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Abstract: Background: The optimal treatment strategy for the follow-up and management of women
with glucokinase maturity-onset diabetes of the young (GCK−MODY)during pregnancy remains
unknown. Data regarding maternal and fetal outcomes are lacking. Aim: This paper summarizes the
existing literature regarding the maternal and fetal outcomes of women with glucokinase MODY to
guide future treatment strategy. Methods: A literature search was conducted in Pubmed, Embace, and
Cochrane library with citation follow-up using the terms: glucokinase, MODY, diabetes, pregnancy,
gestation, and outcomes. We searched for articles with known fetal mutational status. Relevant
outcomes included: birthweight, large for gestational age (LGA), small for gestational age (SGA),
macrosomia, cesarean delivery (CD), shoulder dystocia, congenital anomalies, miscarriages, preterm
births, and long-term outcomes. Results: Fourteen relevant manuscripts were identified describing
maternal and fetal outcomes. The percentage of LGA and macrosomia in 102 glucokinase -unaffected
offspring (GCK−) was significantly higher than in the glucokinase -affected offspring (GCK+) (44% vs.
10%, p < 0.001 and 22% vs. 2%, p < 0.001, respectively). Among the 173 GCK(+) offspring, only 5% were
SGA, which can be expected according to the normal distribution. We observed higher rates of CD and
shoulder dystocia in the GCK(−) offspring. Conclusions: GCK(−) offspring have significantly higher
birthweights and more birth complications. The optimal treatment strategy to guide management
should take into consideration multiple variables other than fetal mutational status.

Keywords: diabetes; glucokinase; MODY; MODY 2; pregnancy

1. Introduction

Monogenic diabetes accounts for 1–2% of all diabetes cases and is frequently misdiag-
nosed as type 1, type 2, or gestational diabetes mellitus (DM) [1]. Glucokinase maturity-
onset diabetes of the young (GCK−MODY) is an autosomal dominant inherited diabetes
caused by mutations in the glucokinase gene [2]. Genetic variants reduce the function
of glucokinase, the enzyme in pancreatic beta cells that is the glucose sensor responsi-
ble for glucose entry to the glycolytic pathway. This results in reduced sensitivity to
glucose-induced insulin secretion and an upward shift in fasting and postprandial blood
glucose [3,4].

GCK−MODY is more likely in young (<25 years old), non-obese individuals with mild
fasting hyperglycemia on several occasions [5], and a high index of suspicion is needed
for correct diagnosis [1]. The guidelines for obtaining a genetic diagnosis [6] include 1.
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mild fasting hyperglycemia in the range of 99–144 mg/dL that is persistent and stable over
several years; 2. HbA1C above the upper limit of the normal range but not above 7.5%;
3. a 75 g oral glucose tolerance test (OGTT) with an increment of blood glucose at two
hours (70% of patients tested had an increment less than 54 mg/dL and rarely exceeding
82 mg/dL); and 4. a family history of diabetes. Treatment of GCK−MODY with oral
hypoglycemics or insulin does not significantly change glycemic control due to the rapid
onset of counter-regulatory mechanisms maintaining glucose concentrations at a higher
level [7]. Therefore, treatment, unless during pregnancy, is not recommended [2].

The estimated prevalence of GCK−MODY among patients diagnosed with gestational
DM (GDM) is 0.4–1%, making this a relatively rare condition during pregnancy [7]. The
lack of readily available genetic testing with considerable cost leaves the majority of women
undiagnosed before and during pregnancy, leading to very limited clinical experience. The
small number of diagnosed women makes outcomes difficult to ascertain, as data are based
solely on retrospective cohorts. Randomized controlled trials are virtually impossible to
conduct. Recently, it has been suggested that, unlike other types of pre-gestational DM, not
all GCK−MODY women should be treated during pregnancy and that treatment initiation
should depend on fetal mutational status [7]. The proposed paradigm suggests that if the
fetus is a carrier of the GCK maternal mutation GCK(+), no treatment is necessary; however,
if the fetus does not carry the mutation GCK(−), glucose-lowering treatment is indicated.
In most cases, the fetal mutational status is unknown. Fetal abdominal circumference (AC)
growth can then serve as a surrogate marker, and if accelerated (>75th percentile), a non-
carrier fetus is suggested, and treatment is indicated [8]. This approach aims to circumvent
the unknown mutational status and to reconcile GCK(−) fetuses that need treatment versus
GCK(+) fetuses in which unnecessary treatment may potentially increase the risk of small-
for-gestational-age (SGA) neonates and its related complications [9]. However, data to
support this strategy are limited and mostly rely on case reports and observational cohort
studies, some of them published two decades ago with different diagnostic cutoffs and
treatments [10,11]. Furthermore, little data exist on miscarriage risk, congenital anomalies,
and the long-term consequences of newborns to GCK−MODY mothers to allow informed
treatment decisions [12].

