact the social behavior of individuals, national economies,
and the vitality of the global economy [1]. Pandemic spread predictions, public health pro-
tocols, and vaccine adoption models are critical for advising governments, non-government
organizations, heads of households, and individuals on behaviors and policies that may
reduce their risk and slow the spread of the disease [2]. At the 2020 onset of COVID-19 in
the United States of America, model guidance for “fifteen days to slow the spread” locked
the nation down [3]. Health protocols such as social distancing, mask wearing, and hand
sanitizing led to an initial drop in cases [4,5]. By June 2021, with as many as one in five
Americans expressing vaccine hesitancy, vaccine adoption rates slowed at around 50% of
the population fully vaccinated [6,7]. With the onset of the Delta variant and correspond-
ing rise in infections, hospitalizations, and deaths, a new surge in vaccinations occurred,
though far less than hoped [8]. As a result of unfilled expectation, vaccine mandates were
issued which have been met with widespread resistance as to their scope and appropriate-
ness [9–11]. While vaccine hesitancy is not a new phenomenon, vaccine hesitancy has the
potential of prolonging the longevity of a pandemic and, depending on whether or not the
virus mutates into an endemic state, may even enable re-emergence [12].

Clearly government-imposed protocols and policies, no matter how well intended,
degrade over time due to mounting social pressures and inevitable civil disobedience [13].
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Given significant errors in original model predictions and policies [14], the question arises:
what is the state of incorporation of sentiment analysis in epidemiological modeling, and
what are its advantages and limitations?

We lay a foundation for discussion of these questions with a literature review of 34 se-
lected models listed and characterized in Appendix A-Model Summary while providing
a critical review of each model in terms of the level and depth of modeling of social media
factors and sentiment analysis.

2. Materials and Methods

Our review used a methodological approach in which 34 selected distinct models typed
in the following categories: Epidemiological State Model Foundations, Epidemiological
Statistical Forecast Models, Theoretical Interventions Models and Approaches, Agent-based
Models and Multiagent Systems Models, and Artificial Intelligence and Hybrid Models.
More recent models supplement traditional approaches with information from social media
(SM) or social networks (SN). Social media and social networks are varied based on the
methodology of the calibration with models, where some models trace GPS records or
calls through social networks techniques in order to study public mobility behavior effects
during pandemics, while other models are able to analyze population sentiments through
their tweets, posts, or short message service (SMS). Sentiment analysis can be performed
for the social media platforms that provide opinions and comments, such as Twitter and
Facebook. We discuss 34 classifications of models with descriptions of their advantages
and limitations as well as whether the sentiment analysis and machine learning approach
were able to capture the real opinions of the population about the COVID-19 vaccines. We
conducted the sentiment analysis for Twitter users in the USA to describe their attitude
and opinions about COVID-19 vaccination during the Delta variant surge.

2.1. Epidemiological State Model Foundations

Epidemiological state data observed over time may be used to generate mathematical
relationships for estimating state-to-state transitions within the population using assump-
tions about the disease process, social mixing, public health policies and other inputs [15].
Developed in the 1920s, Kermack and McKendrick’s (1991) Susceptible, Infected, Recovered
(SIR) model [16] may be considered the grandfather of epidemiological state modeling
(Figure 1). SIR represents population states of susceptible (S), infected (I), or recovered
(R) as the disease progresses through the population (Cooper, Mondal and Antonopoulos,
2020). SIR models for person-to-person transmitted diseases confer immunity after infection
in contrast SIS (susceptible, infected, susceptible) does not confer immunity [17]. A total of
12 of our 34 models are descendants of the SIR model and are illustrated in Figure 1 below.
These include: Susceptible, Infected, Recovered (SIR); Susceptible, Infected, Susceptible
(SIS); Susceptible, Infected, Recovered, Deceased (SIRD); Maternally derived immunity,
Susceptible, Infected, Recovered (MSIR); Susceptible, Exposed, Infected (SEI); Susceptible,
Exposed, Infected, Recovered (SEIR); Susceptible, Exposed, Infected, Susceptible (SEIS);
Maternally derived immunity, Susceptible, Exposed, Infected, Recovered (MSEIR); Mater-
nally derived immunity, Susceptible, Exposed, Infected, Recovered, Susceptible (MSEIRS);
Susceptible-Latent-Infected-Recovered-Dead-Susceptible (SLIRDS); Exposed, Infected, Hos-
pitalized (EIH); Susceptible, Infected, Hospitalized, Recovered (SIHR); and Susceptible,
Exposed, Infected, Quarantined, Recovered, Dead, Vaccinated (SEIQRDV). Each box repre-
sents a state of disease which is represented by a set of mathematical rules as people move
from state to state. Epidemiological state models have the advantage of flexibility when
being built, provide the possible transitions states for the proposed study, and provide
a clear exploration and sequence for population states during pandemics. On the other
hand, one limitation is that it does not include the public behavior or the human factors that
play a significant role in the disease spreading rate and following the health interventions
protocols, which affect the models’ prediction accuracy.
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Figure 1. SIR and twelve of its descendant models.

