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Abstract: In this paper, the authors investigated changes in mass concentrations of particulate matter
(PM) during the Coronavirus Disease of 2019 (COVID-19) lockdown. Daily samples of PM1, PM2.5

and PM10 fractions were measured at an urban background sampling site in Zagreb, Croatia from
2009 to late 2020. For the purpose of meteorological normalization, the mass concentrations were fed
alongside meteorological and temporal data to Random Forest (RF) and LightGBM (LGB) models
tuned by Bayesian optimization. The models’ predictions were subsequently de-weathered by
meteorological normalization using repeated random resampling of all predictive variables except
the trend variable. Three pollution periods in 2020 were examined in detail: January and February,
as pre-lockdown, the month of April as the lockdown period, as well as June and July as the “new
normal”. An evaluation using normalized mass concentrations of particulate matter and Analysis
of variance (ANOVA) was conducted. The results showed that no significant differences were
observed for PM1, PM2.5 and PM10 in April 2020—compared to the same period in 2018 and 2019.
No significant changes were observed for the “new normal” as well. The results thus indicate that
a reduction in mobility during COVID-19 lockdown in Zagreb, Croatia, did not significantly affect
particulate matter concentration in the long-term..

Keywords: random forests; LightGBM; air quality; coronavirus disease of 2019; PM1; PM2.5; PM10; traffic

1. Introduction

Particulate matter (PM) is recognized as one of the major air pollutants affecting human
health. Particle size plays an important role in determining pollutant respiratory deposition
and thus potential health risks. Airborne particles PM10 (with aerodynamic diameter less
than 10 µm) and especially its smaller fractions (e.g., PM2.5—with aerodynamic diameter
less than 2.5 µm and PM1—with aerodynamic diameter less than 1 µm) are known to
effectively enter the human body, e.g., trachea (upper throat) or bronchi, and even reach
all the way down to the alveoli in the lungs, where it can penetrate from the lung alveoli
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into the blood [1,2]. In general, the smaller the particle size, the greater the adverse
health effect [3–5]. Therefore, further reduction of PM pollution both in developed and
developing countries has the potential to improve both life quality and expectancy. To
better understand sources, as well as environmental and health impacts of air pollution,
long-term measurement data sets are used in source appointment, epidemiological, and
air quality studies [6]. On the other hand, short-term traffic bans can be used to pinpoint
pollution contributors and raise awareness of air quality problems [7]. Ironically, besides
causing worldwide health and economical disturbance, the current COVID-19 pandemic
has also provided means to investigate air pollution [8]. Published evidence on the impact
of the COVID-19 lockdown on the concentration of ambient air pollutants highlights
the importance of transport and industrial activities [9,10]. For example, there is clear
evidence for reduced gaseous (e.g., nitrogen dioxide (NO2)) and particulate pollutant
concentrations in some urban areas, which can be linked to reduced transportation due
to COVID-19 [11–14]. In contrast, the European Environment Agency reported that a
consistent reduction of PM2.5 cannot be seen in European cities during the lockdown
period [15]. The main reasons could be that local pollution sources are more various,
including not only industrial activities and road traffic, but also the combustion of different
fuels for the heating, as well as the formation of secondary aerosols [16]. Furthermore,
it is not entirely clear how lockdown period pollutant concentrations depend on other
effects/confounders that should be accounted for, e.g., weather effects [13]. The methods
used in lockdown-related air pollution studies differ significantly. Many studies have
tried to assess the influence of lockdown measures on air pollutant concentrations by a
simple comparison of basic statistical parameters during the lockdown with the same
period a year before or up to five years before [17–23]. However, in such studies, the
variability of meteorological factors between years as well as long-term trends are not
considered. There are not many studies that include more sophisticated statistical and
modelling tools [13,24–27]. A summary of the review will be presented in the discussion
section. In machine learning prediction of air pollutant concentration, one often assumes
that the concentration (dependent variable) is a function of temporal and meteorological
determinants (independent variables) [28–30]. With that in mind, one can employ complex
algorithms which are considering possible non-linear relationships within the data and
present true influencing determinates based on inference. Two commonly seen (non-linear)
machine learning algorithms are Random Forest (RF) regression and neural networks
(NN). In previous work [13] RF regression was used to predict pollutant concentrations
during the lockdown in Graz and presented the advantages of utilizing such methods
over the historical comparison of pollution. Similarly, RF was used to assess changes in
pollutant levels during different stages of lockdown in Los Angeles by comparing predicted
concentrations under different traffic emission scenarios [31]. A similar approach was used
by Brancher [32] who refers to baseline models (non-lockdown periods) as “Business
as usual” scenarios. The model describes hourly-averaged concentrations per pollutant
and monitoring station to investigate air quality changes before and after lockdown and
to verify the models’ predictive skill to reproduce the pollutant measurements. A NN
approach was used to investigate whether changes in air quality in Nigeria were caused
primarily by the lockdown. In this case, monthly average values of ground-level fine
aerosol optical depth (AODf) across Nigeria from 2001 to 2020 were used [33]. Another
method for the assessment of air pollution during the lockdown period is the difference-
in-differences (DID) model. Xu et al. [34] used this method to evaluate air pollutants
and air quality before and during the lockdown. The DID model calculates the effect
of treatment (independent variable) on outcome (dependent variable) by comparing the
average changes in each of the groups. In this case, the outcome is the level of air pollution.
Control variables such as temperature, humidity, wind speed, etc. are also included. The
model considers whether the lockdown was enforced or not for each date and based on
this calculates relative changes in air pollution levels. The study by Gope et al. [35] used
the Air Quality Index (AQI), which is calculated from the concentration of the pollutants,
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to analyse the impact of lockdown on the environment. Comparison of the AQI for these
periods showed that most cities reduced their pollution. The pandemic of COVID-19
caused many changes in human activities, not only during the lockdown but also in the
months following it. For example, working from home and virtual meetings caused lower
mobility and, in some areas, even became a regular practice. There are mixed results
published regarding the lockdown and “new normal” effects on particulate matter. While
many methods are being used, there is a lack of a standardized approach for understanding
these phenomena. In this work, the authors present an assessment of particulate matter
in three mass fractions (PM1, PM2.5 and PM10) based on daily measurements over a long
period of 12 years at one urban background location. Previous PM measurements at the
same location have shown significant air pollution during winter months [36–38]. Data
from air quality monitoring stations [39] shows that in a few years prior to the COVID-19
pandemic, levels of PM10 and PM2.5 were below regulatory limits set by Croatian and EU
legislation for protection of human health. Annual averages of PM10 and PM2.5 were below
40 µg/m3 and 25 µg/m3, respectively. Daily limit value for PM10 is 50 µg/m3 and should
not be exceeded more than 35 times during the calendar year. This criterion was met at
that location since 2017. However, considering new WHO guidelines [40] which, in the
light of recent scientific evidence, suggests much lower limit values for both, PM10 and
PM2.5 fractions, it is necessary to apply new measures for reducing air pollution. With
the aim to protect people’s wellbeing, it is important to know the main pollution sources
and the efficiency of implemented measures. The intention of this paper was to examine
whether a reduction in mobility during the COVID-19 lockdown caused changes in PM
levels. The hypotheses are that the lockdown and the “new normal” both show reductions
in particulate matter concentration. A reduction during the “new normal” is hypothesized
due to a restriction on travel which affects Croatia’s tourism and more working from home.
To test these hypotheses, these periods were evaluated by using ANOVA on the normalized
(de-weathered) data.

