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Abstract: Chlamydia pneumonia, a species of the family Chlamydiacea, is a leading cause of pneumonia.
Failure to eradicate C. pneumoniae can lead to chronic infection, which is why it is also considered
responsible for chronic inflammatory disorders such as asthma, arthritis, etc. There is an urgent
need to tackle the major concerns arising due to persistent infections caused by C. pneumoniae as no
FDA-approved drug is available against this chronic infection. In the present study, an approach
named subtractive proteomics was employed to the core proteomes of five strains of C. pneumonia
using various bioinformatic tools, servers, and software. However, 958 non-redundant proteins were
predicted from the 4754 core proteins of the core proteome. BLASTp was used to analyze the non-
redundant genes against the proteome of humans, and the number of potential genes was reduced
to 681. Furthermore, based on subcellular localization prediction, 313 proteins with cytoplasmic
localization were selected for metabolic pathway analysis. Upon subsequent analysis, only three
cytoplasmic proteins, namely 30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase subunit
C, and oligopeptide binding protein, were identified, which have the potential to be novel drug
target candidates. The Swiss Model server was used to predict the target proteins’ three-dimensional
(3D) structure. The molecular docking technique was employed using MOE software for the virtual
screening of a library of 15,000 phytochemicals against the interacting residues of the target proteins.
Molecular docking experiments were also evaluated using molecular dynamics simulations and the
widely used MM-GBSA and MM-PBSA binding free energy techniques. The findings revealed a
promising candidate as a novel target against C. pneumonia infections.
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1. Introduction

Chlamydia pneumoniae is an established cause of acute lower respiratory tract infections
in all age groups [1]. C. pneumonia can cause chronic infection and is associated with a range
of chronic lung diseases including asthma, chronic bronchitis, and chronic obstructive
pulmonary disease (COPD) [2]. Chronic diseases are described as illnesses that last a
year or longer and necessitate continuing medical attention, impede everyday activities,
or both [3,4]. C. pneumoniae has a unique ability to spread from the lungs to pulmonary
disease tissues such as arteries, joints, bones, and the central nervous system via peripheral
blood mononuclear cells [5]. Chronic infections of the respiratory system account for
70% of bacterial infections, but acute lung illnesses affect only 30% of patients. Indeed,
C. pneumonia has also long been linked to several serious chronic inflammatory disorders,
including atherosclerosis, Alzheimer’s disease, and inflammatory arthritis [6].

Coughing or sneezing can spread C. pneumoniae because it produces minute respiratory
droplets that contain the bacterium [7]. Other people subsequently inhale the bacteria
and droplets. People can also become ill if they come into contact with something that a
sick person has deposited droplets on and then touch their mouth or nose. In most cases,
C. pneumonia infections have a protracted incubation period (the time between breathing
in the bacteria and developing symptoms) [8]. It usually infects people while they are
school-aged children or young adults for the first time. Reinfection, on the other hand,
is more common among the elderly [9]. C. pneumoniae can infect a range of different cell
types. In regard to respiratory infection, C. pneumoniae initially infects lung epithelial cells
and alveolar macrophages. Infection can then spread to infiltrating immune cells such
as monocytes, macrophages, monocyte-derived dendritic cells (DCs), lymphocytes, and
neutrophils. Failure to eradicate C. pneumoniae can lead to chronic infection, during which
C. pneumoniae enters a state of quiescence with intermittent periods of replication [10].

To avoid the challenges that today’s healthcare societies are experiencing, it is critical
to diagnose and treat infections as soon as possible [11]. Multiple drugs are available on
the market but are not FDA-approved and have side effects [12]. That is why there is a
dire need to work on the treatment of chronic C. pneumoniae infection. Bioinformatics is
increasingly being used in life sciences [13,14]. The emergence of widely acknowledged and
highly efficient big data analysis tools has opened up new paths for uncovering more in-
triguing and promising diagnostic and therapeutic approaches [15]. Recent advancements
in technologies have allowed researchers to make tremendous progress in the field of drug
discovery with the introduction of high-throughput computational techniques [16]. In the
modern postgenomic period, the probabilities of selecting suitable targets through computa-
tional methods and the integration of “omics” data, such as proteomics, metabolomics, and
genomics, have been expanding continuously [17]. In silico approaches such as subtractive
and comparative proteomics are now being used extensively for the identification, as well
as the prediction, of drug targets for several pathogenic bacteria. Compared to traditional
methods, these techniques are time-saving and cost-effective in drug-designing processes.
In recent years, potential drug targets have been designed for several pathogenic bacteria
using the subtractive proteomics approach [18,19].

In the current study, the core proteomes of five strains of C. pneumonia were analyzed
to employ various subtractive proteomics approaches. The essential proteins required
for bacterial survival were identified using a variety of computational software tools. To
prevent potential drug cross-reactivity with host and bacterial proteins, we analyzed both
metabolic and host non-homology pathways, as well as bacterial protein involvement in
several host metabolic processes. The study was expanded to model the 3D structures of
the likely drug targets using the SWISS-MODEL to identify a selective and potent inhibitor
using docking studies. Furthermore, ADMET profiling of compounds was performed using
the SwissADME server to determine the pharmacokinetics of compounds. The in silico
approach of molecular dynamics simulation is also used to pre-screen the top compounds.
The findings of this study could help in the development of effective drug targets against
the chronic infection of C. pneumonia.
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2. Materials and Methods
2.1. Collection of Data and Core Proteomics Analysis

Genomics data of all available strains of C. pneumonia were retrieved from the National
Center for Biotechnology Information (NCBI). NCBI is a hub of biomedical and genomics
information. The genomics data obtained from NCBI were then further analyzed by Perl
script to generate a core proteome that comprises only those proteins that are shared by all
pathogenic strains of C. pneumonia [20]. A further USEARCH algorithm was used to cluster
proteome sequences due to the focus on highly conserved proteins. In this regard, only
those proteins that met the precise criteria of ≤50% sequence identity were selected. These
conserved proteins are captivating candidates for all-inclusive protein prediction [21].