In our review, the SEI, EIH, and SIHR models were calibrated with social media
for media awareness programs to explore the media effects on public behavior during
pandemics which impact the disease spread rates.

2.2. Epidemiological Statistical Forecast Models

In our review, 5 models fell within the Epidemiology Statistical Forecast Models cat-
egory, where statistical forecasting models use the currently recorded data of infected,
deaths, recovered cases, and so on to forecast the future rates of cases. They include
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the Differential Equations Leads to Predictions of Hospitalizations and Infections (DEL-
PHI); Auto-regressive integrated moving average (ARIMA); Los Alamos National Labora-
tory COVID-19 forecasting using Fast Evaluation and Estimation (LANL COFFEF): John
Hopkins model COVID-19 prediction (JHU COVID-19 prediction); Susceptible, Exposed,
Infected, Quarantined, Recovered, Dead, Vaccinated forecasting (SEIQRDV.F). Epidemio-
logical Statistical Forecast models build on the aforementioned state models project trends
into the future but typically do so based solely on extending statistical trends discovered
in the data [18]. In the current COVID-19 pandemic, the Johns Hopkins Coronavirus
Resource Center (https://coronavirus.jhu.edu/data, accessed on 9 December 2021) [19] is
well known for tracking epidemiological state data and reporting various statistical trends
of interest to decision makers.

Of the Statistical Forecast models listed, the SEIQRDV.F model (Figure 2) includes
a vaccination state [20], where the model studies and analyzes the impact of vaccination
step on the pandemic spread trends among the population. Additionally, the SEIQRDV.F
model includes additional rate parameters that help predict the effects of vaccines on the
disease spread. However, in our review, SEIQRDV.F was not calibrated with SN or SM, but
we included it due to the added vaccination feature in the model. Only the ARIMA model
within this category was calibrated with SM using Google and Twitter as their data source.
The Epidemiological Statistical Forecast Models can provide more accurate predictions
compared to the state models as they involve the demographical and/or geographical
date. Thus, they can be useful to provide prediction for the results at any place or location.
However, these models cannot generate individuals’ behavior effects on the pandemic
trends because they do not involve the differences among people, such as reasons behind
performing or ignoring the action, and the individual opinions.

Figure 2. SEIGRDV.F State Model Base (adapted from [20]).

2.3. Theoretical Intervention Approaches and Models

Statistical forecast models track and extend data rates but do not necessarily explain
radical changes or differences in rates such as the sudden increases and fluctuations in
infections between communities or nations. Theoretical intervention approaches attempt
to project disease outcomes beyond simple statistical trend extrapolation by modeling
the underlying dynamics of disease transmission, population behavior and vulnerability,
and preventive interventions [21]. Modeling underlying dynamics of pandemics is not
new [22]. System dynamics models are applied across a broad spectrum of applications
including pandemics, sexual behavior, smoking, exercising, and the use of seat belts [23].
A fundamental objective of applying systems dynamics for pandemic application is to
model, simulate, and quantify interventions and outcomes with the hope of limiting
disease spread and impacts [24,25]. During the COVID-19 pandemic, objectives included
identifying behavioral intervention measures to “slow the spread” [3] and gain time to
develop vaccines to counter the disease.

At least three theoretical intervention models that attempt to capture the dynamics of
human behavior in light of life-threating events have been put forth: the Health Belief Model
(HBM), [26], the Theory of Planned Behavior (TPB) [27], and the Protection Motivation
Theory (PMT) [28]. These approaches may be applied to state models or integrated together

https://coronavirus.jhu.edu/data
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for deeper work, such as integrating TPB theory and PMT theory to gain insights into both
behaviors and intentions of individuals [29].

Still in use today, the grandfather of theoretical intervention models is the Health Belief
Model (HBM) (Figure 3) developed in the 1950s by health, medical, and social scientists
in the United States of America [26]. HBM attempts to explain the human behavioral
response to outbreaks and associated health protocols. Influences on human behavior
included demographics and psychological variables acting through perceived susceptibility
to the health threat, perceived severity of the health threat, health motivation, perceived
benefits to taking the prescribed action, and perceived barriers to taking actions. For the
COVID-19 pandemic, an example of a perceived barrier to health protocols is the tendency
for individuals to stay indoors, where viruses may linger, during cold weather [30]. In
Figure 3, one can see the rise in infections in the United States of America as the cold
weather season began in November 2020. Another major limitation of HBM is its failure to
consider conflicting benefits. An excellent example of a conflicting benefit is the desire to
congregate with family and friends during traditional holidays and experiencing the love
and friendship of those dear to one another. That benefit conflicts with the benefit of the
COVID-19 social-distancing and mask-wearing health protocols. As many will choose the
former benefit and risk violating the COVID-19 health protocol and foregoing its benefit,
the natural result is a spike in virus infections subsequent to the holidays. Spikes can be
seen in Figure 3 in the United States of America and in India subsequent to their traditional
holidays [31,32].