Thus, the aim of this report is to summarize the existing literature regarding the
maternal and fetal outcomes of women with glucokinase MODY to highlight gaps in
knowledge in order to guide future treatment strategy.

2. Methods

A literature search was conducted through MEDLINE, EMBASE, and Cochrane library
using the following terms and keywords: glucokinase, MODY, MODY 2, diabetes in
pregnancy, gestation, and outcomes. We also searched the citation list of the retrieved
articles. All relevant papers until June 2021 were reviewed by two authors. We included
papers describing fetal mutational status by genetic analysis describing treatment decisions
in GCK(+) versus GCK(−) fetuses and fetal and maternal outcomes. Relevant outcomes
included: birthweight, large for gestational age (LGA) > 90th percentile, SGA < 10th
percentile, macrosomia > 4 kg, cesarean delivery (CD), shoulder dystocia, congenital
anomalies, miscarriages, and preterm births. We also searched for papers describing the
long-term outcomes of children born to GCK−MODY-affected women. Our own experience
with two women was added.

Statistical Analysis

Data are presented as means ± standard deviations or as percentages. The chi-square
test was used to assess the relationship between two categorical variables. A p value of
<0.05 was considered statistically significant. Data were analyzed using SPSS 25 (SPSS Inc.,
Chicago, IL, USA).
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3. Results

Eighty-six relevant manuscripts were retrieved describing GCK−MODY during preg-
nancy. Fourteen met the search inclusion criteria of mutational status, treatment, and out-
comes, including nine retrospective cohorts and five case reports (no randomized controlled
trials (RCT’s) were identified). A list of the relevant publications is presented in Table 1. Of
note, there is some overlap in the women included in the study by Tinoco et al. [13] that
were already published by Bacon et al. [14].

Table 1. Publications of Pregnant GCK−MODY Women with Known Fetal Mutational Status: Review
of Maternal and Fetal Outcomes.

Retrospective Cohorts Total
Women

Total
Pregnancies Total GCK(+) † GCK(+) with

Insulin
Total

GCK(−) ‡
GCK(−) with

Insulin

Hattersley AT 1998 [15] 19 21

Singh R 2007 [16] 31 15

Spyer 2009 [17] 42 82 44 14 38 19

Bacon 2015 [14] 12 56 (41 live
births) 13 3 10 3

Bitterman 2018 [18] 20 0

Dickens 2019 [2] 54 128 23 8 12 9

Hosokawa 2019 [10] 23 40 28 9 12 4

Fu 2019 [12] 28 7

Tinoco 2021 [13] 34 119 (99 live
births) 39 11 23 11

Case reports

Spyer 2001 [19] 1 2 1 1 1 1

Chakera 2012 [20] 2 4 2

Murphy 2015 [8] 1 1 1 1

Haladova 2015 [21] 1 2 2 2

Udler 2020 [4] 1 4 1 1 3 3

Kirzhner 2022 2 7 1 1 1 1
† GCK−affected offspring (GCK+); ‡ GCK−unaffected offspring (GCK−).

3.1. Influence of Insulin Treatment versus Diet on Birthweight and Birth Centile

As seen in Table 2, six reports contain data on the influence of insulin treatment versus
diet on birthweight in GCK(−) and GCK(+) offspring, and four of them also specify birth
centiles. For the manuscript by Bacon et al. [14] we calculated birth centiles based on
the reported birthweight and gestational age at delivery using the fetal growth calculator
by the World Health Organization [22]. Birthweight did not differ significantly between
insulin-treated and diet-treated GCK(−) offspring in all the cohorts listed. In the GCK(+)
offspring, two out of five studies showed significantly larger newborns when diet was
given rather than insulin [2,13]. The other three studies did not find significant differences
in birthweights. When considering birth centiles, a borderline significance was noticed by
Hosokawa et al. [10] in GCK (−) newborns to insulin-treated mothers that were signifi-
cantly smaller compared to diet-treated mothers. None of the other reports demonstrated
a difference between insulin-treated and diet-treated newborns. The authors in the afore-
mentioned studies explain the lack of difference in treated versus untreated women by the
wide range in treatment initiation, from preconception to 38 weeks of gestation, and the
considerable variability in insulin doses. Overall, data are lacking on the timing of insulin
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initiation, the criteria leading to insulin initiation, insulin dosage, oral hypoglycemic use,
and maternal glycemic control.