2.2. Identification and Removal of Paralogs

The occurrence of duplicative proteins was then evaluated in the core proteome.
Duplicate proteins are the result of duplication events that occurred during the evolution
process. CD-Hit analysis [22] was performed to eliminate redundant sequences from the
core proteome, as the redundant proteins are not necessary and a single copy of each
protein is enough. In this regard, the core proteome was submitted to the CD-HIT suite for
the identification of redundant proteins. Meanwhile, the threshold value was set at 80%.

2.3. Identification of Non-Homologous Proteins

The protein set obtained from CD-HIT was compared with a human host through
Blastp to eliminate the homologs proteins. Host homologous proteins were excluded from
the study because this is important to find druggable proteins, which may be considered
for therapeutics development. Moreover, merely the proteins of pathogens were retained
to minimize the accidental therapeutic blockage by the host involved in the metabolism of
the host. The non-homologous proteins were screened by setting >70 query coverage and
≤30% identity parameters of Blastp [23].

2.4. Prioritization of Putative Drug Targets

Predicting protein subcellular localization is an important part of drug design. There-
fore, it is critically significant to forecast the function of the specific protein in the design of
potential drug targets. Subcellular localization is used to determine the proper functioning
of specific proteins. In the framework of the current study, the CELLO server combined
with SVM was used for the prediction of subcellular localization of homologous/non-host
proteins [24].

The bacteria engage in a series of processes that have an impact on the host. Therefore,
predicted proteins were screened for comparative analysis of metabolic pathways. The
selected proteins were analyzed to determine which metabolic pathways they were linked
to. This research is being conducted to find therapeutic targets based on unique and
common pathways of bacteria with humans. Therefore, only those proteins in the study’s
final list, which are unique to C. pneumonia, were included. Lastly, a druggability analysis
was performed on predicted cytoplasmic proteins. In this regard, the Drug Bank [25] was
employed to locate proteins that are targeted by a wide spectrum of drugs. The Drug
Bank is a user-friendly tool in chemoinformatic that combines quantitative drug data with
an in-depth understanding of targeted therapies, using a BLAST search with an e-value
of 10−5. Figure 1 represents the overall methodology used in the current analysis.

2.5. Structure Prediction and Structure Evaluation

After the sequence analysis and assessment were completed, the target proteins were
submitted to structure prediction. The structure prediction was performed using the
SWISS-MODEL program [26]. The Expasy web server accessed the SWISS-MODEL, a fully
functional protein structure homology modeling service. One of the most important aspects
of computational structure prediction is the accurate evaluation of the 3D model [27]. As a
result of novel sequencing methods that have arisen in recent years, scientists have made
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ground-breaking discoveries in computational structural biology [28]. The introduction of
widely accepted and extremely efficient techniques for structure evaluation has opened up
new avenues for qualitatively estimating protein structures. In this study, four separate
tools, ProCheck, Verify 3D, ERRAT, and ProsA-web, were used to determine the quality of
improved pharmacological targets [29].
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2.6. Refinement of Protein Receptors

UCSF chimera was used for the refinement of the protein structures; firstly, the non-
standard residues were removed from the receptor, and after that, at 1000 decent steps, the
energy minimization was performed [30]. The resulting structure was improved using the
Protonate3D tool in the molecular operating environment (MOE) to add partial charges at
a temperature of 310 K and a pH of 7 [31].
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2.7. Library Preparation

All of the phytochemicals were chosen from a variety of databases, such as Zinc,
MDP3 PubChem, and Zinc, using in silico methods to assess their potential inhibitory
impact on 30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase subunit C, and
Oligopeptide Binding Protein [32]. The plant-based phytochemicals were chosen based on
their medicinal potential, according to the literature review. Alkaloids and sterols were
the most common phytochemicals chosen. The MOE program was used to produce a
ready-to-dock library of the phytochemicals that were chosen [31]. ChemDraw was used
to sketch the two-dimensional (2D) chemical structure of the selected ligands [33]. Before
using the MOE ligand database, the ligands were refined with Protonate3D, and the energy
was decreased.

2.8. Molecular Docking Studies

The docking procedure was confirmed by docking co-crystallized ligands into the
protein structure using MOE (Molecular Operating Environment) [31]. Molecular docking
studies are useful in determining the conformations and interactions that a ligand can have
with a protein of interest [34,35]. MOE found the active pocket on the receptor protein
molecule. The MOE tool was used to screen a library of 15,000 phytochemicals against the
30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase subunit C, and Oligopeptide
Binding Protein. The MOE software used the “Triangular Matcher” technique to verify
correct ligand confirmation before using it as the default ligand insertion approach [31].
The London dG scoring algorithm in MOE was utilized to rescore simulated poses. Based
on their RMSD values and S-score binding affinity, the phytochemicals with the best
conformations were determined after docking was completed. Two-dimensional plots
of ligand–protein interactions were analyzed and interpreted using the MOE LigX tool.
Three-dimensional pictures of protein–inhibitor complexes were also created using MOE.

2.9. Drug Toxicity Prediction and Pharmacological Evaluation

The absence of toxicity of the chosen compound is regarded as a significant element in
the selection of a component as a potential therapeutic [36]. The current study examined
screened compounds’ toxicity, including carcinogenicity, cytotoxicity, and mutagenicity.
The Protox tool was used to assess the compounds’ toxicity [37,38]. The assessment of the
pharmacological features of the finalized compounds is the most critical and significant
step in the in-silico study process. The Lipinski parameter was used to investigate the
compounds. The selected components met the Lipinski parameter’s requirements. So,
they were tested for adsorption. The Lipinski characteristics of the selected components
were assessed using the SwissADME database at http://www.swissadme.ch/index.php
(accessed on 25 December 2021) [39].

2.10. Molecular Dynamics Simulation

MD simulation is a successful in silico approach for studying the dynamic behavior and
stability of protein–ligand complexes under various conditions [40]. Molecular dynamics
(MD) simulation of the best ligand poses was performed using the Desmond v3.6 Program
to verify the docking performance, as mentioned earlier [41]. In a nutshell, the TIP3P
solvent model was used in conjunction with an orthorhombic designed boundary box.
By introducing Na + salt, the OPLS-2005 force field was used to counter the process. A
hybrid algorithm of gradient descent and LBFGS algorithms was used to decrease the
protein–ligand system [42,43]. After docking, the MD simulation was run at 100 ns on
Desmond for early confirmation of the protein–ligand complexes.