The Theory of Planned Behavior (TPB), in its simplest form, involves individuals
evaluating a proposed behavior. If the individuals feel that their actions are important to
others and wish to do so, then they are more likely to carry out the proposed behavior.
A high association of behaviors and subjective norms with behavioral intent and actual
behavior has been verified in several studies, such as COVID-19 pandemic studies [33,34].
Limitations of the model include the need to design data collection methods suited to
individuals and relate those actions to impacts of the disease.

Figure 3. HBM model (Figure adapted from Lipman & Burt (2017)) (adapted from [35]).

PMT draws on factors similar to HBM including perceived severity of a threatening
event, perceived probability of the occurrence or vulnerability, efficacy of the recommended
preventive behavior, and perceived self-efficacy [28]. Moreover, these factors may be
grouped more generally in terms of appraisal and the coping appraisal. Threat appraisal
involves the perceived vulnerability, severity, and level of fear arousal, while the coping
appraisal involves response efficacy, self-efficacy, and perceived response-cost [36,37].
Complicating interventions such as controlling weight to prevent heart disease or stroke is
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the possibility that the intervention may have a side effect that causes another problem [29].
Furthermore, interventions may involve a secondary intervention such as using a medicine
to reduce the risk of heart attack [38].

Moreover, the theoretical intervention approaches and models explore the causes and
effects of public behaviors and intentions on the pandemic spread, as they explain and
study the factors that motivate people to follow the health interventions, or the barriers
that push them to not follow the protocols. So, they generate a clear description for the
relationships between people and interventions, and these relationships are affected by the
personal perceptions.

In our review, only the HBM used SM for calibration on the Facebook platform as
a data source.

2.4. Agent-Based and Multiagent Systems Modeling

Agent-based and multiagent systems attempt to model individuals (i.e., agents) and
influencers of individuals in a simulated community.

Going beyond latent factors, agent-based and multiagent systems share basic artificial
intelligence techniques by modeling “person(s), firm(s), machine(s), or software” that
generate the actions or interactions [39].

Potentially within the real world using the hybrid techniques discussed below [40],
“Agent-based modeling (ABM) explore(s) how the interactions of heterogeneous individu-
als impact on the wider behavior of social/spatial systems” [41] with “autonomous and
pro-active actors, such as human-centered systems” [42]. Modeling micro-interactions and
emergent macroscale behavior as autonomous entities enables each agent to assesses its
situation and makes decisions based on a set of rules [43] suited to itself [40]. In pandemic-
spread studies, an ABM approach “can capture the dynamics of disease spread combined
with the heterogeneous mixing and social networks of agents” [44]. By characterizing the
disease transmission rates, agents, and their environment, it is possible to generate real
scenarios for the pandemics trends [45]. Thus, this kind of model can take the individual
differences among population and explore how these differences affect the opinion and
final decision regarding following the healthy interventions and talking a vaccine. To
elaborate, HBM explores the potential cause-and-effect relationships between the pop-
ulation and the health interventions, benefits and barriers to apply these interventions,
while agent-based models explore how the individual differences among agents make them
incline to the benefits side or to the barriers side to follow the interventions. The agents can
make a decision about following the healthy action but can also ignore it or delay it.

Multiagent systems are notionally more appealing for pandemic applications then
a basic ABM approach [46] by addressing some ABM limitations [47–49]. Advantages
include the recognition and implementation of levels of social or organizational control
over entity self-regulation or self-determination, representation of availability and access
to channels of communications, and the nature, content and level of trust of information
disseminated on those channels [46]. For pandemic spread studies, multiagent systems
may model communications, cooperation, collaboration or competitiveness interactions
between heterogeneous agents to achieve a decision or goal [42,50].

In our review, there are 7 agent-based and 1 multiagent model pandemic applica-
tions discussed in the literature. The Coupled Contagion Dynamics of Fear and Disease
(CCDFD) model [51] contains seven states derived from the SIR model but models disease
dynamics and fear as two interacting contagion processes. The Social Distancing (SD)
model tests effects of different levels of social distancing policies on the disease spread [52].
The COVID-19 Agent-based Simulator (COVASIM) model [53] considers the effects on
COVID-19 epidemiology of multiple non-pharmaceutical interventions using agents with
“country-specific demographic information on age structure and population size” that
interact within “realistic transmission networks in different social layers, including house-
holds, schools, workplaces, long-term care facilities, and communities”. Additionally,
“age-specific disease outcomes, and interhost viral dynamics, including viral-load-based
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transmissibility” lend greater fidelity to disease dynamics. Silva et al., 2020 developed the
COVID-19 agent-based simulation (COVID-ABS) model from SEIR model using agents
organized into persons, houses, business, government, and health systems that communi-
cate and interact with each other. The model emphasized social distancing policies on the
COVID-19 pandemic, including: “(1) do nothing, (2) lockdown, (3) conditional lockdown,
(4) vertical isolation, (5) partial isolation, (6) use of face masks, and (7) use of face masks
together with 50% of adhesion to social isolation” [54]. Li and Giabbanelli’s 2021 COVID-19
Agent-based Simulator (COVASIM) and Vaccination model includes vaccination as an
additional intervention. The model focused on virus growth rates for different vaccination
scenarios, different nonpharmaceutical interventions, and different vaccine efficacy and
compliance levels [55]. Vyklyuk et al., 2021 developed Multi-agent Susceptible, Infected,
Recovered DMAS-SIR models to assess how COVID-19 spread through public transporta-
tion, supermarkets, colleges, universities, gyms, churches, and parks. Factors include
“incubation period, people’s keeping a safe distance when moving, simulated quarantine,
isolation.” [50].

