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Abstract: This paper proposes a sustainable management and decision-making model for COVID-19
control in schools, which makes improvements to current policies and strategies. It is not a case study
of any specific school or country. The term one-size-fits-all has two meanings: being blind to the
pandemic, and conducting inflexible and harsh policies. The former strategy leads to more casualties
and does potential harm to children. Conversely, under long-lasting strict policies, people feel
exhausted. Therefore, some administrators pretend that they are working hard for COVID-19 control,
and people pretend to follow pandemic control rules. The proposed model helps to alleviate these
problems and improve management efficiency. A customized queue model is introduced to control
social gatherings. An indoor–outdoor tracking system is established. Based on tracing data, we can
assess people’s infection risk, and allocate medical resources more effectively in case of emergency.
We consider both social and technical feasibility. Test results demonstrate the improvements and
effectiveness of the model. In conclusion, the model has patched up certain one-size-fits-all strategies
to balance pandemic control and normal life.

Keywords: management science; epidemiology; public health policies; COVID-19; decision-making

1. Introduction

As a result of the worldwide spread of SARS-CoV-2, coronavirus disease 2019
(COVID-19) has evolved into a persistent pandemic [1]. SARS-CoV-2 is one of the most
contagious viruses, which has a large number of transmission routes: respiratory droplets
from coughs and sneezes, contact via contaminated objects, aerosols, etc. Some transmission
routes are even unknown [2]. Some variants of SARS-CoV-2 have a long incubation period,
even sometimes with asymptomatic infections. The novel virus impacts greatly on public
health [3], the global economy [4], societies [5], etc. According to the current situation, the
pandemic will probably last a long time and continue influencing the world [6]. Compared
to Middle East respiratory syndrome (MERS) [7], Ebola [8], Marburg [9], or other infectious
diseases with a high death rate, the survival rate of COVID-19-positive individuals is rela-
tively higher [10]. However, due to the extreme infectivity of SARS-CoV-2, the number of
infected people will be very large, resulting in a number of casualties [11]. Especially when
there is a medical resources panic squeeze, the death rate will rise drastically. A case in point
is the situation in Wuhan in 2019 [12].

This paper specifies COVID-19 prevention and control in schools. Schools can be
seen as large, densely populated places. Classrooms, conference halls, canteens, etc., are
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always filled with people. Hence, once a person is infected, he may unconsciously infect
a large crowd of people [13]. In schools, it is difficult to find a large number of rooms for
quarantine within a short period. Logistical support for infected people is also extremely
difficult. The term one-size-fits-all refers to two kinds of measures: being blind to the
pandemic, and blocking the campus all the time and conducting harsh strategies [14].

For human beings, although numerous papers on COVID-19 have been published,
studies of this novel virus are still inadequate. The RNA virus is unstable, and its various
variants continue to emerge. Although adolescents are stronger than older adults, which
means the mortality of younger people is lower than the aged, people with COVID-19-
related symptoms are unable to do their work well. Additionally, potential sequelae may
heavily influence the next generation [15].

Some schools have adopted strict lockdown policies since COVID-19. Students cannot
go out de facto and they must stay at school all the time. It hinders social contact, intern-
ships, academic conferences, etc., causing a lot of mental pressure on students [16]. The
primitive purpose of COVID-19 prevention and control is to guarantee our social order and
normal life, but sometimes extreme and costly lockdowns cannot ensure safety, instead,
leading to other losses. Therefore, in this paper, we do not suggest one-size-fits-all solutions.
Neither ignorance of the pandemic nor persistent extreme lockdown is reasonable.

From the perspective of epidemiology, regardless of the viruses that cause infectious
diseases, effective measures to prevent them are clear, such as controlling the source of
infection, cutting off the route of transmission, and protecting uninfected people [17].
Hence, current strategies and policies are an attempt to implement these ideas.

In some schools, students and faculties are asked to report their physical condition
and accurate location to administrators every day. If an individual has been to a place with
COVID-19 cases, or has COVID-19-related symptoms, he will be isolated. People are asked
to maintain enough distance, e.g., students cannot gather together to hold a party. Once
COVID-19 cases are found in schools, all engaged people must be isolated. They cannot
go out until they are confirmed COVID-19-negative. In addition, random inspections for
nucleic acid tests are usual, which can help to find out if there are asymptomatic patients in
the school.

Nevertheless, many details are not clear, which means some strategies are very fuzzy
and inaccurate. Although we spend a lot of manpower and material resources, there will be
COVID-19 outbreaks in schools sometimes. A case in point is a recent COVID-19 outbreak
in a university in Jilin Province, China [18]. In fact, students in this university cannot leave
campus easily in daily life. Despite a lack of social gatherings, vaccines, daily physical
condition reports, etc., a number of students became infected. At first, medical resources
were insufficient (medicines, quarantines, test kits, etc.), and the management seemed a bit
chaotic. The managers tried hard, but they still faced difficulties in determining who should
have higher priority to access medical resources, who needs to be isolated in quarantine,
how to guarantee daily needs of students, etc.

The war against COVID-19 is protracted, and it is difficult for us to anticipate the
end of COVID-19 based on the status quo. Persistent unsustainable and costly lockdowns
will make individuals tired and annoyed, which may in turn cause serious dilution of
the prevention effect. For schools, which are considered enclosed spaces, once there is
negligence in epidemic prevention, the consequences will be very bad. Therefore, we need
to put forward a sustainable management model for COVID-19 control in schools. The
term sustainable means this model does not cost too much but improves accuracy and
efficiency against the backdrop of the lasting pandemic.