2.11. Binding Energy Analysis (MMGBSA/MMPBSA)

The binding free energy of drugs towards receptors was assessed to ensure the com-
pounds’ binding stability. This was accomplished using the molecular mechanics general-
ized Poisson Boltzmann surface area (MMPBSA) method. This method is a well-known,

http://www.swissadme.ch/index.php


Int. J. Environ. Res. Public Health 2022, 19, 7306 6 of 18

dependable, and powerful analytical tool. The Amber tool 20 MMPBSA script (py) was
used to calculate the binding free energy of chosen MD snapshots [44].

3. Results
3.1. Analysis of Core Proteome

Five significant C. pneumonia pathogenic strains were evaluated for the identifica-
tion of novel inhibitors against C. pneumonia infections. The overall protein count of
the five pathogenic strains was 81,485, which was reduced to 4745 after performing
core proteome analysis (Supplementary File S1). As core proteins are found across all
pathogenic strains, using these core proteins in drug designing could provide resistance
against C. pneumonia infections.

3.2. Prediction of Target Proteins

After core proteome analysis, a total of 4745 core proteins were obtained, which were
then submitted to the CD-Hit server for the removal of redundant proteins. After CD-Hit
analysis, 958 nonredundant proteins were left, which met the precise criteria of 80%. The
removal of redundant proteins is necessary because redundant proteins are not essential
for an organism’s existence and might produce false outcomes.

The prediction of proteins that are not homologous to the proteins is essential since
these proteins are required for pathogen survival as well as preventing drug cross-binding
with host proteins. Further, non-homologous proteins were submitted to BlastP to deter-
mine the interactivity of the drugs with the proteins of humans. After running BlastP, only
681 proteins were found that are non-homologous to humans. Later, subcellular localization
prediction was used to determine how these significant proteins performed their functions.
In total, 352 target proteins were projected as membrane proteins and therefore omitted for
subsequent analysis. On the other hand, a total of 313 proteins were found to be cytoplas-
mic proteins, which were then analyzed for therapeutic targets (Supplementary File S2).
Finally, a comparative analysis of these 313 proteins revealed that a total of 14 proteins
were found to be engaged in various metabolic pathways (Table 1). The names and amino
acid sequences of the 14 proteins are presented in Supplementary File S3. From these
14 proteins, only 3 proteins (30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase
subunit C, and oligopeptide binding protein) were designated as pathogen-specific because
these proteins do not share any pathway similarity with humans.

3.3. Draggability Analysis

Druggability is also another important feature for the identification of promising
therapeutic targets. Druggability is the likelihood that a small drug molecule may influence
the functioning of the target protein. The druggability analysis of predicted proteins was
determined by comparing the similarity of proteins to their corresponding drug targets in
the Drug Bank database. After analysis, it was noted that three proteins (30S ribosomal
protein S4, 4-hydroxybenzoate decarboxylase subunit C, and oligopeptide binding protein)
have a strong resemblance to FDA-approved drugs. The sequences of the above three
proteins are highlighted in yellow in Supplementary File S3.

3.4. Structure Prediction and Structure Evaluation

The Swiss Model evaluated the optimal 3D crystal structure for all proteins based
on QMEAN and GMQE values. Based on GMQE (global model quality estimate), the
confidence level of the model was determined based on the target’s template, coverage,
and organization. It uses target–template alignment features in conjunction with a template
search to calculate quality. The GMQE score increases in proportion to the model’s quality.
It is usually approximated to be between 0 and 1. The GMQE and Q mean for 30S ribosomal
protein S4, 4-hydroxybenzoate decarboxylase subunit C, and Oligopeptide Binding Protein
indicated that the structures were of excellent quality as shown in Figure 2.
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Table 1. Metabolic pathways of predicted proteins.

Protein Name Common Pathways within Human Unique Pathways

Penicillin-binding protein • Metabolic pathways • Beta-Lactam resistance
• Peptidoglycan biosynthesis

Probable ATP-dependent
6-phosphofructokinase

• Metabolic pathways
• Biosynthesis of amino acids
• Carbon metabolism
• Glycolysis/Gluconeogenesis
• Pentose phosphate pathway
• Fructose and mannose metabolism
• RNA degradation

• Microbial metabolism in
diverse environments

• Biosynthesis of secondary metabolites
• Methane metabolism

UDP-N-acetylglucosamine
1-carboxyvinyltransferase

• Metabolic pathways
• Biosynthesis of nucleotide sugars
• Amino sugar and nucleotide sugar

metabolism

• Peptidoglycan biosynthesis

D-Ala-D-Ala Carboxypeptidase • Metabolic pathways • Peptidoglycan biosynthesis

NifS protein, putative

• Sulfur relay system
• Biosynthesis of cofactors
• Metabolic pathways
• Thiamine metabolism

3-oxoacyl-[acyl-carrier-protein]
synthase 3

• Fatty acid biosynthesis
• Fatty acid metabolism
• Metabolic pathways

Delta-aminolevulinic
acid dehydratase • Metabolic pathways

• Microbial metabolism in
diverse environments

• Biosynthesis of secondary metabolites

Acetyl-coenzyme A carboxylase
carboxyl transferase subunit beta

• Fatty acid biosynthesis
• Fatty acid metabolism
• Metabolic pathways
• Carbon metabolism
• Pyruvate metabolism
• Propanoate metabolism

• Microbial metabolism in diverse
environments

• Biosynthesis of secondary metabolites

Lipoate–protein ligase A
• Lipoic acid metabolism
• Metabolic pathways
• Biosynthesis of cofactors

30S ribosomal protein S4 • Two-component system
• Flagellar assembly

Acyl carrier protein • Metabolic pathways • Biosynthesis of secondary metabolites

4-hydroxybenzoate decarboxylase
subunit C

• Microbial metabolism in
diverse environments

Oligopeptide Binding Protein • Quorum sensing
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The quality of the protein structures was further assessed using refined pharmaco-
logical targets. The 3D models were validated using a variety of ways. To begin, the
PROCHECK server was utilized to assess the structural quality of the modelled structure.
Finally, an evaluation of the 3D protein models revealed that approximately 90% of residues
were found in the favored regions, indicating that all projected models are high quality.
The 30S ribosomal protein S4 protein had 94.7% percent of its residues in favorable regions
according to the predicted model, while the 4-hydroxybenzoate decarboxylase subunit C
and Oligopeptide Binding Protein had over 85 percent of the residues in favored regions.
VERIFY 3D projected a good compatibility score of residues, with an average 3D–1D score
of ≥0.2. The greater the score, the higher the 3D model’s quality. These results demonstrate
that the proposed model is of excellent quality. The ProSA-webserver was used to verify
the quality of the 3D models. Z-scores are a parametric quantity that represents the model’s
overall quality as shown in Table 2.