FM and UT COVID-19 SD were the two models which included social network
in their calibration, using mobile phone calls and GPS traces respectively as their data
sources [56,57].

2.5. Artificial Intelligence and Hybrid Models

Artificial Intelligence and hybrid models include advanced artificial intelligence or
a combination of real-world, real-time data-collection techniques to fit specific applications.
There are 6 identified approaches we reviewed. First, the Youyang Gu COVID-19 (YYG)
model [58–60] is based on the SEIR state model to simulate the COVID-19 epidemic in
a given area of concern. Machine learning training methods aim to minimize the difference
between the predicted and actual outputs such as estimates of pandemic deaths. Secondly,
the deep transfer learning (DTL) model [61] focuses on real-time remote surveillance and
monitoring of mask-wearing protocols at points of interest. Thirdly, the University of
Virginia Biocomplexity Center PatchSim COVID-19 [62] hybrid model is an extension for
the SEIR model [63] that includes mobility tracing [64]. Fourth, the Institute for Health
Metrics and Evaluation COVID-19 (IHME COVID-19) model also builds on the SEIR
model to assess whether COVID-19 case rates would exceed the capacity of healthcare
facilities [65]. The hybrid modeling approach integrates demographic forecasts, agents, and
a social distancing policy based on individuals’ phone mobility traces. Forecasts include
demand for hospital care, daily and cumulative cases and deaths due to COVID-19 by
location [66]. Fifth, the Massachusetts Institute of Technology COVID-19 (MIT University
COVID-19) model is also based on the SEIR model and uses a neural network (“Model
quantifies the impact of quarantine measures on COVID-19′s spread”, 2020) to assess the
effectiveness of quarantine steps and to help forecast the spread of the virus [67]. Dandekar
and Barbastathis, 2020 improved the SEIR model by training a neural network to detect
the number of infectious individuals that are under quarantine and therefore no longer
transmit the infection to others [68]. Sixth, we included a Twitter vaccination analysis
model, which used Twitter as a data source, where users’ tweets are collected and analyzed
to under-stand public opinions regarding vaccination, where the model quantifies the
COVID-19 vaccine hesitancy among nations. Artificial intelligence and hybrid models have
the advantage of involving more than one model, which reduces the limitations of each
model and increases the efficiency of the analysis and its predictions. Additionally, it may
include a technological tool that captures additional features, such as the DTL model.

3. Social Media and Epidemiological Modeling

The numerous models clearly demonstrate that the transmission of a disease is in-
fluenced directly by people’s behaviors and social interactions [69], where the lockdown,
health practice, and social distancing interventions show significant results in flattening
the disease spread curve such as lockdown and a testing model [70] and SD model [55].
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Historically, governments used conventional broadcast media and various forms of social
media to promote healthy behavior and communicate infection diseases outbreak alerts,
public health protocols, vaccination programs, etc. [71,72]. Social media is considered
an influential factor on individual behavior and provides widespread dissemination of
information to citizens in a timely manner [73]. Thus, modeling social networks attempts
to incorporate the influence of the these social factors in modeling predictions [74]. Addi-
tionally, researchers may find social media datasets useful for analysis purposes. Given the
natural language nature of social media in all its forms, data-mining questions include: how
are various epidemiological issues represented and conveyed in social media? Once trans-
lated from various social media vernaculars, how does information impact decision-making
and risk management behavior [75]? A major caveat to social media is that user-generated
knowledge about infectious diseases is not always exact or useful and may involve rumors,
misinformation, and theories on conspiracy [76]. Thus, it is important to thoroughly study
the use of social media and its influence on the level of understanding and affective reac-
tions of the public to epidemiological concerns [77]. For example, EIH models can study
the effect of an awareness program on public opinions regarding interventions. Other
models use Twitter users’ tweets and Facebook posts to analyze users’ opinions about
a specific topic. Social networks were used in other studies to show how phone calls or
GPS records are used to trace human mobility and understand behavior regarding the
interventions and quantify how that affects disease spread. Regarding fake Twitter and
Facebook accounts, they do not represent any sufficient effects on the results, where they
are too low compared to the real users’ accounts. To confirm, most of the previous studies
that analyzed Twitter population opinions proved that fake accounts have no significant
effects on the analysis results.