In the information age, prevention and control of COVID-19 in schools could be more
intelligent and precise. Normal life needs to be balanced with disease prevention and
control. The real value of science and technology is in improving quality of life [19]. In this
paper, we first review related studies which aim to combat the virus. We clarify the basic
principles, which are scientific evidence to design the model. We use computational and
mathematical models to obtain and analyze data. Data from Internet of Things (IoT) are
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fundamental to providing necessary tracking data for decision-making. We then simulate
and test our methods to demonstrate the advantages of our model. In general, though
no one can guarantee to stop the virus, we can minimize the risk and influence using this
model in schools. To sum up, in this paper, we have addressed the following issues:

(1) How to gather tracking data in schools for further decision-making.
(2) What queueing algorithm can be used to control social gatherings?
(3) How to allocate limited medical resources in case of emergency.
(4) Is the model more feasible in practice compared to current means?

2. Related Work

A number of researchers are conducting research on COVID-19 prevention and control
from their own perspective. Samui et al. [20] designed a mathematical model for COVID-19
transmission dynamics. Zhou et al. [21] studied the correlations between rare disasters,
macroeconomic policy, and the exchange rate in the pandemic era. Zoabi et al. [22] built
a machine learning-based model for COVID-19 diagnosis. Lin et al. [23] highlighted the
use of Building Information Modeling (BIM) in hospitals during the pandemic. Lanera
et al. [24] started a COVID-19ita project to develop a public open-source tool set to offer
timely, updated information about the pandemic’s evolution. COVID-19 is a perplexing
conundrum, but it is still controllable and preventable. Hence, exploring a sustainable
model for COVID-19 control in schools is worthwhile.

Evidence has demonstrated that COVID-19 is not just a simple flu [25], which means
special interventions are always required. Schools, where young people gather, deserve
more attention. Similar to other infectious diseases, besides specific medicine and vac-
cines, common and routine ways to prevent COVID-19 such as controlling social gather-
ings, protecting vulnerable people, and isolating infected ones can still function well [26].
COVID-19 prevention is not only a medical problem, but also a social issue [27]. Some
strict policies are effective in epidemiology, but hard to conduct in practice (e.g., blocking
a city over and over again). D’Angelo et al. [28] focus on accurate COVID-19 handling
measures. Therefore, designs and strategies using various technologies in this paper are
implementations of current pandemic prevention guidelines in medicine.

It is important to confirm someone’s trajectory, especially in case he is considered
infected [29]. COVID-19-positive individuals will unconsciously pollute the air [30], object
surfaces [31], water [32], etc. Thus, people who have passed through contaminated areas
may become infected. Compared to outdoor environments, indoor environments (e.g.,
canteens) are places with a higher infection risk [33]. For an indoor place where many
people come and go, it is required to deploy an indoor tracking system to trace everyone,
and then, in case of emergency, provide data to analyze people’s infection risk. In this case,
an indoor positioning system should be introduced.

Indoor positioning has been a hot topic for several years, and lots of algorithms and
hardware are proposed [34]. Although there exist a number of choices for indoor posi-
tioning, we should consider the feasibility in schools. Administrators and students will
not be interested in a system which requires specific devices and high costs. For outdoor
tracking, a satellite-based system is appropriate, such as Galileo, GPS, and GLONASS [35].
Outdoor positioning applications are more well-developed, and all smart phones support
outdoor positioning technologies from a hardware level [36] to a software level [37]. Since
satellite signals are not able to penetrate obstacles in an indoor environment [38], indoor
positioning technology needs to be introduced for tracking individuals in indoor environ-
ments. Prevailing indoor positioning hardware such as Bluetooth Low Energy (BLE) [39],
Radio Frequency Identification (RFID) [40], and ZigBee [41] are based on wireless networks.
Though Ultra-Wideband (UWB) can provide high-accuracy positioning services [42], peo-
ple are reluctant to bring specific hardware (most mobile phones do not support UWB) [43].
Other devices, such as Wi-Fi Access Points (APs) which require external power supply [44],
ZigBee which is relatively expensive and requires requirements for channel bandwidth [45],
and geomagnetic sensors which have a higher technical threshold [46], are not so appropri-
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ate for large promotion in schools. BLE-based technology, iBeacon, which was released by
Apple, is the fundamental hardware for indoor positioning [47].

We hereby divide indoor positioning methods into two categories: measurement-based
and fingerprint-based methods. Time of Arrival (TOA) [48], Time Difference of Arrival
(TDOA) [49], Angle of Arrival (AOA) [50], etc., are typical measurement-based methods.
Although these methods can provide precise positioning results with optimization, they
have a strict requirement for hardware and the environment. Thus, fingerprint-based
methods are introduced. A position, P(a, b), is associated with a specific fingerprint. A
fingerprint is a unique feature of a position, and any data which can distinguish a position
can be used as fingerprints [51]. In this paper, we chose Received Signal Strength Indicator
(RSSI) as fingerprints. In the offline stage, a fingerprint database is built and a real-time
fingerprint is sent to the database to obtain a predicted location in the online stage [52].

For COVID-19 tracking, the requirement for accuracy is not very high. For example,
whether a person is 10 or 40 cm away from the patient, he should be considered to be at great
risk of infection. Therefore, there is no need to use a complex and intricate matching model,
which requires much time and cost for debugging. Support Vector Machine (SVM), Long
Short-Term Memory (LSTM) [53], Multilayer Perceptron (MLP), etc., are more complex
than K-Nearest Neighbors (KNN) and its variants [54]. KNN-based models can be widely
used, especially for schools.

In addition, our risk assessment and medical resources allocation method also refers
to some existing policies [55]. Queueing theory also plays an important role in avoiding
social gatherings [56].

In brief, technologies are thriving, and COVID-19 control rules are clear, but the
combination of them should be studied further.