Table 2. Birthweight and Birth Centiles in Treated Versus Untreated Pregnancies.

Retrospective
Cohorts

GCK(−) Offspring Weight (kg) †/Birth
Centiles $

p Value

GCK(+) Offspring Weight (kg) ‡/Birth
Centiles $

p Value
No Insulin Insulin No Insulin Insulin

Spyer 2009 [17] 4.0 ± 0.5/86 ± 22 3.8 ± 0.6/84 ± 21 N/D ¶ 3.3 ± 0.7/51 ± 30 3.0 ± 0.9/39.3 ± 33 N/D

Bacon 2015 [14] 4.1 (3.3–4.9)/88 $ 4 (3.8–4.1)/96 $ N/A ¶¶ 3.2 (3.1–3.7)/17 $ 3.3 (3–3.9)/40 $ N/A

Dickens 2019 [2] 4.023/90 ± 8 3.757/84 ± 22 0.489/0.53 3.725/58 ± 33 2.967/34 ± 27 0.005 */0.11

Hosokawa 2019 [10] 3.593 ± 527/
86 ± 10.3

3.025 ± 462/
52.7 ± 37.1 0.154/0.048 * 2.800 ± 420/

41.1 ± 31
2.532 ± 758/
39.5 ± 31.3 0.595/0.885

Fu 2019 [12] 3.37 ± 0.39 2.83 ± 0.39 0.003 *

Tinoco 2021 [13] 3.9 ± 0.8/68.6 ± 33.9 4.2 ± 0.5/91.7 ± 17.8 0.42/0.06 3.4 ± 0.4/50.4 ± 28.1 3.5 ± 0.4/63.8 ± 35.1 0.54/0.22

† GCK−unaffected offspring (GCK−); ‡ GCK−affected offspring (GCK+); ¶ N/D, no difference; ¶¶ N/A, not
applicable; $ Birthweight centiles according to available data. If data were not available, we estimated values
according to the provided data of birthweight and GAD with the WHO fetal growth calculator; * statistically
significant p value < 0.05.

3.2. Influence of Insulin Treatment versus Diet on Gestational Age at Delivery

Table 3 describes the influence of insulin treatment versus diet on gestational age
at delivery in GCK(−) versus GCK(+) offspring. Two out of five studies in the GCK(−)
group [13,17] and two out of five in the GCK(+) group [2,17] demonstrated a significantly
earlier gestational age at delivery in the insulin-treated offspring, although they were at
term. Others did not show a significant difference in gestational age at delivery. It may be
that insulin-treated offspring were delivered earlier, as guidelines indicate at the discretion
of the treating physician. We discuss preterm deliveries in a different section.

Table 3. Gestational Age at Delivery in Treated Versus Untreated Pregnancies.

Retrospective
Cohorts

GCK(−) Offspring Gestational
Age at Delivery † p Value

GCK(+) Offspring Gestational
Age at Delivery ‡ p Value

No Insulin Insulin No Insulin Insulin

Spyer 2009 [17] 38.9 ± 1.7 37.3 ± 1.1 <0.001 * 39.1 ± 2.7 37.8 ± 2.0 <0.05 *

Bacon 2015 [14] 40 (38–40) 38 (38–40) N/A ¶ 40 (39–40) 39 (38–40) N/A

Dickens 2019 [2] 36.0 37.0 0.459 40.4 38.0 0.003 *

Hosokawa 2019 [10] 39.3 39.4 0.933 38.8 37.6 0.308

Tinoco 2021 [13] 39.5 ± 1.5 38.3 ± 1.0 0.03 * 39.6 ± 1.05 38.7 ± 1.4 0.07
† GCK−unaffected offspring (GCK−); ‡ GCK−affected offspring (GCK+); ¶ N/A, not applicable; * statistically
significant p value < 0.05.