3.1. Epidemiology State Models and Social Media

Tchuenche and Bauch, 2012; Cui et al., 2008; Sooknanan and Comissiong, 2020; and
Liu et al., 2007 integrated social media with Exposed, Infected, Hospitalized (EIH) state
models [78–81]. Only when infected case numbers are seen as significant does the public
behavior change to protect themselves [82]. Thus, the social media impact was added as
a mathematical function to the model to show how social media can utilize fear points as
a motivation to push people to follow the interventions through releasing the increase in
the number of infected cases and the high risk of being infected. So, their findings indicate
that incorporating social media significantly impacts public behavior to reduce the rates of
suspectable and infected cases.

3.2. Statistical Prediction Models and Social Media

Samaras, García-Barriocanal, and Sicilia, 2020 used Twitter and Google data with the
ARIMA model to forecast infections [83]. The aim of their study was to collect evidence
on which data source, Twitter or Google, leads to better results. Weekly influenza data
over a 23 week period was obtained from Google and Twitter for Greece and placed in the
ARIMA model which forecasted future weekly outcomes. These outcomes were compared
with influenza data from the European Center for Disease Prevention and Control for
validation purposes. The results of this study indicated that Twitter data were significantly
better than Google data.

3.3. Theoretical Interventions Models and Social Media

Raamkumar, Tan, and Wee, 2020 integrated social media into a Health Beliefs Model [84].
Facebook users posted their comments on COVID-19 posts from three agencies: the Singa-
pore Health Ministry, the Public Health in England (PHE), and Centers for the Prevention
of Diseases. Comments made on social distancing were labeled manually by a yes/no flag
in all four HBM constructs. A neural network trained and validated text classification using
16,752 responses. The classification model was able to predict beliefs, trends, and behaviors
toward following healthy interventions.
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3.4. Agent-Based and Social Media and Social Networks
3.4.1. Frias-Martinez (FM) Model

Frias-Martinez et al., 2011 [57] discuss techniques framed by a previous SIR model
study by Cruz-Pachecon et al., 2009 [85] that integrates agent-based models with social
networks and captures aspects of human mobility from call records. The method was
used to study the 2009 H1N1 epidemic in Mexico, to evaluate the effect of government
interventions on virus spread, and to predict people’s intentions to move. The model not
only represented the mobility behavior and social patterns of a community but also how
these patterns shifted over time. These improvements are important because they offer
a novel approach to ABM simulations based on real actions, which focuses on the agents’
mobility and social networks.

3.4.2. University of Texas at Austin’s (UT COVID-19-Social Distancing) Model

The UT COVID-19 SD University of Texas at Austin model predicts COVID-19 case
rates based on the SEIR model [56]. UT COVID-19 SD quantifies the effects of social
distancing intervention on disease spread through mobility traces focusing on the first wave
of COVID-19 deaths in the United States of America [56]. UT COVID-19 SD incorporated
analyzed obtained data from mobile-phone GPS traces, similar to Frias-Martinez et al.,
2011, by inferring locations of mobile phones using SafeGraph. According to Woody et al.,
2020 [56], “This data source quantifies two main types of distancing behavior: (1) changes
in visitation patterns to public places like restaurants, bars, schools, parks, pharmacies,
grocery stores, etc.; and (2) time spent at home versus at work” [86].

3.5. Hybrid Models and Social Media
Twitter and Vaccination Prediction Model

In recent years, social media platforms became a significant resource of data and
analysis. Content within tweets provide data to predict public behavior, beliefs, or opinions
regarding specific events, personalities, or subjects. In terms of epidemiology, Sattar and
Arifuzzaman, 2021 [87] used Twitter and machine-learning algorithms to capture and
identify public sentiment toward vaccines based on around 1.2 million tweets collected
across five weeks of April–May 2021. Twitter data were then used to project that around
62.44% and 48% of the US population will have at least one dose of vaccine and be fully
vaccinated, respectively, by the end of July 2021. As of July 31 2021, the actual one-dose
vaccination rate was 57.% (164.45 million) and 49.53% were fully vaccinated (190.98 mil-
lion) [88]. Therefore, this hybrid model involves an agent-based modeling approach and
machine-learning approach, where Twitter users (agents) posted their opinions about vac-
cination, and a machine-learning approach was used to extract public opinions and classify
them. Thus, the model can generate valuable results in a short time for the selected location
and time.