2. Materials and Methods
2.1. Particulate Matter and Meteorological Measurements

Aerosol PM concentrations were measured in Zagreb, Croatia, at a sampling site
located in the northern, residential part of the city (45◦50′7” N, 15◦58′42” E, 116 m a.s.l.,).

The area is characterized by modest traffic and population density. The household
heating (gas and/or wood) season usually starts in October and lasts until April. The PM
samplers (Sven Leckel, engineering office, Berlin, Germany) were positioned at about 20 m
from the nearest street. Twenty-four-hour samples of PM1, PM2.5 and PM10 fractions have
been collected continuously every day on quartz filters (47 mm in diameter) during 12-years
period (2009–2020). PM mass concentrations were determined gravimetrically (Mettler
TOLEDO MX5 balance, Greifensee, Switzerland) according to the EN 12341:1998 and EN
14907:2005 standards from 2009–2014 and EN 12341:2014 standard from 2015–2020. Before
and after the sampling, filters were conditioned at a constant temperature (20 ± 1 ◦C) and
relative air humidity (45–50% RH) for 48 h. Meteorological parameters (temperature, RH,
wind speed and direction, pressure, and precipitation) were obtained from the Croatian
Meteorological and Hydrological Service. For the input of data used in this study an
explorative plot of the particle mass concentrations over time used in this study is shown
in Figure 1. The collected data can be found at ref. [41].
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Figure 1. A time series plot of the collected particle mass concentration data from 2009–2020 for PM1, 
PM2.5 and PM10. For the sake of simplicity, the data is plotted as rolling monthly averages. 
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formation such as: day of week, Julian date (days counted from 1 January 1970), month, 
year, holiday tag, etc. In addition, temporally aligned meteorological influences were 
added into the dataset. These consist of maximum daily temperature (T), minimal daily 
T, difference of max and min T, average T, maximum and minimum daily pressure (p), 
difference of max and min p, average p, maximum daily relative humidity (RH), mini-
mum daily RH, difference of max and min daily RH, average RH, wind speed and pre-
cipitation. Temporal and meteorological variables are given as independent or predictive 
variables. To retain a high amount of data for machine learning (ML), missing datapoints 
were imputed with backfill strategy (missing values are filled with the ones from the fol-
lowing day). Python programming language (www.python.org accessed on 1 February 
2022, v3.7.10) was used for analysis, while data processing and model training follows the 
method and the process described in [13,30]. It is assumed that the concentrations of par-
ticulate matter (PM1, PM2.5, PM10; dependent variables) can be modelled through temporal 
and meteorological variables as independent ones, previously listed. To model the air pol-
lution, RF [42] and LightGBM [43] methods were used. RF is an ensemble ML algorithm 
which consists of many individual decision trees and applies bootstrap aggregation (bag-
ging) and feature randomness techniques in building each decision tree. Like RF, 
LightGBM is an ensemble method that relies on tree-based learning but utilizes gradient 
boosting techniques as well as different tree-building techniques. RF and LightGBM are 
non-parametric and as such require no formal distributional assumptions enabling these 
methods to deal with skewed and multi-modal data. Consequently, these methods are 
well suited for modelling challenging phenomena such as air pollution, but also other 
settings as outlined in several studies [13,28,30,44,45]. Air pollution ML models were 
trained for PM1, PM2.5 and PM10 respectively, with their daily concentrations representing 
target (dependent, predicted) variables. Following the method outlined in previous stud-
ies [46,47], hyperparameters of these regression models were optimized through 10-fold 
cross-validation with Bayesian optimization. The training dataset (TDS) consists of data 
between 1 January 2009 and 31 December 2019 while data from 2020 was split into several 
smaller datasets indicating different validation and interest periods. Finally, the models 

Figure 1. A time series plot of the collected particle mass concentration data from 2009–2020 for PM1,
PM2.5 and PM10. For the sake of simplicity, the data is plotted as rolling monthly averages.