3.3. Incidence of LGA, SGA, and Macrosomia

The available data on newborn weight, including macrosomia, LGA, and SGA, are
summarized in Table 4. As seen, out of 102 GCK(−) offspring, 44% were born LGA and
20% were born with macrosomia. Among the 173 GCK(+) offspring, 10% were LGA; 5%
were SGA, which can be expected according to the normal distribution. The difference
between the number of macrosomic and LGA newborns in the GCK(−) group compared to
the GCK(+) group was statistically significant (p < 0.001) for both birthweight categories.
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Table 4. Data on Birthweight.

Study (Year) GCK(−) Offspring
(n = 102)

GCK(+) Offspring
(n = 173)

Spyer 2001 [19]

N (%) 1 1

Macrosomia † 0 (0) 0 (0)

LGA ‡ 0 (0) 0 (0)

SGA ¶ 0 (0) 1 (100)

Spyer 2009 [17]

N (%) 38 44

Macrosomia 15 (39) 3 (7)

LGA 21 (55) 4 (9)

SGA 0 (0) 0 (0)

Chakera A 2012 [20] N (%) 0 2

Murphy 2015 [8] N (%) 0 1

Bacon 2015 [14]

N (%) 10 13

Macrosomia 5 (50) 0 (0)

LGA NR ¶¶ NR

SGA 0 (0) 1 (8)

Haladova 2015 [21]

N (%) 2 0

Macrosomia 0 (0) 0 (0)

LGA 1 (50) 0 (0)

SGA 0 (0) 0 (0)

Bitterman 2018 [18]

N (%) 0 20

Macrosomia 0 (0) 0 (0)

LGA 0 (0) 3 (15)

SGA 0 (0) 2 (10)

Dickens 2019 [2]

N (%) 12 23

Macrosomia N/A $ N/A

LGA 6 (50) 5 (38)

SGA 0 (0) 0 (0)

Hosokawa 2019 [10]

N (%) 12 28

Macrosomia 2 (16) 0 (0)

LGA N/A N/A

SGA 0 (0) 1 (4)

Udler 2020 [4]

N (%) 3 1

Macrosomia 0 (0) 0 (0)

LGA 1 (33) 0 (0)

SGA 0 (0) 0 (0)

Tinoco 2021 [13]

N (%) 23 39

Macrosomia N/A N/A

LGA 15 (65) 5 (13)

SGA 1 (4) 4 (10)
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Table 4. Cont.

Study (Year) GCK(−) Offspring
(n = 102)

GCK(+) Offspring
(n = 173)

Kirzhner 2022

N (%) 1 1

Macrosomia 0 (0) 0 (0)

LGA 1 (100) 0 (0)

SGA 0 (0) 0 (0)

Total N (%)

Macrosomia 22 (22) 3 (2)

LGA 45 (44) 17 (10)

SGA 1 (1) 9 (5)
† Macrosomia is defined as newborns born ≥4 kg; ‡ Large for gestational age (LGA) is defined as newborns born
≥90th percentile; ¶ Small for gestational age (SGA) is defined as newborns born ≤ 10th percentile; ¶¶ NR, not
recorded; $ N/A, not applicable.

4. Abortions

Three cohorts describe the abortion rate in the studied population.
In Bacon et al., concerns were raised about the effect of maternal hyperglycemia on

the miscarriage rate, which was 33% in GCK−MODY mothers compared to 15% in the
background population. The miscarriages occurred at a median of 7.5 (6.2–8.7) weeks
of gestation. The authors stated that the lack of available clinical studies necessitates
implementing guidelines used for the treatment of GDM [14].

Dickens et al. [2] and Tinoco et al. [13] reported miscarriage rates of 19% and 17%,
respectively, comparable to the background population rates. Both studies reported sim-
ilar average gestational ages at the time of miscarriage, at approximately eight weeks of
gestation.

In our experience of two women and seven pregnancies, one pregnancy resulted in a
spontaneous abortion at eight weeks.

Taken together, GCK−MODY women experience miscarriage rates similar to the
general population, although given the available data, we cannot adequately account for
the ’treatment’s contribution to this outcome.

4.1. Congenital Anomalies in Newborns

Whether the rate of congenital anomalies in GCK−MODY pregnancies is increased is
unknown. It has been reported that the incidence of congenital anomalies increases linearly
with increasing HbA1C [7]. Recently, a case of sacral agenesis was reported in a fetus of a
woman with GCK−MODY [7].