4. Illustration of Twitter Sentiment Data

To illustrate the Sattar and Arifuzzaman, 2021 approach, machine learning and senti-
ment analysis approaches were used to quickly and effectively measure vaccine hesitancy
in the United States of America for the period June 2021 to October 2021. During this
period, Twitter chatter reflected user changing sentiment toward vaccines in light of the
Delta variant spread and booster shot and child vaccination approval. We extracted and
analyzed Twitter sentiment datasets totaling 59,534 tweets for the three vaccines used in the
USA (Pfizer, Moderna, and Johnson and Johnson). The results shown in Figures 4–6 reflect
the change in public sentiment from the June baseline to the August Delta variant peak,
and booster shot and child vaccination approval issued in October 2021. Overall, Pfizer had
more tweets than J&J and Moderna. From the June baseline to the August Delta variant
peak, vaccine positivity increased. CDC data reflected that positivity with an increased
vaccination rate. On the other hand, from August to October, Pfizer vaccine positivity
dropped and negativity increased. Overall, Pfizer vaccine negativity increased from 15%
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of the June baseline of the population to 23% in October. Moderna had the second largest
population of tweets. Interestingly, the positivity of tweets on Moderna increased and
negativity decreased from June to October, though the final negativity toward Moderna at
22% was similar to Pfizer’s 23% negativity. Though dealing with the smallest population
of tweets, from August to October, Johnson and Johnson vaccine positivity dropped and
negativity increased, though negativity decreased from the June baseline. The October
negativity of 21% was also similar to Moderna’s 22% and Pfizer’s 23%. One may consider
vaccines a technology. In that light, the 21–23% negativity rate exceeds the 16% laggard
technology adoption rate identified by Rogers (1995) [89] and highlights the fear aspect
endemic to vaccine hesitancy that is not present in technologies considered by Rogers.

Figure 4. Sentiment analysis results of tweets related to Pfizer vaccine.
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5. Discussion and Limitations

In order to focus on COVID-19 vaccination, we extended Sattar and Arifuzzaman’s
model, which used Twitter to extract public sentiments about taking the vaccine. Our study
is inclusive of data during the Delta variant wave, whereas previous studies did not include
this timeframe. We utilized Twitter sentiment analysis to explain the public intentions and
opinions toward vaccination during the Delta variant surge. In addition, we compared the
sentiment analysis results to CDC datasets which show significant correlations. This model
involves agent-based modeling, social media, and a machine-learning approach. It shows
how Twitter outputs were useful to provide efficient insights into vaccination prediction
studies and how the Delta variant was a strong motivation for increasing vaccination rates
in the USA. Comparing to the HBM model, the extracted sentiments from Twitter and Delta
wave data show that people recognize the benefits of taking the vaccine, which is better
than being infected with Delta variant COVID-19.

At the outset, we asked: what is the state of the incorporation of sentiment analysis in
epidemiological modeling? What are its advantages and limitations?

Epidemiological modeling that includes gleaning rationale for behavioral choices,
such as vaccine hesitancy, from public sentiment analysis of social media channels appears
to be in the Rogers Innovator stage but promises further adoption as efficacy improves [90].
Working in favor of more rapid diffusion, social media offers a rich set of real-time data that
data mining may use to uncover changes in human behavior more quickly than traditional
data-collection methods. An obvious challenge will be data validation, though even hoaxes
promoted on the Internet can result in adverse social behavior in the short term [91]. Early
identification of behavior—whether based on fact or fiction—will help models to rapidly
adapted to reflect that change and provide information to responsible authorities to counter
falsehoods and inappropriate behavior. Similarly, the early identification of behavioral
changes may contribute to improved communications, protocols, and programs promoted
by governments, organizations, societies, or individuals. In the longer term, improved
model efficacy can speed the implementation of appropriate and timely interventions and
reduce or delay the disease spread.

Sentiment analysis limitations include closed nations and closed networks [19] as
access to data and demographics may limit the scope of the analysis or make it problematic.
Segmentation of the population across an ever-increasing number of social media choices
may drive the need to use multiple social media channels as well as the use of traditional
data-collection methods to improve the prediction efficacy [92]. For vaccination modeling
or promotion, simple GPS tracing or monitoring one or even two social media channels such
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as Facebook, Twitter, or Google will not reach the levels of model efficacy or vaccination
compliance desired. Varying levels of demographic engagement in social media may bias
results. For example, in the United States of America, more than 67% of people aged 65 or
older are the demographic most at risk to the virus and are consequently the most fully
vaccinated [93]. Identifying vaccine and booster hesitancy factors within this demographic
through social media is limited by the fact that 25% of the older demographic does not even
use the Internet [94]. Thus, successful data-mining and analysis of social media channels
for this 25% will in all likelihood be limited to means other than social media. Since the
level of threat from the virus varies by age, a very large number of younger Americans are
deferring or even foregoing vaccination, possibly feeling that potential side effects of the
vaccine are a greater threat than the threat of the virus [95]. Thus, future comprehensive
research must be cognizant of the radical differences in behavior between segments of the
population and plan a data collection methodology that spans complementary social media
channels as well as incorporates non-traditional data-collection methods.