2.2. Data Processing and Model Training

The dataset used in this analysis is air pollution data collected over the period of
12 years (2009–2020) in a daily frequency (daily average) in Zagreb, Croatia. The dataset
contains the particulate matter mass concentrations of PM1, PM2.5 and PM10 and temporal
information such as: day of week, Julian date (days counted from 1 January 1970), month,
year, holiday tag, etc. In addition, temporally aligned meteorological influences were
added into the dataset. These consist of maximum daily temperature (T), minimal daily
T, difference of max and min T, average T, maximum and minimum daily pressure (p),
difference of max and min p, average p, maximum daily relative humidity (RH), minimum
daily RH, difference of max and min daily RH, average RH, wind speed and precipitation.
Temporal and meteorological variables are given as independent or predictive variables. To
retain a high amount of data for machine learning (ML), missing datapoints were imputed
with backfill strategy (missing values are filled with the ones from the following day).
Python programming language (www.python.org accessed on 1 February 2022, v3.7.10)
was used for analysis, while data processing and model training follows the method and
the process described in [13,30]. It is assumed that the concentrations of particulate matter
(PM1, PM2.5, PM10; dependent variables) can be modelled through temporal and meteoro-
logical variables as independent ones, previously listed. To model the air pollution, RF [42]
and LightGBM [43] methods were used. RF is an ensemble ML algorithm which consists of
many individual decision trees and applies bootstrap aggregation (bagging) and feature
randomness techniques in building each decision tree. Like RF, LightGBM is an ensemble
method that relies on tree-based learning but utilizes gradient boosting techniques as
well as different tree-building techniques. RF and LightGBM are non-parametric and as
such require no formal distributional assumptions enabling these methods to deal with
skewed and multi-modal data. Consequently, these methods are well suited for modelling
challenging phenomena such as air pollution, but also other settings as outlined in several
studies [13,28,30,44,45]. Air pollution ML models were trained for PM1, PM2.5 and PM10
respectively, with their daily concentrations representing target (dependent, predicted)
variables. Following the method outlined in previous studies [46,47], hyperparameters of
these regression models were optimized through 10-fold cross-validation with Bayesian
optimization. The training dataset (TDS) consists of data between 1 January 2009 and
31 December 2019 while data from 2020 was split into several smaller datasets indicat-
ing different validation and interest periods. Finally, the models were tested on their
generalization performance on MVS which is reported in the Results section.

www.python.org
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The first coronavirus patient was confirmed in Croatia on 25 February 2020. The Coro-
navirus Disease of 2019 (COVID-19) disease in Croatia was announced by the government
on the 11 March 2020. In the second half of March, all public events and gatherings were
canceled and all non-essential activities (shopping centers, bars and nightclubs, restaurants,
cinemas, libraries, gyms, sports centers and sport events, dance schools, children’s work-
shops, religious and other public gatherings) were closed. On 19 March the decision was
passed to restrict staying on the streets, squares, and other public places. Two days later it
was followed by suspensions of public transport, suspension of intercity lines for trains and
buses, and shortened working hours of shops and post offices. Finally, on 23 March a ban
on leaving one’s place of residence or permanent residence was set and only persons and
activities important for the movement and movement of goods were exempt. Relaxation of
strict measures started on 23 April and was carried out in three phases till 11 May 2020:
were relaxed between 27 April 27 and 11 May 2020 after which the bans were lifted. Sources
regarding the given information can be found following references [48–51]. These interest
periods and overall timeframes for 2020 are depicted in Figure 2 for the sake of simplifying
the timeframes.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 17 
 

 

were tested on their generalization performance on MVS which is reported in the Results 
section.  

The first coronavirus patient was confirmed in Croatia on 25 February 2020. The 
Coronavirus Disease of 2019 (COVID-19) disease in Croatia was announced by the gov-
ernment on the 11 March 2020. In the second half of March, all public events and gather-
ings were canceled and all non-essential activities (shopping centers, bars and nightclubs, 
restaurants, cinemas, libraries, gyms, sports centers and sport events, dance schools, chil-
dren’s workshops, religious and other public gatherings) were closed. On 19 March the 
decision was passed to restrict staying on the streets, squares, and other public places. 
Two days later it was followed by suspensions of public transport, suspension of intercity 
lines for trains and buses, and shortened working hours of shops and post offices. Finally, 
on 23 March a ban on leaving one’s place of residence or permanent residence was set and 
only persons and activities important for the movement and movement of goods were 
exempt. Relaxation of strict measures started on 23 April and was carried out in three 
phases till 11 May 2020: were relaxed between 27 April 27 and 11 May 2020 after which 
the bans were lifted. Sources regarding the given information can be found following ref-
erences [48–51]. These interest periods and overall timeframes for 2020 are depicted in 
Figure 2 for the sake of simplifying the timeframes. 

 
Figure 2. Datasets for 2020: model validation set-MVS (3 January–15 March); comparison set-CS 
(January and February); official lockdown (13 March–11 May); lockdown set- LDS (1–30 April); new 
normal set-NNS (1 June–31 July); construction works (March). 

A priori, the 2020 data on “out-of-ordinary” events which might have affected the 
pollutant concentrations were analyzed. “Out-of-ordinary” events include: a 5.3-magni-
tude earthquake in Zagreb (22 March 2020), long-range transport of desert dust events on 
26–30 March [13,52] and construction works near the measurement site in August 2020. 