3.5. Molecular Docking Analysis

The results of docking the receptor protein structures with the phytochemicals library
using MOE software are presented in this section. Active sites of the targeted proteins
were predicted using the site finder tool in MOE. For each target compound, ten distinct
conformations were obtained. The conformations of these compounds were sorted using
binding affinity, RMSD values, and bonding interactions with the proteins’ active sites, as
shown in Table 3.

Table 2. Depicting the quality and the refinement of the predicted structure using different computa-
tional tools.

Receptors 30S Ribosomal
Protein S4

4-hydroxybenzoate
Decarboxylase Subunit C Oligopeptide Binding Protein

GMQE 0.75 0.51 0.68
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Table 2. Cont.

Receptors 30S Ribosomal
Protein S4

4-hydroxybenzoate
Decarboxylase Subunit C Oligopeptide Binding Protein

Q means 0.71 0.60 0.66

Ramachandran plot statistics (%)

Core 94.7% 87.1% 89.0%

Allowed 4.5% 11.1% 9.0%

General 0.8% 1.2% 1.2%

Disallowed 0.0% 0.6% 0.7%

Verify 3D

Compatibility Score 79.59% 79.97% 87.74%

ERRAT

Quality Factor 97.1223 78.3249 78.1182

ProSA

z-Score −5.18 −5.64 −8.26

Table 3. Top drug candidates' binding affinity along with interacting residues.

Target Receptors Compounds
I’D

Compounds
Name

Compounds
Structure

Binding
Affinity RMSD Interacting

Residues

30S ribosomal protein S4

442813 Ononin −9.10
kj/mol 1.31

Lys 7
Lys 11
Arg 69
Ser 71

88708 Gentiopicroside −8.12
KJ/mol 1.08 Lys 11

Arg 69

4-hydroxybenzoate
decarboxylase subunit C

156707 Sanggenon A −12.49
KJ/mol 1.65 Arg 107

Gln 121

44260021 Flaccidine −12.19
KJ/mol 1.72

His 119
His 216
Gln 123

Oligopeptide Binding
Protein

6072 Andromedotoxin −11.33
kj/mol 0.99

Ser 321
Ser 323
Gln 368
Ser223
Thr 370

6427838 Sophorose −10.39
KJ/mol 1.50 Gln 354

Thr 370
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Ononin and Gentiopicroside were the top two drug candidates against 30S ribosomal
protein S4. Both compounds indicated a good binding affinity score and showed strong
binding interactions with the receptor protein, as shown in Figure 3.
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Figure 3. Three-dimensional representation of molecular docking analysis and the interaction of
Ononin and Gentiopicroside inhibitors with 30S ribosomal protein S4.

The 4-hydroxybenzoate decarboxylase subunit C second targeted protein in complex,
with its top drug candidates Sanggenon A and Flaccidine, was discovered to be attached to
a score of (−12.49, −12.19) KJ/mol, forming hydrogen bonds with the side-chain/backbone
of His 119, His 216, Gln 123, Arg 107, and Gln 121, as shown in Figure 4.

Andromedotoxin and Sophorose, in complex with the Oligopeptide Binding Protein,
showed the lowest docking score along with a strong hydrogen bond interaction. The LigX
tool was used to predict the interacting residues of the receptor and ligand, which indicate
that Andromedotoxin and Sophorose showed strong bindings with the side chains of Ser
321, Ser 323, Gln 368, Ser223, Thr 370, and Gln 354, as shown in Figure 5.

3.6. Drug Likeness

Lipinski’s rule of five (RO5) was utilized to undertake computational screening of the
physicochemical properties of the strongest ligands for the receptor in order to determine
its drug-like property. The molecular weight must be ≥500 g/mol, there must be fewer
than or equal to five hydrogen bond donors and fewer than or equal to ten hydrogen bond
acceptors, and the miLog p-value must be <5. It is acceptable to approve a drug candidate
that has broken one of these rules. Table 2 shows the top phytochemicals as well as the
reference compound’s anticipated drug-likeness characteristics. All of the ligands disclosed
demonstrated good drug-like properties, as shown in Table 4.

3.7. ADMET Profiling

Several pharmacokinetic factors were evaluated using SwissADME and ADMETsar.
Pharmacokinetic parameters can be used to estimate the ADME and toxicity of the top
therapeutic candidate drugs. The ADMET characteristics of leading phytochemicals for
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targets are shown in Table 5. Many drugs do not use this mechanism in their development
due to poor pharmacokinetic properties and toxicity. To identify the active best compounds,
early drug discovery relies on high-performance and rapid ADMET profiling studies.
According to ADMET profiling, none of the candidate compounds had an unfavorable
absorption effect. The ADMET properties of putative medications were linked to positive
results, indicating that the compounds have therapeutic possibilities. Table 5 shows the
most likely drug candidates for the target protein’s pharmacokinetic properties.
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Table 4. The top six phytochemicals were determined following Lipinski’s Rule of Five molecular
properties and drug-likeness.

Table. Compounds I’D Molecular Weight Hydrogen Bond
Donner

Hydrogen Bond
Acceptor MiLogP

30S ribosomal protein S4 442813 428.39 2 9 −1.48

88708 354.31 2 9 −3.68

4-hydroxybenzoate
decarboxylase subunit C

156707 436.46 7 3 4.60

44260021 442.42 9 2 3.32

Oligopeptide Binding
Protein

6072 434.40 5 10 −2.38

6427838 454.51 10 0 −0.29

Target Protein Compounds I’D Molecular Weight Hydrogen Bond
Donner

Hydrogen Bond
Acceptor MiLogP

30S ribosomal protein S4 442813 428.39 2 9 −1.48

88708 354.31 2 9 −3.68

4-hydroxybenzoate
decarboxylase subunit C

156707 436.46 7 3 4.60

44260021 442.42 9 2 3.32

Oligopeptide Binding
Protein

6072 434.40 5 10 −2.38

6427838 454.51 10 0 −0.29

Table 5. The top anticipated drug candidates for the C. pneumonia protein’s pharmacokinetic characteristics.