6. Conclusions

Integrating social media into disease prediction models and health protocols models
give promising findings that support this trend of studies. During the review, we found
studies that encourage using social media tools as rich data sources and behavioral mod-
ification tools that help in the decision-making process. To illustrate this, social media
applications are considered as significant factors to provide valid data that improve the
models’ inputs drastically. In addition, the media has a strong contribution to control
public behavior and change it to be healthier through awareness programs. Moreover,
this smart cooperation can save time, increase the accuracy of predictions, and reduce or
delay the disease spread. We classified the epidemiological models into five categories:
Epidemiological State Model, Epidemiological Statistical Forecast Models, Theoretical in-
tervention approaches and models, Agent-based and Multiagent systems modeling, and
Artificial Intelligence and Hybrid models. We explored features and limitations of each
type and their contribution to the epidemiological modeling field. We then described
whether the models were integrated with social media and/or social networks factors in
previous studies.

Increasing public confidence in the models, protocols, and policies infers a more stable
and compliant behavior pattern that, if scientifically based, will decrease the pandemic
spread, promote public health protocols, and support vaccine implementation plans. For
future pandemic modeling and analysis, inconsistent national and state health practices,
and compounding international and intranational demographical divergent beliefs and
behaviors, we conclude that various forms of agent modeling combined with social and
traditional media data sourcing will produce the most efficacious models and, hence, the
most efficacious health protocols.
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Abbreviation

SIR Susceptible, Infected, Recovered
SIS Susceptible, Infected, Susceptible
SIRD Susceptible, Infected, Recovered, Deceased
MSIR Maternally derived immunity, Susceptible, Infected, Recovered
SEI Susceptible, Exposed, Infected
SEIR Susceptible, Exposed, Infected, Recovered
SEIS Susceptible, Exposed, Infected, Susceptible
MSEIR Maternally derived immunity, Susceptible, Exposed, Infected, Recovered
MSEIRS Maternally derived immunity, Susceptible, Exposed, Infected, Recovered, Susceptible
SLIRDS Susceptible-Latent-Infected-Recovered-Dead-Susceptible
EIH Exposed, Infected, Hospitalized
SIHR Susceptible, Infected, Hospitalized, Recovered

Appendix A

The below table summarizes the presented models in the manuscript. * Social Media:
SM; * Social Network: SN.

References
How Was SM or

SN Used?
Platform/

Application?
Calibrated with

SM or SN?
Goal/Predict no of? Type Model

[96] —– —– No
Susceptible cases

Infected cases
Recovered cases

Epidemiological
State models

Susceptible, Infected,
Recovered (SIR)

[97] —– —– No
Susceptible cases

infected cases
Epidemiological

State models
Susceptible, Infected,

Susceptible (SIS)

[98] —– —– No

Susceptible cases
infected cases

Recovered cases
Deaths cases

Epidemiological
State models

Susceptible, Infected,
Recovered,

Deceased (SIRD)

[99] —– —– No
Susceptible cases

infected cases
Recovered cases

Epidemiological
State models

Maternally derived
immunity, Susceptible,

Infected,
Recovered (MSIR)

[82]
Use media to
modify public

behavior

Media
awareness
programs

Yes/SM
Exposed cases
Infected cases

Recovered cases

Epidemiological
State models

Susceptible, Exposed,
Infected (SEI)

[100] —– —– No

Susceptible cases
Exposed cases
infected cases

Recovered cases

Epidemiological
State models

Susceptible, Exposed,
Infected,

Recovered (SEIR)

[101] —– —– No
Susceptible cases

Exposed cases
infected cases

Epidemiological
State models

Susceptible, Exposed,
Infected,

Susceptible (SEIS)

[102] —– —– No

Susceptible cases
Exposed cases
infected cases

Recovered cases

Epidemiological
State models

Maternally derived
immunity, Susceptible,

Exposed, Infected,
Recovered (MSEIR)

[103] —– —– No

Susceptible cases
Exposed cases
infected cases

Recovered cases

Epidemiological
State models

Maternally derived
immunity, Susceptible,

Exposed, Infected,
Recovered,

Susceptible (MSEIRS)

[104] —– —– No

Susceptible cases
Latent cases

Infected cases
Recovered cases

Deaths cases

Epidemiological
State models

Susceptible-Latent-
Infected-Recovered-

Dead-
Susceptible (SLIRDS)
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References
How Was SM or

SN Used?
Platform/

Application?
Calibrated with

SM or SN?
Goal/Predict no of? Type Model

[105]
Use media to
modify public

behavior

Media
awareness
programs

Yes/SM
Exposed cases
Infected cases

Hospitalized cases

Epidemiological
State models

Exposed, Infected,
Hospitalized (EIH)

[78]
Use media to
modify public

behavior

Media
awareness
programs

Yes/SM

Susceptible cases
Infected cases

Hospitalized cases
Recovered cases

Epidemiological
State models

Susceptible, Infected,
Hospitalized,

Recovered (SIHR)

[106] —– —– No
Infected cases

Hospitalized cases
Deaths cases

Epidemiological
Statistical

Forecast Models

Differential Equations
Leads to Predictions of
Hospitalizations and

Infections
(DELPHI);