3. Methods

No matter what infectious viruses cause a pandemic, there exist common ways to
stop the spread, or at least, reduce the loss. We could conclude that there are three main
means of pandemic control: controlling the source of infection, cutting off the route of
transmission, and protecting vulnerable people. These ways are closely related. If we do not
perform well in any link, there will be a serious dilution of the effect of pandemic handling.
Controlling social gatherings helps to reduce the number of people who have close contact
with patients. Outdoor–indoor tracing helps to find out people having potential contacts
with infected people, stopping the continuous virus spread. Based on tracing data, we
can be aware of individuals having a higher infection risk, and then, if medical resources
are quite insufficient, it is acceptable to allocate resources to these people first. Thus, the
proposed methods are interrelated, and they are not independent ideas.

3.1. Social Gathering Control

Students and faculties are asked to keep a social distance and avoid gatherings, which
are primitive but effective. These measures are not implemented very well. Crowds will not
follow these rules without reasonable management and guidance. Canteens, bathrooms,
water rooms, etc., are enclosed spaces in schools. Before COVID-19, these public places
were always filled with people. During the pandemic time, we should control the stream
of people. Unlike other situations (e.g., airports), the strategy must not be radical and
aggressive. Otherwise, students will not become accustomed to or even resist it, making
this measure difficult to implement.

Since individuals are not encouraged to enter these places freely, there must be a
strategy for booking and waiting. Thus, a customized queueing model is introduced in
this section.

We use an example of a canteen to explain the queueing model. Canteens in a school
are always crowded, leading to much infection risk. The number of people allowed to eat
in a canteen at the same time is also limited. To simplify, let us suppose that a canteen can
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only hold 1 person. There are 4 people (A, B, C, and D) attempting to go into the canteen
(Table 1). The time unit in this section is minutes, by default.

Table 1. The situation where 4 people intend to enter a canteen which can only contain 1 person.

Student Name Request Time Predicted Staying Time

A 10:20 10 min
B 10:25 10 min
C 10:30 15 min
D 10:31 5 min

Request Time is the moment when a person applies to enter the canteen. Predicted Staying Time is an estimated
value, indicating how long a student will stay in that area. The values can be predicted using statistical data.

At 10:25, B attempts to enter the area, however A has occupied the position, which
means B has to wait until 10:30. At 10:30, waiting time (w) of B is 5 min (10:30 - 10:25 = 5 min).
The field p is the predicted staying time. The indicator response ratio (rr) is defined as:

rr = (w + p)/p. (1)

When there exists a vacancy, the individual with higher rr has the higher priority
to enter the area. Generally, a person with a shorter predicted staying time and a longer
waiting time is expected to access the resource earlier.

Individuals need to stand in a queue if their requests cannot be immediately satisfied.
From the perspective of pandemic prevention, we expect that the total waiting time will be
minimal. A simple Short Job First (SJF) strategy can meet the requirements. The student
who plans to stay for less time will have higher priority. However, it is obvious that this
method is very unfair to those who need to stay longer. For example, in a canteen, a person
may have to wait for a long time because he often eats slowly.

Conversely, in practice, First Come First Serve (FCFS) is a common model. It is easier
to make students agree with the model because it is fair intuitively. However, considering
the current situation in schools, it may cause more social gatherings and the total waiting
time could be very long in case many people require lots of time. This model makes
no prominent improvement for COVID-19 control. Thus, the proposed method is the
combination of these two algorithms.

The indicator rr considers both people’s willingness and COVID-19 control. We can
also fix the indicator further. People may provide an unreasonable predicted staying time
to obtain higher priority. If people have already been waiting for too long, we do not
encourage them to keep waiting. Therefore, to meet the requirement, the parameters in rr
could be modified (Equation (2)):

rr = ( f (w) + g(p))/g(p) = 1 + f (w)/g(p). (2)

Here is an example to modify the model. We hereby think requests for staying in
a canteen for less than 1 min are “unreasonable”. Therefore, when p < 1, g(p) remains
constant ( ∂rr

∂p = 0). With the increase of p, rr decreases gradually. When p > 10, we think

the staying time p is too long, and the reduction rate of rr can be greater ( ∂rr
∂p < 0, ∂2g

∂p2 > 0).
The longer the waiting time, the higher the priority of obtaining permission. However,

people waiting too long (in this case, we set the threshold value as 10 min) have a higher
probability of becoming infected. Thus, when w > 10 (it suggests that there are many

people waiting), the increase of w will not significantly influence rr ( ∂rr
∂w > 0, ∂2 f

∂w2 < 0). The
student will then be advised to enter the place at another set time. The visualization of
f (w) and g(p) is shown in Figure 1. Of course, these constants (10 min, 1 min, etc.) can be
preliminary set by need. Thus, a possible mathematical model which corresponds to these
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requirements is defined as Equation (3). The process of handling the requests in Table 1 is
shown in Table 2.

rr(p, w) =



w + 1, 0 < w ≤ 10, 0 < p ≤ 1
(w + p)/p, 0 < w ≤ 10, p < 1 ≤ 10

(w + p log10 p)/p log10 p, 0 < w ≤ 10, p > 10
10 log10 w + 1, w > 10, 0 < p ≤ 1

(10 log10 w + p)/p, w > 10, p < 1 ≤ 10
(10 log10 w + p log10 p)/p log10 p, w > 10, p > 10

(3)
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Table 2. The statues of requests. “Not applicable” means that someone has not arrived or left. “Yes”
means a person has entered the canteen with permission already. “Waiting” indicates that a student’s
request cannot be immediately satisfied. Note that not every moment is listed.

Time Student A Student B Student C Student D

10:20 Yes Not applicable Not applicable Not applicable
10:25 Yes Waiting Not applicable Not applicable
10:30 Not applicable Yes (rrB > rrC ) Waiting Not applicable
10:40 Not applicable Not applicable Waiting Yes (rrD > rrC )

People are not lifeless computer programs. This queuing model has something in
common with some process schedulers in operating systems. Notably, this model is
designed for schools. It is mild and considers people’s willingness. When necessary, it
can provide reasonable suggestions to users. For example, if a user’s request has been
suspended for a long time, it means that perhaps there exist many people who are waiting.
Therefore, the mechanism behind the mathematical model will make people give up.
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3.2. Outdoor–Indoor Contact Tracing

In this section, we describe methods to obtain students’ locations and trajectories.
Both outdoor and indoor environments are considered. An outdoor–indoor tracking model
is established.