Compounds 442813 88708 156707 44260021 6072 6427838

GI absorption Low Low Low Low Low Low

BBB permeant No No No No No No

P-GP substrate No Yes No No No No

CYP1A2 Inhibitor No No No No No No

CYP2C19 Inhibitor No No No No No No

CYP2C9 Inhibitor No No No No No No

CYP2D6 Inhibitor No No No No No No

CYP3A4 Inhibitor Yes No No No No Yes

Toxicity

Carcinogens Non-Toxic Non-Toxic Non-Toxic Non-Toxic Non-Toxic Non-Toxic

Cytotoxicity Non-
Cytotoxic

Non-
Cytotoxic

Non-
Cytotoxic

Non-
Cytotoxic

Non-
Cytotoxic

Non-
Cytotoxic

Mutagenicity No No No No No No

3.8. MD Simulation

A 100-ns molecular dynamic simulation was performed for better insight into the
molecular mechanisms involved in the top drug candidates’ binding. A compound with
the least binding affinity, ranked as the top compound from each target’s top compound,
was selected to further understand the stability of the drug candidates with the receptor’s
proteins. Root mean square deviation (RMSD) analysis against the Ononin/30S ribosomal
protein S4 complex indicates good stability throughout 100 ns of between 1.0 Å and 1.25 Å,
as shown in Figure 6a. Although the second complex Sanggenon A/4-hydroxybenzoate
decarboxylase subunit C showed a minor deviation up to the period of 55 ns, after that,
it remains stable, as represented in Figure 6b. The third complex remains stable up to
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the period of 45 ns, and after that, it showed a minor deviation of 0.25 Å as indicated in
Figure 6c.
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Figure 6. (a–c) Statistical investigation of the intermolecular stability and dynamics of the complexes
based on molecular dynamics simulations.

Root mean square fluctuation trajectories indicate that the Ononin/30S ribosomal
protein S4 complex showed stability of up to 700 residues with no more than 1 Å fluc-
tuation (Figure 7a). Meanwhile, the second complex Sanggenon A/4-hydroxybenzoate
decarboxylase subunit C trajectories showed a minor jump at the residue numbers 120
and 600 (Figure 7b). Although the third complex Andromedotoxin/Oligopeptide Binding
Protein indicates a minor deviation at residue number 110, after that, it remains stable up
to 700 (Figure 7c).
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3.9. Binding Energy Analysis (MMGBSA/MMPBSA)

The MMGBSA method was used to calculate the binding energies of docked com-
pounds, as shown in Table 6. The results showed that gas-phase energy, specifically
electrostatic energy and van der Waals energy, dominated molecule recognition. The polar
solubilization energy appeared to play a reduced role in molecule-targeted protein inter-
actions. In the creation of complexes, non-polar energy played only a minor role. Target
30S ribosomal protein S4 total binding energies were −27.04 kcal mol−1. However, the
targets 4-hydroxybenzoate decarboxylase subunit C and Oligopeptide Binding Protein total
binding energies were −22.43 kcal mol−1. and −24.58 kcal mol−1, respectively.
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Table 6. Target proteins’ binding energies calculations.

Energy Parameters 30S Ribosomal Protein
S4/Ononin

4-hydroxybenzoate Decarboxylase
Subunit C/Sanggenon A

Oligopeptide Binding
Protein/Andromedotoxin

MM-PBSA

VDWAALS −32.45 kcal mol−1 −23.87 kcal mol−1 −30.72 kcal mol−1

Delta G gas −37.34 kcal mol−1 −33.75 kcal mol−1 −25.37 kcal mol−1

Delta G solv 10.20 kcal mol−1 9.70 kcal mol−1 15.09 kcal mol−1

Delta Total −27.04 kcal mol−1 −22.43 kcal mol−1 −24.58 kcal mol−1

MM-PBSA

VDWAALS −32.45 kcal mol−1 −23.87 kcal mol−1 −30.72 kcal mol−1

Delta G gas −37.34 kcal mol−1 −33.75 kcal mol−1 −25.37 kcal mol−1

Delta G solv 7.23 kcal mol−1 4.26 kcal mol−1 8.67 kcal mol−1

Delta Total −29.46 kcal mol−1 −30.39 kcal mol−1 −26.08 kcal mol−1

4. Discussion

C. Pneumonia is a pathogen that causes various symptoms, such as pharyngitis, im-
petigo, necrotizing fasciitis, sepsis, or toxic shock [45]. Antibiotics against C. pneumonia
should be discovered as soon as feasible to combat these life-threatening situations. In this
research, we employed in silico core proteomics and docking techniques to explore possible
medications against C. pneumonia. These methods are used to find targets in pathogenic
organisms using essential proteins [46]. Recent advances in the bioinformatics domain and
computational biology have resulted in various drug design and computational analysis
methodologies, reducing the time and expense of drug development via trial and error [47].

After core proteome analysis, a total of 4745 core proteins were obtained, which were
then submitted to the CD-Hit server for the removal of redundant proteins. Bacterial life
needs the presence of essential proteins. If these crucial proteins are altered or destroyed,
bacteria will die. By focusing on these proteins, we can destroy bacteria and cure diseases.
In the development of antibacterial drugs and vaccines, essential proteins are the primary
targets. As a result, After CD-Hit analysis, 958 non-redundant proteins were left that met
the precise criteria of 80% [48]. These genes are likely to be related to those identified
in humans.