[83] Data source
Google and

Twitter
Yes/SM Infected cases

Epidemiological
Statistical

Forecast Models

Auto regressive
integrated moving
average (ARIMA)

[61] —– —– No

Infected cases
Death cases

Predict time of
pandemic peak

Epidemiological
Statistical

Forecast Models

Los Alamos National
Laboratory COVID-19

forecasting using
Fast Evaluation
and Estimation

(LANL COFFEF)

[107] —– —– No

“Forecast how likely a
patient’s disease is to
worsen while being
treated in a hospital
and at what point in

their care that
might happen”

Epidemiological
Statistical

Forecast Models

John Hopkins
model COVID-19
prediction (JHU

COVID-19 prediction)

[20] —– —– No

Susceptible cases
Exposed cases
Infected cases

Quarantined cases
Recovered cases
Vaccinated cases

Epidemiological
Statistical

Forecast Models

Susceptible, Exposed,
Infected, Quarantined,

Recovered, Dead,
Vaccinated forecasting

(SEIQRDV.F).

[26] Data source Facebook Yes/SM

Promote population to
follow healthy

behavior
Predict changes in
health behaviors of

individuals

Theoretical
Interventions

model

Health Belief
Model (HBM)

[27] —– —– No
Predict the

human behavior

Theoretical
Interventions

model

The Theory of Planned
Behavior (TPB)

[28] —– —– No

Explains how
individuals are

motivated to act to
protect themselves

Theoretical
Interventions

model

Protection Motivation
Theory (PMT)

[51] —– —– No

Modeling disease
dynamics and fear as

two interacting
contagion processes

Agent-based
model

The Coupled
Contagion Dynamics
of Fear and Disease

(CCDFD) model

[52] —– —– No

Testing effects of
different levels of
social distancing
policies on the
diseases spread

Agent-based
model

The Social Distancing
(SD) model

[53] —– —– No

Project epidemic
trends

Explore intervention
scenarios

Estimate resource
needs.

Agent-based
model

COVID-19
Agent-based Simulator

(COVASIM) model
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References
How Was SM or

SN Used?
Platform/

Application?
Calibrated with

SM or SN?
Goal/Predict no of? Type Model

[54] —– —– No

Simulate the
epidemiological and

economic impacts of social
distancing policies

Agent-based
model

COVID-19 agent-based
simulation

(COVID-ABS) model

[55] —– —– No

“Effectiveness of
a nationwide vaccine

campaign in response to
different vaccine efficacies,

the willingness of the
population to be vaccinated,

and the daily vaccine
capacity under two different

federal plans”.
Studying the interactions

between nonpharmaceutical
interventions and vaccines

Agent-based
model

COVID-19
Agent-based Simulator

(COVASIM) and
Vaccination model

[50] —– —– No

Susceptible cases
Infected cases

Recovered cases
Quarantine impact

Transport
restrictions impact
Effectiveness of the
interventions on the

disease spread

Multiagent
system model

DMAS-SIR model

[57] Data source
Mobile

phones-Calls
Yes/SN

Trace users’ phones and
their mobility through

network to study effects of
government’ interventions

on virus spread

Agent-based
model

Frias-Martinez
model (FM)

[56] Data source
Mobile

phones-GPS
traces

Yes/SN

Trace users’ phones and
their mobility through GPS

to study effects of
government’ interventions

on virus spread

Agent-based
model

University of Texas at
Austin’s (UT

COVID-19-Social
distancing) model

[59] —– —– No
Infected cases
Deaths cases

Artificial
Intelligence and
Hybrid models

Y Youyang Gu
COVID-19

(YYG) model

[61] —– —– No
Processing population’

images to detect who wear
mask or who not

Artificial
Intelligence and
Hybrid models

Deep transfer learning
(DTL) model

[62,63] Data source
Mobile

phones-GPS
Yes/SN

Effectiveness of the
interventions on the

disease spread
No of required beds and at

hospitals and care units
Trace users’ phones and

their mobility through GPS

Artificial
Intelligence and
Hybrid models

University of Virginia
Biocomplexity Center
PatchSim COVID-19

(UVA COVID-19)

[66] Data source
Mobile

phones-GPS
Yes/SN

Effectiveness of the
interventions on the

disease spread
Trace users’ phones and

their mobility through GPS

Artificial
Intelligence and
Hybrid models

Institute for Health
Metrics and Evaluation

COVID-19 (IHME
COVID-19)

[67] —– —– No

Infected cases
Deaths cases

No of required beds and at
hospitals and care units

Artificial
Intelligence and
Hybrid models

Massachusetts Institute
of Technology

COVID-19
(MIT University

COVID-19) model

[87] Data source
Twitter/Users’

tweets
Yes/SM

Study and analyze Twitter
users’ opinions, beliefs, and
emotions about vaccination

Artificial
Intelligence and
Hybrid models

Twitter vaccination
analysis

(TWVA) model
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