Congenital anomalies resulting in live births included a neural tube defect in an
untreated GCK(−) offspring. [14], patent ductus arteriosus in an insulin-treated GCK(+)
offspring [10], and four fetuses with general congenital malformations without data on
mutational status or treatment [17]. Dickens et al. [2] reported four congenital anoma-
lies resulting in miscarriages or elective termination of pregnancy. In our experience,
one pregnancy was terminated due to microcephaly (with a normal karyotype) on the
17th week.

Overall, data are scarce, and the possibility of congenital anomaly risk in women with
GCK−MODY should be considered according to accepted parameters, including glycemic
control [7].

4.2. Preterm Births (Before 37 Completed Weeks of Gestation)

We identified only two cohorts describing data on preterm births [2,18]. In the study
by Dickens et al., the preterm birth rate was 12% [2]. Bitterman et al. [18] reported that
2 out of 20 GCK(+) (10%) offspring were born preterm. Neither of the studies reported
the gestational age at delivery, the birthweight or centile, or information on treatment.
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Moreover, it was not reported whether the preterm deliveries were spontaneous or induced.
One case report by Spyer et al. [19] reported a GCK(+) newborn treated with insulin was
born at 36 weeks of gestation weighing 1610 g. Labor was induced due to fetal growth
being consistently below the 10th percentile.

4.3. Cesarean Deliveries

Five cohorts describe data on CD rates, as seen in Table 5.

Table 5. Available Data on Pregnancy Outcomes.

Retrospective
Cohorts

GCK(−) Offspring GCK(+) Offspring

No Insulin Insulin No Insulin Insulin

Spyer 2009 [17]
Shoulder dystocia 4 (11) 0

C-section 21 (26) †

Bacon 2015 [14]

Shoulder dystocia 1 0 0 0

C-section 19 (46) ‡

Complication Neonatal
hypoglycemia-1 0 1 * 0

Dickens 2019 [2]

Shoulder dystocia 0 0 1 0

C-section 1 (one planned due
to large baby)

2 (one emergency
and one planned

due to large baby)

2 (one emergency
and one planned

due to large baby)
0

Complication 0 Respiratory
issues-1

Prolonged labor
due to large

baby-2,meconium
aspiration-1

Respiratory issues-2,
hypoglycemia-1

Hosokawa 2019
[10] Complication 0 0 0 Hyperbilirubinemia-2

Tinoco 2021 [13]

C-section 8 (67) 9 (82) 3 (11) 8 (73)

Complication Neonatal
hypoglycemia-2

Neonatal
hypoglycemia-4 0 Neonatal

hypoglycemia-2

Shoulder dystocia-3, fetal distress-1, hyperbilirubinemia-5

Case reports

Haladova 2015
[21]

C-section

2 (one due to
cephalopelvic

disproportion and
imminent fetal

hypoxia. Second
unknown)

Complication
Hyperbilirubinemia-

1, Neonatal
hypoglycemia-1

Udler 2020 [4] Complication Neonatal
hypoglycemia-3

† incidence of C-section insulin-treated vs. noninsulin-treated, 44% vs. 15%; ‡ incidence of C-section insulin-treated
vs. noninsulin-treated, 57.2% vs. 37.5%; * missing data.

Two studies reported CD rates without differentiation for fetal mutational status. In
Spyer et al. [17], 21/82 newborns (26%) were delivered by CD with a higher incidence of CD
in the insulin-treated women compared with diet only (44% vs. 15%). In Bacon et al. [13],
19/41 live births (46%) were delivered by CD, and there was a higher incidence among
insulin-treated women compared with diet only (57% vs. 43%).
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The other three studies made a distinction according to fetal mutational status. Dick-
ens et al. [2] reported 2/23 (9%) GCK(+) and 3/12 (25%) GCK(−) offspring were delivered
by CD. The numbers of insulin-treated versus diet-treated newborns are too small to con-
sider statistical significance. In Tinoco et al. [14], 36% of deliveries were by CD, 28% in
GCK(+) and 74% in GCK(−) newborns (p = 0.001). Insulin treatment in GCK(+) offspring
was associated with an increased incidence of CD.

Collectively, and not surprisingly, the data suggest that insulin treatment influences
the mode of delivery and leads to more interventions. However, most studies do not
provide data on the indication for the CD (i.e., whether indicated due to a large baby or for
another reason). There are no sufficient data to compare the significance between GCK(+)
and GCK(−) newborns at this time.