As shown in Figure 3, these events clearly disrupt normal concentrations and intro-
duce bias in the models. Therefore, the respective timeframes were excluded from the 
presented analyses. As a result, even though the lockdown timeframe lasted longer than 
the one given as LDS, several dust events needed to be excluded. A subset from MVS for 
comparison to LDS (comparison set or CS) was split, which is set between 3 January and 
29 February 2020. The subset is shorter than MVS due to several construction activities at 
the site in March. LDS and NNS present the timeframe in focus of this lockdown pollution 
investigation. MVS was used to better understand the model generalization. 

  

Figure 2. Datasets for 2020: model validation set-MVS (3 January–15 March); comparison set-CS
(January and February); official lockdown (13 March–11 May); lockdown set- LDS (1–30 April); new
normal set-NNS (1 June–31 July); construction works (March).

A priori, the 2020 data on “out-of-ordinary” events which might have affected the
pollutant concentrations were analyzed. “Out-of-ordinary” events include: a 5.3-magnitude
earthquake in Zagreb (22 March 2020), long-range transport of desert dust events on
26–30 March [13,52] and construction works near the measurement site in August 2020.

As shown in Figure 3, these events clearly disrupt normal concentrations and introduce
bias in the models. Therefore, the respective timeframes were excluded from the presented
analyses. As a result, even though the lockdown timeframe lasted longer than the one given
as LDS, several dust events needed to be excluded. A subset from MVS for comparison to
LDS (comparison set or CS) was split, which is set between 3 January and 29 February 2020.
The subset is shorter than MVS due to several construction activities at the site in March.
LDS and NNS present the timeframe in focus of this lockdown pollution investigation.
MVS was used to better understand the model generalization.
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Figure 3. Out-of-ordinary events during 2020 shown as ratio between: (a) PM10/PM2.5 and (b) PM10/PM1.
The events in March 2020 are assigned to either the Zagreb-earthquake on 22 March, the sand dust
event between 24 and 30 March, or construction works at the site in early March, August, and
September. These events were excluded from the analyzed timeframes.

2.3. Meteorological Normalization (De-Weathering)

In this work, the authors followed the methodology from Grange et al. [28,29] for
meteorological normalization of the daily particulate matter time series. Meteorological
normalization was achieved by firstly creating an ML model per pollutant (particulate
matter concentration) that generalizes well on unseen data. In the next step, all predictive
variables (except Julian day) are repeatedly randomly sampled without replacement and
used to predict pollutant concentration using the individual trained RF models.

The procedure of meteorological normalization removes the short-term variation in
the time series. Reasoning for this procedure is that pollutant data must be corrected for
meteorological and temporal effects which are changing over time and can therefore affect
pollutant concentration. Herein, an example is shown by means of changing temperature and
precipitation through the given years (Figure 4). One can observe that there was a trend in
Zagreb, Croatia towards higher temperature and precipitation at the given monitoring station.

To normalize, the model predictions for each pollutant for 100 random samples were
then averaged into the normalized time series (normalized PM1, PM2.5, PM10). The com-
plete procedure of data processing, machine learning model training and meteorological
normalization is presented in Figure 5.
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Figure 4. An overview of temperature and precipitation in Zagreb, Croatia through the studied
timeframe 2009–2020. The data is plotted as a 3-month average and given trend-line by means of a
regression line. The grey horizontal lines are the minimal values in of the regression line, showing
the deviation from the minimal value.
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3. Results

The model scores by means of root-mean-square-error, R2 scores and chosen models
by means of MVS performance are shown in Table 1. Based on R2 scores, all three models
show good predictive values (good generalization). The prediction quality in RMSE is
similar for PM10 and PM2.5, while it increases for PM1. When comparing the R2 scores to
the author’s previous work [13], the observed values in this study suggest a reasonably
good generalization with R2 scores above 0.77.

Table 1. Results of the machine learning models for PM-concentrations shown on the validation set (MVS).

Pollutant RMSE R2 Score Winning Algorithm

PM10 10.47 0.77 Random Forests
PM2.5 9.87 0.78 Random Forests
PM1 6.49 0.77 LightGBM

Once models were trained, the data was normalized (de-weathered) as described in
Section 2.3 and depicted in Figure 5. To evaluate change in airborne pollution concentrations
due to the lockdown, yearly trends were assessed by means of median of the normalized
time series. Three timeframes were compared (Figure 6), namely the months of January
and February together (CS) and June together with July (NNS) which are considered to
be the new normal (post-lockdown changes). Normalized time series during the months
of April (LDS) every year is given in Figure 6. In Figure 6a, for CS (January and February,
pre-lockdown reference) there is a continuous reduction from 2009 to 2017 for all size
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fractions of PM. However, starting with 2017 an unexpected increase for the normalized
values can be observed for PM10 and a slight increase from 2019 to 2020 for PM1, while
PM2.5 has a steady level from 2017 onwards. During NNS (the months of June and July,
Figure 6b) a reduction in pollution compared to previous years was expected due to lower
tourism rate and the travel ban as well as working from home and many isolations. Instead,
the observed pattern for NNS is like CS, with PM2.5 showing similar levels from 2018–2020,
while PM1 and PM10 show slight increases. In the case of April, when the lockdown
took place (LDS; boxplots in Figure 7), PM2.5 shows a steady decrease from 2009 onwards
with a visually insignificant decrease from 2019 to 2020. PM10 mass concentration shows
a similar trend with visually insignificant changes from 2017 onwards. The results are
slightly different from PM1 which shows mixed periods of decrease and increases from
2009 onwards. Even though there seems to be a huge drop from 2018 to 2019, there is an
increase from 2019 to 2020. ANOVA was utilized to assess whether the changes observed
in normalized PM-time series are significant.