Such targeting may have fatal consequences and disrupt metabolism. Negative out-
comes and cross-reactivity can be reduced by selecting non-homologous proteins that are
not found in Homo sapiens [49]. We evaluated 681 non-homologous proteins for toxicity
and unfavorable conditions. The best way to uncover novel medicines may be to target
non-homologous sequences. Researchers found that 681 pathogen-specific metabolic path-
ways exist using the KEGG database, while pathogens and hosts share 14 pathways [18,50].
Only three of these fourteen proteins (30S ribosomal protein S4, 4-hydroxybenzoate decar-
boxylase subunit C, and oligopeptide binding protein) were identified as pathogen-specific.

The Swiss model was used to create 3D models of the target proteins. Predicting the
three-dimensional structure is particularly valuable in understanding protein dynamics,
functions, ligand interactions, and other protein components [51]. According to Ramachan-
dran’s analysis, 90% of residues were within acceptable, favored areas, and only a few
residues were located in prohibited areas. Overall, the model’s quality was satisfactory.
Based on the results of various evaluation tools, our models were of high quality.

A low RMSD score and several residues interacting with the target protein 4-hydroxybenzoate
decarboxylase subunit C, Flaccidine, Oligopeptide Binding Protein Andromedotoxin, and
Sophorose were chosen for the 30S ribosomal protein S4 protein docking. The lowest
binding energies of these phytochemicals ranged from approximately −8.12 kcal/mol
to −12.49 kcal/mol for the 30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase
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subunit C, and Oligopeptide Binding protein. The six compounds were evaluated for
their drug likelihood using Lipinski’s rule of five. Following that, the compounds were
tested for BBB penetration and HIA (human intestinal absorption), as well as monitored
using AMES. The behavior, toxicity, and fate of a drug candidate in the human body are
all influenced by ADMET properties. A candidate’s toxicity is determined by absorption,
metabolism, blood–brain barrier crossing, and subcellular localization [52]. The cytochrome
P450 superfamily isoforms CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2C19, CYP2A6, and
CYP2E1 have been demonstrated to be involved in drug metabolism and elimination [53].

Inhibiting cytochrome P450 isoforms can create drug–drug interactions, limiting
subsequent drug metabolism and causing hazardous accumulation levels [54]. According
to their ADMET profile, these compounds have no detrimental impacts on absorption.
Moreover, none of the compounds were harmful or mutagenic compared to the AMES
test. The top six most promising compounds were submitted to a series of toxicity testing
modules following the virtual screening. During the toxicity screening, no chemical was
hepatotoxic, mutagenic, or cytotoxic. Our study revealed six drug-leading inhibitors that
have the potential to be therapeutic inhibitors of apoptosis targeting and inhibition.

The best-docked complexes with the top inhibitors per protein were used for MD
simulations and free energy estimates. These compounds exhibited essential drug-target
properties such as pathogen metabolic pathway participation, non-homology with the
human host, and appropriate size. Ononin, Sanggenon A, and Andromedotoxin are three
enzymes that have been identified as novel therapeutic targets against the disease [55].
However, only three pharmacological targets were discovered in this investigation based
on a distinct metabolic pathway. Drug targets and drug-like compounds prioritized in this
study could be useful in developing new strategies to eradicate the chronic infection of
C. pneumonia.

5. Conclusions

The long-term chronic infection of C. pneumonia has prompted the need to investi-
gate novel drug targets that could aid in the development of new therapeutic agents. In
C. pneumonia, the current investigation discovered three new targets. The current study
explored developing drugs against them because those targets are engaged in pathogen-
specific metabolic pathways and have been successfully targeted in other bacteria. As a
result, this research marks a big step forward in the development of new, effective anti-
C. pneumonia chemicals. These targets should be tested experimentally in future studies to
determine their role in C. pneumonia survival and virulence.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19127306/s1, File S1: Complete detail of Waddlia chondrophila
proteome; File S2: Sequence of cytoplasmic proteins; File S3: Amino Acid sequences of final proteins.

Author Contributions: Formal analysis, R.H.K., K.A.A., M.M.H., A.F.S. and F.M.S.; funding acqui-
sition, M.M.H., A.F.S. and F.M.S.; investigation, K.A.A.; methodology, R.H.K. and M.M.H.; project
administration, A.F.S., B.M.A.-a. and Z.M.M.; resources, K.A.A., M.M.H. and H.G.; software, B.M.A.-a.
and Q.A.; supervision, Q.A.; validation, H.G. and Q.A.; visualization, R.H.K.; writing—original draft,
R.H.K., A.F.S., F.M.S., H.G., Q.A. and Z.M.M.; writing—review and editing, K.A.A., B.M.A.-a. and
Z.M.M. All authors have read and agreed to the published version of the manuscript.

Funding: The current work was funded by Taif University Researchers Supporting Project number
(TURSP–2020/59), Taif university, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to Taif University for funding the current
work by Taif University Researchers Supporting Project number (TURSP–2020/59), Taif University,
Taif, Saudi Arabia.

https://www.mdpi.com/article/10.3390/ijerph19127306/s1
https://www.mdpi.com/article/10.3390/ijerph19127306/s1


Int. J. Environ. Res. Public Health 2022, 19, 7306 17 of 18

Conflicts of Interest: The authors declare that there are no conflict of interest.

References
1. Gautam, J.; Krawiec, C. Chlamydia pneumonia. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560874/

(accessed on 25 December 2021).
2. Li, Y.; Khan, S.; Chaudhary, A.A.; Rudayni, H.A.; Malik, A.; Shami, A. Proteome-wide screening for the analysis of protein

targeting of Chlamydia pneumoniae in endoplasmic reticulum of host cells and their possible implication in lung cancer
development. Biocell 2022, 46, 87. [CrossRef]

3. Kalita, D.; Deka, S.; Sharma, K.R.; Sarma, R.K.; Hazarika, N.K. Seasonal predominance of atypical agents in adult community-
acquired pneumonia in India's northeastern region: Is it the time to look again at empirical therapy guidelines? Trop. Dr. 2022.
[CrossRef]

4. Shi, Z.; Wang, L.; Chen, W.; Du, X.; Zhan, L. Severe Pneumonia with Thrombocytopenia Caused by Chlamydia Psittaci: A Case
and Literature Review. Res. Sq. 2022, 1–9. [CrossRef]

5. David, L.H.; Hahn, D.L.; Azenabor, A.A.; Beatty, W.L.; Byrne, G.I. Chlamydia pneumoniae as a respiratory pathogen. Front. Biosci.
2002, 7, 66–76. [CrossRef]