3.2.1. Outdoor Tracing

There are many popular positioning methods in outdoor environments (satellite-based
and base station-based), and these methods have already been put into use to track potential
patients. A base station is a fixed transceiver which is the fundamental communication
point for one or more wireless devices (e.g., smartphones). Base stations “know” which
device is connected, and these data can be stored for further analysis. For example, person
A’s (COVID-19-positive individual) mobile phone connected to base station A at 10:00, and
during 10:00–10:30, B, C, D, and E also connected to the base station. This means that B, C,
D, and E may have had contact with the patient (see Figure 2).
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Nevertheless, station-based positioning is an approach with low positioning accuracy
and large errors (sometimes even several kilometers) among several positioning methods
with mobile phones. Schools are densely populated places. For example, there are about
40,000 people at Peking University, and the area is only about 2,500,000 m2. If, unfortunately, a
student is infected, too many people will be involved. It is hard to take measures to test and
quarantine these people very quickly. Actually, the risk of infection is not necessarily high for
people connected to the same base station. A sparsely populated place may choose to use base
stations to find potentially infected people. This simple method is hard to conduct in schools
sometimes.

Therefore, satellite-based services can function effectively in solving this problem in
outdoor environments. Normally, the mobile phone with a Global Navigation Satellite System
(GNSS) could provide positioning services, and the errors are within several meters, which
are already enough for tracking people. Obtaining the tracking and live positioning results of
a person is important for the model to predict infection risk thereinafter.

3.2.2. Indoor Tracing

However, these outdoor tracking methods are not appropriate in indoor environments.
There are many buildings in schools. In one day, many people will go in and out of an
enclosed space. If we find a COVID-19-positive person in them, we sometimes cannot
immediately conduct nucleic acid tests for so many people and provide enough quarantine
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rooms. Therefore, we should know their tracking information in some buildings to obtain a
deep analysis of individuals’ infection risk. A simple and cost-effective indoor positioning
system (not indoor navigation) is required. We used a modified KNN algorithm and
fingerprint-based database to tackle the problem.

Every location in an indoor environment is expected to have a unique fingerprint. For
example, if temperatures in different positions are different, we can use a thermometer to
predict the current location. However, this indicator is not commonly used. One possible
indicator is the RSSI. The wireless technology (iBeacon node) is popular worldwide, which
uses the 2.4 GHz band, and this band could be used freely. RSSI is an indicator to distinguish
how well a mobile device could receive a signal from an AP. Normally, the greater the RSSI
value, the better the signal. Devices supporting IEEE 802.11 can make the measurement
available to users.

A vector of RSSI values from a node can be represented as r = (r1, r2, r3 . . . rn). These
RSSI values can be measured by continuous measurements. In vector R =

(
r1, r2, r3 . . . rp

)
,

rt is the “representative” RSSI value from node t. Then, we should select reference points
and connect the vector R with the corresponding point to build a fingerprint database.
For example, supposing there are 5 iBeacon nodes, an original record in the database is
((1.3 m, 2.8 m), (−43 dBm,−44 dBm,−50 dBm,−70 dBm,−80 dBm)). It means that the
position (1.3 m, 2.8 m)’s fingerprint is the vector. After the database is built, at every
position, we can obtain a live RSSI vector from nearby iBeacon nodes. This live vector can
be sent to the fingerprint database to obtain a predicted coordinate. The whole process is
shown in Figure 3.
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At every reference point, we can obtain many RSSI values from a node. These RSSI
values are not the same. What we should do is find the most “representative” RSSI value.
There are many methods to solve the problem. For example, the mean filter which is
commonly used is defined as in Equation (4):

r =
1
n ∑n

i=1 rn (4)

This method is definitely easy to implement. In case the sample size is large, the RSSI
fluctuation range is small, and the signal smoothness is high, it can yield a representative
RSSI value; however, if RSSI values fluctuate greatly, the reliability of this method is very
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low. Using other simple methods such as the median filter, queueing filter, and Dixon filter
cannot directly help to build a robust fingerprint database.

RSSI values from an iBeacon node can be seen as random variables, and
RSSI ∼ N

(
µ, σ2), where N means normal distribution. Therefore, the probability density

function (PDF) of RSSI is denoted as:

f (RSSI) =
exp

(
− (RSSI−µ)2

2σ2

)
√

2πσ
. (5)

The average value, µ, is calculated by:

µ = ∑n
m=1 RSSIm. (6)

The variance, σ, is defined as:

σ =
1

n− 1

√
∑n

k=1(RSSIk − µ)2. (7)

Let 0.6 < F(RSSI) < 1, where F(RSSI) is the cumulative distribution function (CDF).
Thus, 0.15σ+u ≤ RSSI ≤ 3.09σ+u, and RSSI values within the range [0.15σ + u, 3.09σ + u]
will remain. Gaussian filter is capable of filtering some RSSI values that deviate from the
ideal value. However, some interferences (e.g., shot noise) still influence the reliability of the
representative RSSI value.

A simple unscented Kalman filter (UKF) can smooth a group of data with random
errors to obtain more representative RSSI values and improve the robustness of the finger-
print database. It can be used in a non-linear system. We do not calculate the Jacobian and
Hessian matrix, which is easy to implement [57]. The process is shown in Equations (8)–(17).