For each of PM1, PM2.5 and PM10 a test was created with the year as categorical
variable (2018, 2019, 2020) as the independent variable and the normalized concentrations
as the dependent variable. ANOVA showed that yearly changes for April do not show
statistical significance for any of the PM fractions—PM1 (p = 0.10), PM2.5 (p = 0.47) and PM10
(p = 0.76). Similar results were obtained for the NNS (new normal) with PM1 (p = 0.26),
PM2.5 (p = 0.81) and PM10 (p = 0.72).
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4. Discussion

Table 2 presents the literature findings on the influence of lockdown on air pollutant’s
levels and methods applied. It is evident that most of the studies did not include long-term
PM measurements and were mostly focused on the comparison of the lockdown period
with the same period in 2019. Furthermore, they do not account for the effect of year-to year
variability and seasonal variability caused by meteorology and weather conditions, which
was the reason for using normalization [28,29]. However, even normalization can suffer
from a lack of data or model quality. For this reason, we utilized, besides RF, also LightGBM
and Bayesian optimization for tuning all models to improve model accuracy. Comparing to
data sources listed in Table 2, this work has a fair amount of data with a collection starting
from 2009, which the authors deem to be needed for such an undertaking.

Regarding the changes in air pollution, the results obtained in this study are in line
with the other published work [13,14,34,73]. In a previous study carried out in Zagreb,
average concentrations of NO2, PM1 and PAHs in PM1 during the lockdown period were
compared with the average concentrations for the same period in 2019. It was found that
during lockdown at the traffic measuring site concentrations decreased by 35% for NO2
and PM1 compared with the same period in 2019. However, at the urban background
measuring site NO2 decreased by 27% while PM1 levels remained like the year before [18].

There is mixed evidence for whether PM mass concentrations were truly affected by
the lockdown, i.e., change in mobility, at least for the sites not heavily affected by traffic.
In the authors previous work [13], it was found that a drop in PM10 mass concentration
during the lockdown in Graz, Austria is rather inconsistent when comparing it to gaseous
pollutants (e.g., NO2). A drop in NO2 gas concentrations was found to be around 40%,
while PM10 mass concentration decrease was in the range of 6–14% compared to previous
years. However, these analyses were conducted without meteorological normalization.
Given the comparison to the observed reduction in traffic, it can be assumed that the
reduced traffic was not a dominant contributing factor to the changes in PM10 atmospheric
load. Xu et al. [34] who were using the difference-in-differences method to compare air
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pollution before and during the lockdown in China, found no change in PM10 and PM2.5
concentrations. This finding implies that traffic cannot be considered the main PM source.
Although particulate matter concentrations show short-term declines within three days
after the lockdown policies were implemented, when compared to the measurements from
different monitoring sites that acted as a control group, the lockdown effects were not as
pronounced. The given results are in accordance also with a study by Etchie et al. [33] who
observes no effect on PM by the lockdown. A study that also used RF and meteorological
normalization shows only a moderate decrease for PM10 [73]. The results imply that in
Zagreb, Croatia, traffic is not the main contributor in such a site to air pollution by means
of particulate matter. This is essential to the discussion of which factors contribute to public
health, such as traffic, residential heating, and urban planning. If traffic is not the main
contributor to particulate matter, regardless of its contribution by means of nitrogenous
oxides [13] and polycyclic aromatic hydrocarbon (PAH) [18] then local policymakers need
to invest more efforts in understanding other contributors and prevention policies which
will improve air quality.

Table 2. Literature findings on the lockdown’s effects on particulate matter concentration. Abbre-
viations used: Machine learning (ML), Descriptive statistics (DS), Modelling (MD), Unsupervised
methods (UM), Meteorology (Met), Machine learning with normalization (MLN).

Geographic
Location Pollutants Methods Data Used Ref.

Zagreb, Croatia PM10, PM2.5, PM1.0 MLN

Training: from 1 January 2019 to
31 December 2019 (114 samples)
Validation: 3 smaller datasets in 2020
(10 samples); Test: 4 May to 13 May 12020
(10 samples)

This study

Zagreb, Croatia NO2, PM10 DS
Comparison between lockdown period
(26 February–7 May 2020) and the same period
in 2019

[17]

Zagreb, Croatia NO2, PM1.0, PAHs DS Comparison between lockdown period
(March–May 2020) and the same period in 2019 [18]

Novi Sad, Serbia PM2.5, NO2, NO, NOx,
CO, SO2 + Met DS Comparison before and after entering the state

of emergency (1 February to 30 April) [53]

Skopje, Bitola, Tetovo,
Kumanovo, Macedonia

PM10, PM2.5, NO2, O3,
CO, Met DS

Comparison of COVID19 period (last week of
February 2020 to the end of May 2020) with the
same period in 2017–2019 (nonCOVID-19
period)

[19]

Milan, Italy
PM10, PM2.5, O3, NO2,
SO2, CO, air quality
index (AQI) + Met

DS
Comparison between pre-lockdown
(January–February 2020) and lockdown period
(March–April 2020)

[54]

Milan, Italy
PM10, PM2.5, BC,
benzene, CO, NO2, O3,
NOx + Met

DS

Comparison between periods: CTRL (from
7 February 2020 to February 20), PL (from
9 March 2020 to 22 March 2020), and TL (from
23 March 2020 to 5 April 2020)

[55]

Milan, Bologna, Florence,
Rome, Naples, and
Palermo, Italy

PM10, PM2.5, NO2, O3 +
Met DS

Comparison between 2019-period
(25 February–2 May 2019) and 2020-period
(24 February–30 April 2020)

[20]

Athens, Greece

PM2.5, PM1.0, eBC, EC,
OC, paricle number size
distribution, SO4

2-, NO3-,
Cl-, NH+ + Met

DS

Comparison of reference period
(1 January–10 March 2020) the two lockdown
periods (11 March–22 March 2020 &
23 March–12 April 2020) with the respective
periods in 2018 and 2019

[56]

Barcelona & Catalonia,
Spain

NO2, O3, PM10—hourly
samples DS

Comparisons during the before (15 February to
13 March), during (14 March to 21 June) and
after lockdown (22 June to 31 August)

[57]

Barcelona, Spain PM10, NO2, SO2, O3, BC
+ Met DS

Comparison for the periods before (16 February
to 13 March) and during the lockdown
(14 March to 30 March)

[58]
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Table 2. Cont.