6. Sessa, R.; Di Pietro, M.; Schiavoni, G.; Petrucca, A.; Cipriani, P.; Zagaglia, C.; Nicoletti, M.; Santino, I.; del Piano, M. Measurement
of Chlamydia pneumoniae bacterial load in peripheral blood mononuclear cells may be helpful to assess the state of chlamydial
infection in patients with carotid atherosclerotic disease. Atherosclerosis 2007, 195, e224–e230. [CrossRef]

7. Umapathi, K.K.; Tuli, J.; Menon, S. Chlamydia pneumonia–induced mucositis. Pediatrics Neonatol. 2019, 60, 697–698. [CrossRef]
8. Hosseinib, M.; Rahimian, M. Serological study of bordetella pertussis, mycoplasma pneumonia and chlamydia pneumonia in

iranian hajj pilgrims with prolonged cough illnesses: A follow-up study. Chest 2019, 155, 80A. [CrossRef]
9. Kazemi, S.; Aghaee, B.L.; Soltanian, A.R.; Mazdeh, M.; Taheri, M.; Alikhani, M.Y. Investigation of Chlamydia pneumoniae

Infection in Patients with Multiple Sclerosis: A Case-Control Study. Avicenna J. Clin. Microbiol. Infect. 2020, 7, 36–39. [CrossRef]
10. Yang, Z.-P.; Kuo, C.-C.; Grayston, J.T. Systemic Dissemination of Chlamydia Pneumoniae Following Intranasal Inoculation in

Mice. J. Infect. Dis. 1995, 171, 736–738. [CrossRef]
11. Berkowitz, E.N.; Schewe, C.D. Generational Cohorts Hold the Key to Understanding Patients and Health Care Providers:

Coming-of-Age Experiences Influence Health Care Behaviors for a Lifetime. Health Mark. Q. 2011, 28, 190–204. [CrossRef]
12. Zhou, Z.; Tian, Q.; Wang, L.; Zhong, G. Chlamydia Deficient in Plasmid-Encoded Glycoprotein 3 (pGP3) as an Attenuated Live

Oral Vaccine. Infect. Immun. 2022, 90, e00472-21. [CrossRef]
13. Baxevanis, A.D.; Bader, G.D.; Wishart, D.S. Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2020.
14. Xia, X. Bioinformatics and drug discovery. Curr. Top. Med. Chem. 2017, 17, 1709–1726. [CrossRef] [PubMed]
15. Ganley, A.R.; Kobayashi, T. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation

revealed by whole-genome shotgun sequence data. Genome Res. 2007, 17, 184–191. [CrossRef]
16. Sun, X.; Vilar, S.; Tatonetti, N.P. High-Throughput Methods for Combinatorial Drug Discovery. Sci. Transl. Med. 2013, 5, 205rv1.

[CrossRef]
17. Ghosh, S.; Prava, J.; Samal, H.B.; Suar, M.; Mahapatra, R.K. Comparative genomics study for the identification of drug and

vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate. J. Microbiol. Methods 2014, 101, 1–8.
[CrossRef] [PubMed]

18. Shahid, F.; Ashfaq, U.A.; Saeed, S.; Munir, S.; Almatroudi, A.; Khurshid, M. In Silico Subtractive Proteomics Approach for
Identification of Potential Drug Targets in Staphylococcus saprophyticus. Int. J. Environ. Res. Public Health 2020, 17, 3644.
[CrossRef]

19. Mondal, S.I.; Ferdous, S.; Akter, A.; Mahmud, Z.; Karim, N.; Islam, M.; Jewel, N.A.; Afrin, T. Identification of potential drug
targets by subtractive genome analysis of Escherichia coli O157:H7: An in silico approach. Adv. Appl. Bioinform. Chem. AABC
2015, 8, 49. [CrossRef]

20. Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic
variation. Nucleic Acids Res. 2001, 29, 308–311. [CrossRef] [PubMed]

21. Rahman, N.; Ajmal, A.; Ali, F.; Rastrelli, L. Core proteome mediated therapeutic target mining and multi-epitope vaccine design
for Helicobacter pylori. Genomics 2020, 112, 3473–3483. [CrossRef]

22. Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences.
Bioinformatics 2010, 26, 680–682. [CrossRef]

23. Madden, T. The BLAST Sequence Analysis Tool. In The NCBI Handbook; NCBI: Bethesda, MD, USA, 2003.
24. Shenoy, P.; Vin, H.M. Cello: A Disk Scheduling Framework for Next Generation Operating Systems. Real-Time Syst. 2002, 22, 9–48.

[CrossRef]
25. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al.

DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]
26. Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids

Res. 2003, 31, 3381–3385. [CrossRef]
27. Dorn, M.; Silva, M.B.; Buriol, L.S.; Lamb, L.C. Three-dimensional protein structure prediction: Methods and computational

strategies. Comput. Biol. Chem. 2014, 53, 251–276. [CrossRef]

https://www.ncbi.nlm.nih.gov/books/NBK560874/
http://doi.org/10.32604/biocell.2022.016509
http://doi.org/10.1177/00494755221080587
http://doi.org/10.21203/rs.3.rs-1374857/v1
http://doi.org/10.2741/hahn
http://doi.org/10.1016/j.atherosclerosis.2007.04.052
http://doi.org/10.1016/j.pedneo.2019.06.005
http://doi.org/10.1016/j.chest.2019.02.354
http://doi.org/10.34172/ajcmi.2020.08
http://doi.org/10.1093/infdis/171.3.736
http://doi.org/10.1080/07359683.2011.572029
http://doi.org/10.1128/iai.00472-21
http://doi.org/10.2174/1568026617666161116143440
http://www.ncbi.nlm.nih.gov/pubmed/27848897
http://doi.org/10.1101/gr.5457707
http://doi.org/10.1126/scitranslmed.3006667
http://doi.org/10.1016/j.mimet.2014.03.009
http://www.ncbi.nlm.nih.gov/pubmed/24685600
http://doi.org/10.3390/ijerph17103644
http://doi.org/10.2147/AABC.S88522
http://doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://doi.org/10.1016/j.ygeno.2020.06.026
http://doi.org/10.1093/bioinformatics/btq003
http://doi.org/10.1023/A:1013437003242
http://doi.org/10.1093/nar/gkx1037
http://doi.org/10.1093/nar/gkg520
http://doi.org/10.1016/j.compbiolchem.2014.10.001