(1) The system is non-linear, and it is defined as:

Xk+1 = Fk(Xk, Uk, Vk), (8)

and
Yk = Hk(Xk, Nk). (9)

(2) The system initial state is defined as:

x̂a
0 = E(xa

0)[x̂0, 0, 0] (10)

and
Pa

0 = diag(P0, Q, R). (11)

The sampling point is defined as:

χk−1 = x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1, (12)

where γ is the scale factor.

(3) Equations (13)–(15) are used for status prediction:

χx
i (k + 1|k) = f [(χx

i (k|k), u(k), χw
i (k)] (13)

x̂(k + 1|k) =
L−1

∑
i=0

ζm
i χx

i (k + 1|k) (14)

ẑ(k + 1|k) =
L−1

∑
i=0

ζm
i zi(k + 1|k) (15)
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(4) Observations and update, in Equations (16) and (17):

W(K + 1) = Pxz(k + 1|k)P−1
vv (k + 1|k) (16)

x(k + 1|k + 1) = x(k + 1|k) + W(k + 1)(z(k + 1)− z(k + 1|k)) (17)

In the online positioning stage, let the predicted location be l(x, y).
[
Fi

1, Fi
2, Fi

3 . . . Fi
n
]

is
an online RSSI vector, denoted as fi. The distance between an online RSSI vector could be
re-defined as Equations (18)–(20):

Wi
l = exp(

(
xi − xp

)2
+
(
yi − yp

)2

4σ2 ) (18)

Di
l =

√
n

∑
k=1

(
Fi

k − fk
)2 (19)

Di
l
∼ =

Wi
l ∗ Di

l

∑N
i=1 Wi

l

(20)

The predicted coordinate can be calculated by Equation (21):

(xgiven, ygiven) =
∑k

i=1(
1

Di
l
∼ ∗ li)

∑k
i=1

1
Di

l
∼

(21)

The symbol table of variables in these equations is presented in Table 3.

Table 3. The symbol table of variables which are used to predict a location.

Name Annotation

Di
l Euclidean distance

N Number of reference points
σ Maximum possible distance of going from previous position to l within the sampling interval
l Predicted location

(xp, yp) p means previous

Generally, some parameters in the set of positioning algorithms cannot be confirmed
using mathematical models in advance. Instead, they can be confirmed by real-world
experiments. First, we can confirm the parameter k of the KNN algorithm. We can use
different values of k to implement the algorithm, and by comparing these results, the value
leading to optimal accuracy and stability will be chosen. After that, we should perform
controlled experiments to distinguish the effect of data preprocessing and variants of the
KNN algorithm. Finally, it is certain that students may move in indoor environments.
Therefore, it is necessary to know if the positioning model is reliable when people are
moving slightly.

However, we only know approximate locations and tracks through the fusion-positioning
model. It is hard work to manually analyze these data. There are not enough computer
engineers in a school who can directly observe these trajectory data. The problems of how
to confirm every person’s risk level, and how to allocate resources in case of emergency, are
preliminary solved hereinafter.

3.3. Risk Assesement and Resources’ Allocation
3.3.1. An Approximate Algorithm to Define Contact Level

The algorithms and methods in this section are based on the following premises:

(1) Sometimes, COVID-19-positive individuals may not be isolated in time and they can
freely hang out, especially asymptomatic patients [58].
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(2) No matter whether COVID-19 patients have symptoms or not, they can infect
other people.

(3) The farther away from a COVID-19 patient, the safer [59].
(4) The place where COVID-19 patients stay may be polluted. Even if the patient leaves,

people who come to these places could still be infected [60].
(5) If a person has close contact with a COVID-19-positive patient, he will not be a new

infection source very soon.

It is hard to propose an accurate model to precisely confirm everyone’s infection risk.
People infected with different variants show different infectivity: some asymptomatic
infected people do not infect others, people who are vaccinated may be less infectious, etc.
Therefore, instead of an intricate probability model, we introduce a grid-based algorithm.

A whole area can be divided into grids (c m* c m per one). In different environments,
c can be different. A person’s real-time grid can be denoted as (u, v), which is the index
(coordinate) of the grid (see Figure 4). Another grid’s location is denoted as (x, y). Other
individuals’ contact levels relative to the person are confirmed by the grid where they stay
(the coordinate (x, y)). For example, person P stays in (0, 0), and other people who stay in
(0, 0) are seen as having close contact with P.
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We then define COVID-19 contact in different levels (in Equation (22)). They are
close contact, normal contact, and low contact. Of course, if a person never appears in the
monitored area, he can be seen as no contact.

Contact Level =


close contact, abs(x− u) = abs(y− v) = 0

normal contact, 0 < abs(x− u) ≤ 3, 0 < abs(y− v) ≤ 3
low contact, other

(22)

However, Equation (22) only describes contact levels when all people stay still. People
may move and contaminate objects in the environment. Let us suppose a person just
directly vanishes from the whole area. If he is a patient, he has already contaminated the
environment. The fact that others may still be infected even if a patient has left should also
be considered in this model. Let t be the time from the disappearance of the person. The
contact level can be confirmed by Table 4. The principle is that as t becomes larger, the
contact level will be lower. When 2 h < t < 6 h, another person in the grid can be seen as
at the normal contact level. People will move in the area and we can obtain many results
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about contact levels. Additionally, a person’s contact level is influenced by results from
Equation (22) and Table 4. The final risk level is the maximum value.

Table 4. The strategies for changing contact levels when a person disappears.

Time Close Contact Normal Contact Low Contact

0 < t ≤ 1 h close contact normal contact low contact
1 h < t ≤ 2 h close contact low contact low contact
2 h < t ≤ 6 h normal contact low contact low contact

t > 6 h low contact low contact low contact

The parameters in the model can be adjusted according to need, as long as they are
following the basic premises. For example, a larger c may make more people involved.
Configuration should be adjusted to indoor and outdoor environments.