Geographic
Location Pollutants Methods Data Used Ref.

Madrid, Barcelona, Spain NO2—hourly samples +
Met DS Comparison of March in the years 2018, 2019

and 2020 [21]

South East of the UK NO2, PM2.5, PM10, O3 +
Met DS

Comparison between lockdown period
(March–May 2020) with the same period in
2015–2019

[22]

UK
NO, NO2, NOx, O3,
PM10, PM2.5—hourly
samples

DS
Comparison between lockdown period
(1 January to 30 June 2020) with the period
from 1 January 2015 to 31 December 2019

[23]

London, Glasgow, Belfast,
Birmingham, Manchester
and Liverpool, UK

NOx, SO2, PM2.5, O3 +
Met DS

Comparison of 100 days post-lockdown
(23 March to 30 June 2020) with the same
period from the previous 7 years

[59]

Turkey PM10, SO2, DS Comparison of 2020 to the average of the 5-year
period (2015–2019) [60]

Baghdad, Iraq NO2, O3, PM2.5, PM10,
AQI DS

Comparison of the periods before the lockdown
from 16 January to 29 February 2020, and
during four periods of partial and total
lockdown from (1 March to 24 July 2020)

[61]

Kuwait PM10, PM2.5 + Met DS
Comparison between the lockdown in 2020
with the corresponding periods of the years
2017–2019

[62]

India PM2.5, PM10, NO2, O3,
CO, SO2 + Met—hourly DS

Comparison between lockdown period
(25 March–3 May 2020) and the same period in
2017–2019

[63]

Southern regions of India PM2.5, PM10, NO, CO,
O3

DS
Comparison between lockdown period (1 April
to 31 July 2020) and the same periods in 2018
and 2019

[64]

Kolkata City, India PM10, PM2.5, O3, SO2,
NO2, CO UM

Comparison of lockdown period (25 March to
15 May 2020), with the similar time frame in
2017, 2018 and 2019

[24]

Sao Paulo, Brazil NO, NO2, CO, PM2.5,
PM10, SO2, O3, NOx

DS

Comparison the partial lockdown periods
(25 February 2020 to 23 March 2020 and from
24 March 2020 to 20 April 2020) to the five-year
monthly trend (February, March and April of
the years 2015, 2016, 2017, 2018 and 2019)

[65]

Nice (France), Rome and
Turin (Italy), Valencia
(Spain) and Wuhan
(China)

NOx, PM2.5, PM10, O3 DS

Comparison of lock down period
(1 January 2017 until 18 April 2020) with the
same period over the three previous years
(2017–2019)

[66]

sixteen selected cities
located in South Asia,
East Asia, Europe, and
North America

NO2, CO, PM2.5, O3, SO2 DS
Comparison between from 1 January–15 May
for the year of 2015–2019 (defined as baseline
period) and 2020 (lockdown)

[67]

50 most polluted capital
cities in the world PM2.5, AQI DS Comparison between before and during

quarantine [68]

34 countries NO2, O3, PM2.5 DS Comparison between from 1 January–15 May
for the year of 2017–2019 and 2020 (lockdown) [69]

Multiple locations * NO2, SO2, CO, O3, PM10,
PM2.5, AQI DS Comparison between lockdown period in 2020

to the same period of 2017, 2018 and 2019 [70]

New York, Los Angeles,
Zaragoza, Rome, Dubai,
Delhi, Mumbai, Beijing
and Shanghai

PM2.5 DS
Comparison of lockdown period
(December 2019–March 2020), and the same
period in earlier years 2017–2019

[71]

São Paulo in Brazil; Paris
in France; and Los
Angeles and New York in
the USA

NO2, CO, PM2.5, O3 +
meteorology DS Comparison of March in the years 2015–2020 [72]
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Table 2. Cont.

Geographic
Location Pollutants Methods Data Used Ref.

Graz, Austria NO2, PM10, O3, Ox + Met ML

Training: from 3 January 2014 to
31 December 2019 (daily)
Validation: from 3 January 2020 to
10 March 2020 (daily),
Test:l lockdown set, LD (10 March 2020 to
2 May 2020—daily samples), and a hard
lockdown set, HLD (20 March 2020 to
14 April 2020—daily samples)

[13]

Lombardy, Italy NO2, PM2.5 + Met ML

Training: from 2012 through 2019
Validation: months from January to April for
2016–2020
Test: from January through early May 2020

[25]

Sao Paulo, Brazil CO, O3, NO2, NO, PM2.5,
PM10 + Met ML

Training: from 1 January to 23 April 2020
(114 samples); Validation: 24 April to
3 May 2020 (10 samples); Test: 4 May to
13 May 2020 (10 samples)

[26]

Quito, Ecuador CO, NO2, PM2.5, SO2, O3 MLN

Training: from 1 January 2016 to
15 January 2020 (2 months before the
COVID-19 lockdown)
Test: from 16 January 2020 to 15 March 2020
(the day of the national lockdown).