4.4. Shoulder Dystocia

Three studies report shoulder dystocia as a neonatal complication (Table 5). Almost
all cases were detected in GCK(−) offspring. The number of reported cases is too small to
make a distinction between insulin-treated and untreated offspring. Tinoco et al. [14] noted
three cases of shoulder dystocia, but there is no additional information about the group in
which these complications occurred.

4.5. Long-Term Outcomes in Offspring

Several authors have raised concerns regarding the long-term outcomes of babies born
to GCK−MODY mothers; however, little is known about these consequences and whether
treatment will affect them.

Two studies discuss the long-term impact on offspring born to GCK−MODY mothers
and the effect of in utero exposure to hyperglycemia [12,16]. The first, by Singh et al.,
examined 86 adult offspring at a mean age of 40 years old [16]. Forty-nine were born to
GCK mothers and exposed to hyperglycemia in utero, and thirty-seven were born to GCK
fathers and served as the control group. Among the 29 GCK(−) offspring, 15 were born to
an affected mother and 14 were born to an affected father. There are no details regarding
treatment during pregnancy. Both groups had similar baseline characteristics (age, predi-
abetes and diabetes rates; BMI, and body fat percentage), and there were no significant
differences in beta-cell function or glucose tolerance in GCK(−) offspring compared to the
control group.

In a second study, by Fu et al., clinical and biochemical parameters were collected
from 76 Chinese GCK(+) patients [12]. The mean age was 32 years, and 42% were males
with a mean HbA1C of 6.5%. They found negative correlations between lower birthweight
and 2 h postprandial glucose, glycated hemoglobin, total cholesterol (TC), and low-density
lipoprotein cholesterol (LDL) after adjustment for age, gender, and BMI. Notably, the
authors reported lower birthweights and higher levels of TC and LDL in seven GCK(+)
adults whose mothers received insulin during pregnancy compared with adults born to
mothers not treated with insulin, as depicted in Table 2. They suggest that a birthweight
below 3100 g increases the risk for metabolic abnormalities, particularly dyslipidemia. This
observation merits further consideration in other ethnic populations.

4.6. Other Complications

There are few descriptions of neonatal hyperbilirubinemia, hypoglycemia, and respi-
ratory distress, and, therefore, inferring a correlation to GCK−MODY is challenging.

5. Discussions

The current treatment strategies for GCK−MODY pregnancies include those that
suggest treating all women similarly to other forms of pre-gestational diabetes versus those
favoring treatment based on the fetal mutational status. The recent literature supports the
latter strategy, given data showing that untreated GCK(+) newborns are 550–700 g smaller
than GCK(−) newborns and that using glucose-lowering treatment may further increase
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the risk of an SGA baby [9,15,17]. It is also noted that the required insulin dose can be
higher than expected to reach glycemic control and may increase hypoglycemia risk.

Our literature review identified nine retrospective cohort studies and five case reports
exploring the impact of fetal mutational status on maternal and fetal outcomes. Based
on these data, knowing the fetal mutational status is of great value due to the effect
GCK−MODY has on the birthweight. Birthweight is significantly higher in GCK(−)
offspring, with significantly higher rates of LGA and macrosomic newborns. Almost half
of the reported GCK(−) newborns were born LGA and a fifth were macrosomic. The SGA
percentage among GCK(+) newborns was 5%, which can be expected. Other complications,
such as CD and shoulder dystocia, were more prevalent in the GCK(−) offspring.

There are some data on abortions, congenital anomalies, preterm births, and other
neonatal complications. However, the numbers are too small to reach any conclusions, and
any outcome cannot be attributed to the mutational status, treatment, or the lack of it [23].

Data on whether to treat with insulin or treat with diet and follow mainly rely on
reports of the birthweight and gestational age at delivery. Most available data show no
difference with regard to insulin treatment versus diet only in the GCK(−) offspring, while
some but not all reports found significantly smaller birthweights in the GCK(+) newborns.
Possible explanations regarding the lack of difference in birthweight and gestational age
at delivery are: 1. the small populations studied; 2. the retrospective analysis of chart
data; 3. in some studies, treatment was self-reported and possibly biased or omitted; and 4.
insulin was started too late or in insufficient doses.