3.3.2. The Use of Contact Levels

We have already described an approximate algorithm to define contact levels, and
the parameters can be adjusted. After applying the algorithm, the contact level between
every two people is confirmed. If a person is infected, we could then immediately know
how many people are involved. If we find there exists a COVID-19-positive student, it is
necessary to find out if others may be infected. Common ways are nucleic acid tests, antigen
tests, computed tomography (CT), etc. However, medical resources are not enough in some
regions. Thus, we should assign priority to testing those most likely to be infected, and
then others, which is an avoidable compromise. It is much better than aimlessly making
all people gather together to have nucleic acid tests. When we need to make potentially
infected people isolate, tracking data can also be used.

When there is a problem of finding the COVID-19 infection source, the tracking data
can be used to quickly identify infected people. The pseudocode is shown in Figure 5. The
main idea is that, if a person is healthy, potential contacted people are usually not infected.
If a person is infected, people in potential contact are usually infected. In Figure 6, person
A’s close contact people are B, D, and E. Thus, if A gets tests, D, B, and E can be removed
from testing lists. Of course, if we can thoroughly test all people very soon, it is better.

Int. J. Environ. Res. Public Health 2022, 19, 5913 13 of 22 
 

 

 
Figure 5. The pseudo code to identify infected people quickly. 

 
Figure 6. A’s close contact individuals are B, D, and E. 

In general, because of the limitation of resources, we should first allocate resources 
to people who have a higher probability of infection. This is much better than allocating 
resources aimlessly and randomly. The tracing data then play an important role. 

4. Results and Discussion 
The model is for COVID-19 control in school. Hence, effectiveness relies on the 

COVID-19 control effect and its cost. Schools using this model are expected to have lower 
infection risk, and lower costs, compared to harsh and one-size-fits-all solutions. The real-
world infection risk test is not applicable at the present time. Since the principles to design 
the model are pandemic control rules which are demonstrated as valid by many scholars, 
we can test the effectiveness of components of the model instead. 

4.1. Current Efforts for COVID-19 Control in School 
Since the first COVID-19 case was confirmed (circa 2019), we have suffered great 

losses. Many people have known that SARS-CoV-2 is not a simple virus [61], although 
some infected people have mild symptoms, similar to influenza. The complexity and vol-
atility of the COVID-19 pandemic challenge human beings: it is hard to predict the emer-
gence of variants, some people who are vaccinated still become infected [62], asympto-
matic infections are difficult to detect in time, etc. Due to the difficulties of tackling the 
pandemic, straightforward one-size-fits-all strategies are often conducted. 

One-size-fits-all has two meanings. Both being blind to the pandemic and taking in-
flexible measures are seen as one-size-fits-all solutions. Although some people claim that 
COVID-19 is just a flu, which deserves no special attention, people are still making efforts 
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In general, because of the limitation of resources, we should first allocate resources
to people who have a higher probability of infection. This is much better than allocating
resources aimlessly and randomly. The tracing data then play an important role.
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4. Results and Discussion

The model is for COVID-19 control in school. Hence, effectiveness relies on the COVID-19
control effect and its cost. Schools using this model are expected to have lower infection risk,
and lower costs, compared to harsh and one-size-fits-all solutions. The real-world infection risk
test is not applicable at the present time. Since the principles to design the model are pandemic
control rules which are demonstrated as valid by many scholars, we can test the effectiveness
of components of the model instead.

4.1. Current Efforts for COVID-19 Control in School

Since the first COVID-19 case was confirmed (circa 2019), we have suffered great losses.
Many people have known that SARS-CoV-2 is not a simple virus [61], although some
infected people have mild symptoms, similar to influenza. The complexity and volatility
of the COVID-19 pandemic challenge human beings: it is hard to predict the emergence
of variants, some people who are vaccinated still become infected [62], asymptomatic
infections are difficult to detect in time, etc. Due to the difficulties of tackling the pandemic,
straightforward one-size-fits-all strategies are often conducted.

One-size-fits-all has two meanings. Both being blind to the pandemic and taking
inflexible measures are seen as one-size-fits-all solutions. Although some people claim that
COVID-19 is just a flu, which deserves no special attention, people are still making efforts to
deal with the pandemic regardless of the effect [63]. A common flu can make many students
unable to concentrate on learning in schools, let alone the more infectious and more serious
COVID-19 pandemic. It is not a good idea to be blind to viruses spreading among students,
especially vulnerable children. Some schools strongly recommend students and faculties
to get vaccinated, some strictly check the itinerary of any person who attempts to enter
the school, some regularly conduct nucleic acid tests on special faculties (e.g., canteen
staff), etc. Since the outbreak of COVID-19, many technologies have been introduced
to solve real-world problems, such as online learning [64], robot technology to combat
COVID-19 [65], and smart wearable devices to monitor health conditions [66]. It means
that we can make full use of various information technologies in the post-COVID-19 era to
manage the schools better.

However, although we are making efforts to amend our policies and strategies, some-
times, we still conduct one-size-fits-all measures. Since social gatherings lead to a high
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infection risk, some affiliated canteens directly cancel eat-in food. It is hard to know the
health conditions of people outside the school, so some schools ban students from going
out de facto. Some school administrators forbid students from renting an apartment de
facto, although living conditions in schools’ dormitories are sometimes bad, etc.

No matter how strict the one-size-fits-all strategy is, it can only be effective if the
manager and the managed people cooperate well. The long-term implementation of these
strict measures will lead to the slack of all individuals involved. It would be really awful
if it caused the practice of formalities for formalities’ sake. Managers pretend that they
are working hard for COVID-19 control, and people pretend to follow the rules. In this
case, strict measures are nearly equivalent to no measures. Thus, we can see COVID-19
outbreaks in some schools, although they may have tried hard at prevention.