[27]

Cantabria, Spain NO, NO2, PM10, O3, Met MLN
Data from 11 stations (2013–2020)
Training data 2013–2019, test set lockdown and
new normal 2020

[73]

Vienna, Austria

* Wuhan, Beijing (China), Delhi (India), Tehran (Iran), Istanbul (Turkey) in Asia; Rome (Italy), Madrid (Spain),
Paris (France), London (UK), Berlin (Germany) and Moscow (Russia) in Europe; Johannesburg (South Africa) in
Africa and Los Angeles, New York City (USA), Mexico city (Mexico), Sao Paulo (Brazil) and Lima (Peru) in North
and South America.

Limitations and Future Work

First and foremost, there are many contributing factors to atmospheric PM levels,
such as secondary particle formation and long-range transport of particulate matter which
are here not considered. Beyond those, there are also solar irradiation, traffic density,
contribution from resuspension of road dust, etc.

The height of the boundary layer changes significantly during the day. In summer,
this is more pronounced because the sun warms the substrate, vertical currents appear,
and the height of the boundary layer increases. As night approaches, the height of the
boundary layer decreases. Since in this work the authors used the daily values of the
concentrations of suspended particles, this daily course is not distinguishable in the given
data on the concentration of PM. Furthermore, in the city of Zagreb, a high stability of the
boundary layer of the atmosphere was observed during the cold part of the years when
increased concentrations of PM were also observed. It should be emphasized that Zagreb
is surrounded by Medvednica mountain on the north and the river Sava on the south, and
there are no major industrial cities along these routes. East and west of Zagreb there are only
suburban settlements (Zaprešić, Samobor, Sesvete, Dugo Selo) which are residential centers
without pronounced dominant sources, and this contribution is not included in this paper.

Another limiting factor is also the data frequency and measurement method. This
work is based on daily averages of particulate matter and meteorology which are rough
estimates of pollution trends and their dependence on meteorology. Even though the
models have good generalization with R2 scores above 0.77, using these predictions will
lead to error propagation since the models do not cover all the variance.

In the future, the authors aim to shift the focus towards PM composition and source
apportionment regarding changes during the lockdown which helps understand the con-
tributions. Furthermore, the authors intend to apply recent in-house research on the
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intersection of physics-based and machine learning based models (so call physics-inspired
machine learning) such as seen in recent research [45,74] where models’ accuracy profits
from the combination of the two worlds.

5. Conclusions

In this work the effects of the lockdown on PM mass concentration in Zagreb, Croatia
were evaluated. The authors hypothesized that the COVID-19 lockdown (April 2020) and
the “new normal” (June, July 2020) would both exhibit a decrease in PM1, PM2.5, and PM10
mass concentrations due to changed human behavior and mobility. To investigate the antic-
ipated decrease in PM mass concentrations, machine learning, by means of Random Forests
(RF) and LightGBM (LGB) were utilized and combined with meteorological normalization.
The RF and LGB models trained in this study exhibited a reasonably good generalization
on the test set (R2 scores > 0.77). By using normalization, the trend component of the
PM mass concentration was extracted and compared it pre-, during, and post-lockdown
timeframes. The results by means of normalized concentrations show that over the course
of 2009–2017/2018, for the city of Zagreb at an urban location, PM mass concentrations
dropped, however, no significant changes were observed in PM mass concentrations due
to the lockdown or post-lockdown events. Besides that, given that NO2 reductions were
earlier observed at the same site, one can speculate that a reduction in mobility did not
affect particulate matter to a significant extent at this specific site.
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main air pollutants before and during emergency lockdown in the city of novi sad (Serbia). Appl. Sci. 2021, 11, 1212. [CrossRef]

54. Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10
particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [CrossRef] [PubMed]

55. Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in
Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [CrossRef] [PubMed]

56. Eleftheriadis, K.; Gini, M.I.; Diapouli, E.; Vratolis, S.; Vasilatou, V.; Fetfatzis, P.; Manousakas, M.I. Aerosol microphysics and
chemistry reveal the COVID19 lockdown impact on urban air quality. Sci. Rep. 2021, 11, 1–12. [CrossRef]

57. Gorrochategui, E.; Hernandez, I.; Pérez-gabucio, E. Temporal Air Quality (NO2, O3 and PM10) Changes in Urban and Rural
Stations in Catalonia during COVID-19 Lockdown: An Association with Human Mobility and Satellite Data. Environ. Sci. Pollut.
Res. 2022, 29, 18905–18922. [CrossRef]

58. Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during
the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.144151
http://doi.org/10.1016/j.envpol.2021.117153
http://doi.org/10.1016/j.scitotenv.2021.145187
http://doi.org/10.3390/ijerph18168702
http://www.ncbi.nlm.nih.gov/pubmed/34444451
http://doi.org/10.1007/s11356-021-14462-9
http://www.ncbi.nlm.nih.gov/pubmed/34036496
http://doi.org/10.1007/s11869-018-0603-3
http://doi.org/10.3390/ijerph15112485
http://www.ncbi.nlm.nih.gov/pubmed/30405070
http://doi.org/10.1016/j.envpol.2016.06.034
http://www.ncbi.nlm.nih.gov/pubmed/27364465
http://iszz.azo.hr/iskzl/
http://doi.org/10.5281/ZENODO.6390135
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1093/nsr/nwaa307
http://doi.org/10.1186/s40323-020-00184-z
http://doi.org/10.1002/cem.3349
https://askabout.io/covid-19/ask/what-is-the-government-response-timeline-for-croatia/
https://askabout.io/covid-19/ask/what-is-the-government-response-timeline-for-croatia/
https://www.iusinfo.hr/aktualno/u-sredistu/41376#travanj2020
https://vlada.gov.hr/coronavirus-protection-measures/28950
https://vlada.gov.hr/coronavirus-protection-measures/28950
http://doi.org/10.3390/toxics10050241
http://www.ncbi.nlm.nih.gov/pubmed/35622654
https://www.meteoswiss.admin.ch/home/climate/the-climate-of-switzerland/specialties-of-the-swiss-climate/saharan-dust-events.html
https://www.meteoswiss.admin.ch/home/climate/the-climate-of-switzerland/specialties-of-the-swiss-climate/saharan-dust-events.html
http://doi.org/10.3390/app11031212
http://doi.org/10.1016/j.scitotenv.2020.139825
http://www.ncbi.nlm.nih.gov/pubmed/32512362
http://doi.org/10.1016/j.scitotenv.2020.139280
http://www.ncbi.nlm.nih.gov/pubmed/32402928
http://doi.org/10.1038/s41598-021-93650-6
http://doi.org/10.1007/s11356-021-17137-7
http://doi.org/10.1016/j.scitotenv.2020.138540


Int. J. Environ. Res. Public Health 2022, 19, 6937 16 of 16

59. Higham, J.E.; Ramírez, C.A.; Green, M.A.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual.
Atmos. Health 2021, 14, 325–332. [CrossRef]

60. Orak, N.H.; Ozdemir, O. The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human
mobility across Turkey. Environ. Res. 2021, 197, 111018. [CrossRef]

61. Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10
concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [CrossRef] [PubMed]

62. Al-Hemoud, A.; Al-Khayat, A.; Al-Dashti, H.; Li, J.; Alahmad, B.; Koutrakis, P. PM2.5 and PM10 during COVID-19 lockdown in
Kuwait: Mixed effect of dust and meteorological covariates. Environ. Challenges 2021, 5, 100215. [CrossRef]

63. Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during
COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [CrossRef] [PubMed]

64. Meji, M.A.; Dennison, M.S.; Mobisha, M.; Umar, M.M. Impact of COVID-19 Induced Lockdown on the Air Quality in the Southern
Key Regions of India. i-Manager’s J. Futur. Eng. Technol. 2021, 16, 11. [CrossRef]

65. Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state,
Brazil. Sci. Total Environ. 2020, 730, 139087. [CrossRef]

66. Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution
in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [CrossRef]

67. Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented temporary reduction in global air pollution associated with
COVID-19 forced confinement: A continental and city scale analysis. Remote Sens. 2020, 12, 2420. [CrossRef]

68. Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital
cities in the world. Environ. Pollut. 2020, 266, 115042. [CrossRef]

69. Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad.
Sci. USA 2020, 117, 18984–18990. [CrossRef]

70. Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the COVID-19 pandemic lockdown on air pollution in 20 major cities around
the world. Atmosphere 2020, 11, 1189. [CrossRef]

71. Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19.
Environ. Res. 2020, 187, 109634. [CrossRef] [PubMed]

72. Connerton, P.; de Assunção, J.V.; de Miranda, R.M.; Slovic, A.D.; Pérez-Martínez, P.J.; Ribeiro, H. Air quality during COVID-19 in
four megacities: Lessons and challenges for public health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [CrossRef] [PubMed]

73. Ceballos-Santos, S.; González-Pardo, J.; Carslaw, D.C.; Santurtún, A.; Santibáñez, M.; Fernández-Olmo, I. Meteorological
Normalisation Using Boosted Regression Trees to Estimate the Impact of COVID-19 Restrictions on Air Quality Levels. Int. J.
Environ. Res. Public Health 2021, 18, 13347. [CrossRef] [PubMed]

74. Hoffer, J.G.; Ofner, A.B.; Rohrhofer, F.M.; Lovric, M.; Kern, R.; Lindstaedt, S.; Geiger, B.C. Theory-inspired machine learning—
Towards a synergy between knowledge and data. Weld. World 2022, 66, 1291–1304. [CrossRef]

http://doi.org/10.1007/s11869-020-00937-0
http://doi.org/10.1016/j.envres.2021.111018
http://doi.org/10.1016/j.scitotenv.2020.141978
http://www.ncbi.nlm.nih.gov/pubmed/32919315
http://doi.org/10.1016/j.envc.2021.100215
http://doi.org/10.1016/j.envpol.2020.115368
http://www.ncbi.nlm.nih.gov/pubmed/32829030
http://doi.org/10.26634/jfet.16.2.17620
http://doi.org/10.1016/j.scitotenv.2020.139087
http://doi.org/10.1016/j.scitotenv.2020.139542
http://doi.org/10.3390/rs12152420
http://doi.org/10.1016/j.envpol.2020.115042
http://doi.org/10.1073/pnas.2006853117
http://doi.org/10.3390/atmos11111189
http://doi.org/10.1016/j.envres.2020.109634
http://www.ncbi.nlm.nih.gov/pubmed/32416359
http://doi.org/10.3390/ijerph17145067
http://www.ncbi.nlm.nih.gov/pubmed/32674410
http://doi.org/10.3390/ijerph182413347
http://www.ncbi.nlm.nih.gov/pubmed/34948956
http://doi.org/10.1007/s40194-022-01270-z

	Introduction 
	Materials and Methods 
	Particulate Matter and Meteorological Measurements 
	Data Processing and Model Training 
	Meteorological Normalization (De-Weathering) 

	Results 
	Discussion 
	Conclusions 
	References