Data on insulin initiation, dose, timing, and glycemic control in the mother are mostly
lacking; thus, variability in treatment makes drawing conclusions difficult. Inconsistent
data correlate insulin treatment and gestational age at delivery in GCK(+) and GCK(−)
pregnancies. Several reports found a positive association between insulin treatment and
earlier gestational age at delivery, but all babies in those studies were born at term [2,13,17].
Hence, the effect of gestational age on the neonatal outcome is negligible. As for preterm
deliveries, two studies reported rates of 10 to 12% in their MODY cohorts, which are
comparable to the worldwide rate of preterm deliveries.

Long-term follow-up in GCK mutation carriers concerning the mode of treatment
during pregnancy and later metabolic abnormalities is lacking. One study from China [12]
on a very small number of cases showed that insulin treatment in GCK(+) newborns led
to significantly lower weight babies with significantly higher rates of dyslipidemia at
adulthood. There are no data on the actual cardiovascular risk or other ethnic groups.

How can we incorporate the available literature into clinical decisions? A few points
merit further consideration.

In most pregnancies, the fetal mutational status remains unknown. If an invasive
procedure is planned due to other indications, waiting for the fetal mutational status results
until 18 to 20 weeks of gestation may delay the initiation of treatment of women with a
GCK(−) fetuses, exposing both to complications related to fetal overgrowth. If an invasive
procedure is not planned and fetal mutational status remains unknown, waiting until
accelerated fetal growth appears (AC > 75th percentile) may also potentially lead to LGA
or macrosomia and, as a result, to more interventions. Recent advances in noninvasive fetal
genotyping using cell-free fetal DNA from maternal plasma sampling are promising [7,24].

Furthermore, a strategy of serial fetal AC measurements to guide insulin treatment ini-
tiation is subject to inherent measurement errors, which may be even more substantial with
increasing pre-pregnancy overweight and obesity. Excessive gestational weight gain is also
independently associated with accelerated fetal AC in late pregnancy, further complicating
management decisions [7].

Although, outside of pregnancy, it is argued that the phenotype in GCK−MODY
is similar regardless of genotype, this might not be the case during pregnancy. A study
from Italy analyzed 20 GCK(+) children whose mothers did not receive treatment during
pregnancy [18]. The average birthweight was 3130 g (range 2900–3500 g), and there were
two SGA and three LGA neonates. All LGA newborns carried the same GCK mutation,
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and none of the other children had this mutation, suggesting that different GCK mutations
may result in different phenotypes. Thus, even if data on fetal mutational status were
known for all newborns, data are lacking on genotype–phenotype correlations. Structured
models stratify the severity of impairment in the glucokinase gene into three categories:
(1) drastic effect on catalytic activity; (2) reduced enzyme activity; and (3) a reduction of
activity altering the interaction of glucokinase with other proteins such as the glucokinase
regulatory protein. This genotypic variability may lead to a phenotypic difference that may
be significant during pregnancy [25].

The genotype differences are manifested by a wide range in fasting glucose concen-
trations of 99–144 mg/dL and HbA1C of 5.7–7.5%. The assumption is that pregnancy
outcomes do not depend on maternal baseline glucose levels. However, a baseline HbA1C
of 7.5% might expose a woman to different pregnancy outcomes (congenital anomalies,
abortion risk, and maternal complications) compared to a woman with an HbA1C of 5.7% at
the beginning of her pregnancy. This potential difference might merit further consideration
regarding insulin initiation while counseling a GCK−MODY woman before pregnancy
and at the first prenatal visit. The reported wide range in blood glucose and insulin doses
suggests that individual patient factors, such as co-existing insulin resistance, can influence
the preferred treatment strategy during pregnancy.

Additional unanswered issues relate to the glucose threshold for insulin initiation and,
if initiated, what the appropriate glucose targets should be (i.e., similar to pre-gestational
diabetes or “softer” targets). Further studies are needed to elucidate all of the above-
mentioned unanswered issues.

6. Conclusions

To conclude, knowing the fetal mutational status is of great value. However, data show
that solely knowing the fetal mutational status may not be sufficient to guide management,
and other variables that complicate treatment decisions should be taken into consideration.
After cautious interpretation of the limited available data, combined with our experience in
managing these women during pregnancy, early insulin treatment should be considered
in all GCK−MODY women, with a discontinuation of the treatment according to fetal
mutational status if this becomes available later in pregnancy. Further data are needed on
whether this will decrease the rate of LGA and macrosomic neonates and its potentially
harmful consequences without significantly increasing the SGA rates. Additional research
is essential to guide the management of pregnancies in women with GCK−MODY.
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