No model can guarantee to definitely stop viruses from spreading. However, we can
follow the basic rules mentioned in epidemiology to control the pandemic. We do not
intend to use state-of-the-art and intricate hardware, algorithms, and models. We instead
focused on both social and technical feasibility.

4.2. The Feasibility of Positioning and Tracing

The reliability of contact level data is based on the indoor–outdoor positioning model.
Therefore, in this section, we need to test static and dynamic stability.

As for the outdoor positioning system, there is no need to test it. GPS positioning
systems and base stations are public infrastructure. They have already been demonstrated
valid and feasible. Conversely, there are numerous devices and algorithms for indoor
tracking. An optimized, cost-effective, and accurate indoor positioning system is required.

First, we need to select a reasonable k, which is an important parameter. If k is too
large, the computation pressure is great, and sometimes it may cause too much noise. If
k is too small, it is nearly a simple nearest neighbor (NN) algorithm, which may ignore
useful information. We deployed the indoor positioning system in an indoor environment
(20 iBeacon nodes evenly distributed, valid size 18 × 15 m, 120 reference points).

With different values of k, we conducted static positioning tests. We selected 20 reference
points, and at each point, we obtained 10 positioning results. The results are shown in Figure 7.
The average positioning errors were 2.07, 1.93, 1.84, and 1.87 m, respectively. Thus, we used
k = 5 in the following tests.
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Then, to test the static stability of positioning, we carried out 200 positionings at a
fixed point (9, 7). In addition, to demonstrate the effect of data preprocessing, controlled
experiments were also performed. In Figure 8, the overall effect of data preprocessing and
the optimized KNN, effect of data preprocessing, and effect of the optimized KNN are
presented. Original KNN means we just used the original Euclidean distance between
two vectors. No preprocessing means we just used a preliminary mean filter to obtain a
representative RSSI value. The detailed data are shown in Table 5.
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Many countries (e.g., Australia) have abandoned zero-COVID policies. It does not mean 
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Optimized KNN and data preprocessing, optimized KNN and no data preprocessing.

Table 5. Detailed information of controlled experiments.

Data Preprocessing and Optimized KNN Data Preprocessing and Original KNN No Data Preprocessing and Optimized KNN

Less than 0.5 m 8.5% 5.5% 5%
Less than 1.5 m 48.5% 39.5% 37.5%
Less than 2.5 m 78% 74.5% 73.5%
Less than 5.0 m 99% 97.5% 96.5%
Average Error 1.82 m 2.07 m 2.15 m

People’s movement may also influence the stability of positioning. Therefore, we
recorded errors while moving. One of us simulated as a user and walked from point (1, 1)
to (10, 10) and then came back over and over again, until we obtained 200 positioning
errors. We obtained a predicted coordinate every 2 s. Although movement of individuals
may affect accuracy, the positioning results are generally reliable. The details are shown
in Figure 9 and Table 6. The CDF figures are plotted with the support of Matlab R2021a.
Built-in plot-related and CDF-related functions can produce figures.
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Table 6. Detailed information of errors when people move and stay still.

People Stay Still People Move

Less than 0.5 m 8.5% 7.5%
Less than 1.5 m 48.5% 41.5%
Less than 2.5 m 78% 74%
Less than 5.0 m 99% 98%
Average Error 1.82 m 1.95 m

Compared to current state-of-the-art indoor positioning models [67–69], the perfor-
mance and accuracy may not be better. However, we should consider the actual situation
of schools. The more complex the model, the higher the maintenance cost. For example, if
we plan to deploy guiding robots in a museum, the accuracy and requirements are high,
and to improve users’ experience, a higher budget is acceptable. Instead, for schools, we
should use cheap and effective measures, as long as it meets the need. We do not need to
spend a lot increasing the accuracy by a few centimeters. iBeacon nodes are cheap and easy
to deploy. They do not need an extra power supply. After an iBeacon node is placed well,
we do not need to always pay special attention. The optimized KNN algorithm is easy to
implement, and it requires no explicit training stage, which (training stage) is mandatory
when using SVM, MLP, LSTM, etc. The results presented have already demonstrated the
performance of the positioning system. In general, it meets our needs and is easier to
popularize compared to other models.

4.3. The Possibility of Promotion

Nowadays, different countries have adopted different COVID-19 control policies.
Many countries (e.g., Australia) have abandoned zero-COVID policies. It does not mean
they have given up on COVID-19 control. Some other measures, such as large-scale
vaccination programs, are seriously considered [70]. Indeed, it is very hard to conduct
zero-COVID policies. Many factors, such as people’s willingness, the economy, and laws,
will significantly influence the authorities’ decisions. For example, if a country’s economy
depends heavily on foreign trade, it is unacceptable to block goods from foreign countries all
the time. Otherwise, serious social problems (e.g., financial ruin) will also lead to casualties.
Certainly, the virus can kill or harm people, but inappropriate policies and strategies can
also cause severe problems, including casualties not directly related to virus infection.

There also exist countries (e.g., China) persisting with zero-COVID. In this section, we
do not intend to discuss the pros and cons of zero-COVID or non-zero-COVID policies.
Every country has the right to make decisions according to its own circumstances. We
deem that no matter whether governments adopt the zero-COVID or non-zero-COVID
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policy, their attitude towards pandemic prevention and control is positive. Therefore, any
solution which intends to tackle COVID-19 has the potential value to be promoted.

Any such implementation of the technology-involved program as this paper describes
would lead to many costs. It is not only limited to financial costs, but also human resources,
time spent, and a number of management efforts to persuade people to become used to the
solution. In fact, many schools have already spent a lot on COVID-19 and we have already
suffered many losses [71]. It is a big challenge for the authorities to manage a school well
in the post-COVID-19 era.

People are making various efforts at COVID-19 control, but usually, many measures
are manually conducted. Many individuals are involved, and actions are not precise.
Therefore, digital transformation in public health, which is also mainstream nowadays, can
play a significant role in reducing costs [72].

There exist various strict measures in schools to control social gatherings, but they
lack scientific management, which sometimes leads to a mess. We can still see a throng
of people rushing into a place (e.g., the canteen). Even if they may be aware that it is not
good to gather together in the pandemic era, a single individual cannot urge others to
follow the rules. There are some methods to implement the social gathering control model.
For example, in a canteen, before entering, people should scan the QR code to be in the
queue. When their requests are satisfied, they are permitted to enter the area. In the whole
process, an indoor positioning system can function effectively in finding out whether a
person follows the queuing rule.

In indoor environments, the risk of infection is relatively higher. Therefore, indoor
tracking is also necessary, especially for some large indoor spaces in which many students
go in and out every day. Hardware and algorithms for indoor tracking are not complex or
expensive. The parameters in risk assessment and resources’ allocation are different for
indoor and outdoor spaces. Using different parameters will involve a different number of
people. Managers should consider their medical resources and abilities. They can be setup
by managers according to current situations.

To sum up, this paper was not intended to propose brand new theories in computer
science. We focused on the design of the model to solve real-world problems: management
and decision-making during the long-lasting pandemic. We have introduced various
technologies in order to implement COVID-19 control measures in schools in a scientific
and user-friendly way. It is a human-centered and social-technology model, which does
not only consider technologies, but also society and humans.

5. Conclusions

This paper presented a sustainable management model for COVID-19 control in
schools, which can: (i) control social gatherings, (ii) track individuals in indoor and outdoor
environments, and (iii) assess people’s risk level and allocate medical resources in case of
emergency. It makes improvements to one-size-fits-all strategies, improving management
efficiency and lowering people’s pressure. We did not focus on developing brand new
theories in information technology.

The scientific evidence to design the model is very clear. General methods in medicine
to prevent infectious diseases are: cutting the transmission route, protecting vulnerable
individuals, and controlling the infection source. They are highly interrelated, and we
should consider every aspect of them in the model. The positioning system plays a vital role
in the model. The iBeacon technology with fingerprint-based algorithms was introduced.
The stability and accuracy (1.82 m when people stay still, and 1.95 m when people move)
met the requirements. Data from the positioning system can be exploited for risk assessment
and resources’ allocation. The simplified risk assessment method considers two dimensions:
time and space. Medical resources can be preferentially allocated to people who are at
higher risk in case of emergency. The implementation of social gathering control could
also make full use of the indoor positioning system. It can guarantee and monitor people’s
status. Only when the proposed methods cooperate well can the goal be achieved.
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Appendix A provides a brief overview of this paper. The novelties of this paper are:

(1) We used a customized queue model to manage the throng of people to avoid social
gatherings, which is hard to see in real-world school management.

(2) We considered the high infection risk in indoor environments, and indoor tracking
technology was introduced.

(3) We used a simplified model to assess people’s contact levels. Based on these indi-
cators, we can allocate resources more effectively compared to using random and
aimless strategies.

(4) The proposed model is feasible both in technology and society.

6. Limitations and Future Work

The model follows principles in epidemiology in general. Components of this model
have been demonstrated as valid using theoretical analysis and in-field experiments. How-
ever, the overall evaluation is missing. This can only become clear when conducting
controlled experiments. If some schools want to consider the model, and others do not,
we can find out the overall effect. Then, based on these data, we can perform further
optimization. The infection rate is expected to be lower and normal life should not be
excessively hindered.

In addition, data privacy protection measures of the model are necessary. There are
many data exchanges when people are engaged in the model. Thus, there is a risk of
privacy leaks. This topic can be further elaborated on in the future.
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Appendix A

Here is a quick Q&A index which can help to understand the main idea of this paper.
All these problems were already answered in the main text.

Q1: Is this model necessary for schools?
A1: Yes.
We should pay special attention to COVID-19 control. Although zero-COVID policies

are very hard to conduct, we should not be blind to viruses spreading among students.
The persistent inflexible and strict policies often make people exhausted. Thus, some-

times managers pretend that they are working hard, and people pretend that they do follow
the rules. This model can play a role in improving management efficiency and lowering
people’s pressure.

Q2: Why not use the xxx algorithm/model/device?
A2: As mentioned in the main text, we do not intend to create brand new theories

in computer science. To address our purpose, we introduce and optimize these necessary
technologies. Both social and technical feasibility are considered. A complex and costly
model may make school managers less interested, and in that case, the design can only
exist on paper.

Q3: Why does the contact level algorithm ignore some influence factors, for example,
types of viruses?
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A3: There are many influence factors, such as types of viruses, temperature, people’s
health condition, etc. Considering too many factors will lead to extreme complexity and
put forward higher requirements for the accuracy of parameters, which often means less
robustness. The algorithm is based on five basic premises.

Q4: Compared to the current status, what improvements are made?
A4: First, a customized queue model has been introduced. The school managers ask

people to maintain social distance and intend to control social gatherings, but we cannot
usually see these scientific measures. Then, contact tracing is more precise, and based on
tracing data, we can make decisions more accurately, which will not involve too many
people, so that the costs (human resources, time spent, investments, etc.) will be lower.

Q5: What is the scientific evidence to create the model?
A5: Three principles in epidemiology: cutting the transmission route, protecting

uninfected people, and controlling infection sources.
Q6: What are the authors’ general attitudes towards current strategies and policies?
A6: Schools’ COVID-19 prevention and control measures should follow local laws

first. We appreciate everyone working hard for COVID-19 control.
We stay neutral with regard to any policy and strategy. Our purpose is to contribute

to COVID-19 prevention and control, not to criticize or praise any strategy and policy.
We seriously emphasize that all discussions are for academic purposes only.
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