Int. J. Environ. Res. Public Health 2022, 19, 7306 18 of 18

28. Ilatovskiy, A.V.; Abagyan, R. Computational Structural Biology for Drug Discovery: Power and Limitations. Struct. Biol. Drug
Discov. Methods Tech. Pract. 2020, 347–361. [CrossRef]

29. Hooda, V.; Gundala, P.B.; Chinthala, P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinfor-
mation 2012, 8, 974–979. [CrossRef]

30. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization
system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

31. Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular
Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [CrossRef]

32. Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 20.
[CrossRef]

33. Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft. com. Commercial
Price: 1910 for download, 2150 for CD-ROM; Academic Price: 710 for download, 800 for CD-ROM; ACS Publications: Washington, DC,
USA, 2006; Volume 128, pp. 13649–13650. [CrossRef]

34. Venkatesan, S.K.; Shukla, A.K.; Dubey, V.K. Molecular docking studies of selected tricyclic and quinone derivatives on trypanoth-
ione reductase of Leishmania infantum. J. Comput. Chem. 2010, 31, 2463–2475. [CrossRef]

35. Alamri, M.A.; Qamar, M.T.; Afzal, O.; Alabbas, A.B.; Riadi, Y.; Alqahtani, S.M. Discovery of anti-MERS-CoV small covalent
inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J. Mol. Liq. 2021, 330, 115699.
[CrossRef]

36. Segall, M.D.; Barber, C. Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov.
Today 2014, 19, 688–693. [CrossRef] [PubMed]

37. Kant, K.; Kumar, A.; Behera, P.C.; Rangra, N.K.; Dey, S. Computational tool for immunotoxic assessment of pyrethroids toward
adaptive immune cell receptors. Pharmacogn. Mag. 2018, 14, 124–128. [CrossRef] [PubMed]

38. Sadeghi, M.; Miroliaei, M.; Shorakai, Z. In Silico Investigation of Flavanone Compounds' Inhibitory Effects on Alpha-Amylase
Enzyme and Predicting their Inhibitory Role in Diabetes Progression. J. Fasa Univ. Med. Sci. 2020, 10, 2786–2795.

39. Yalcin, S. Molecular Docking, Drug Likeness, and ADMET Analyses of Passiflora Compounds as P-Glycoprotein (P-gp) Inhibitor
for the Treatment of Cancer. Curr. Pharmacol. Rep. 2020, 6, 429–440. [CrossRef]

40. Komanduri, R.; Chandrasekaran, N.; Raff, L. MD simulation of indentation and scratching of single crystal aluminum. Wear 2000,
240, 113–143. [CrossRef]

41. Srivastava, N.; Garg, P.; Srivastava, P.; Seth, P.K. A molecular dynamics simulation study of the ACE2 receptor with screened
natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 2021, 9, e11171. [CrossRef] [PubMed]

42. Sweke, R.; Wilde, F.; Meyer, J.; Schuld, M.; Fährmann, P.K.; Meynard-Piganeau, B.; Eisert, J. Stochastic gradient descent for hybrid
quantum-classical optimization. Quantum 2020, 4, 314. [CrossRef]

43. Blessy, J.J.; Sharmila, D.J.S. Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera
toxin-Neu5Gc complex. J. Biomol. Struct. Dyn. 2014, 33, 1126–1139. [CrossRef]

44. Zhu, Y.-X.; Sheng, Y.-J.; Ma, Y.-Q.; Ding, H.-M. Assessing the Performance of Screening MM/PBSA in Protein–Ligand Interactions.
J. Phys. Chem. B 2022, 126, 1700–1708. [CrossRef]

45. Piard, J.C.; Hautefort, I.; Fischetti, V.A.; Ehrlich, S.D.; Fons, M.; Gruss, A. Cell wall anchoring of the Streptococcus pyogenes M6
protein in various lactic acid bacteria. J. Bacteriol. 1997, 179, 3068–3072. [CrossRef]

46. Sarangi, A.N.; Aggarwal, R.; Rahman, Q.; Trivedi, N. Subtractive Genomics Approach for in Silico Identification and Characteri-
zation of Novel Drug Targets in Neisseria Meningitides Serogroup B. J. Comput. Sci. Syst. Biol. 2009, 2, 255–258. [CrossRef]

47. Barh, D.; Tiwari, S.; Jain, N.; Ali, A.; Santos, A.R.; Misra, A.N.; Azevedo, V.; Kumar, A. In silico subtractive genomics for target
identification in human bacterial pathogens. Drug Dev. Res. 2010, 72, 162–177. [CrossRef]

48. Cheon, S.; Lee, S.-G.; Hong, H.-H.; Lee, H.-G.; Kim, K.Y.; Park, C. A guide to phylotranscriptomic analysis for phycologists. Algae
2021, 36, 333–340. [CrossRef]

49. Goyal, M.; Citu, C.; Singh, N. In silico identification of novel drug targets in acinetobacter baumannii by subtractive genomic
approach. Asian J. Pharm. Clin. Res. 2018, 11, 230–236. [CrossRef]

50. Qureshi, N.A.; Bakhtiar, S.M.; Faheem, M.; Shah, M.; Bari, A.; Mahmood, H.M.; Sohaib, M.; Mothana, R.A.; Ullah, R.; Jamal, S.B.
Genome-Based Drug Target Identification in Human Pathogen Streptococcus gallolyticus. Front. Genet. 2021, 12, 303. [CrossRef]

51. Matsumoto, S.; Ishida, S.; Araki, M.; Kato, T.; Terayama, K.; Okuno, Y. Extraction of protein dynamics information from cryo-EM
maps using deep learning. Nat. Mach. Intell. 2021, 3, 153–160. [CrossRef]

52. Lin, J.; Sahakian, D.C.; De Morais, S.; Xu, J.J.; Polzer, R.J.; Winter, S.M. The role of absorption, distribution, metabolism, excretion
and toxicity in drug discovery. Curr. Top. Med. Chem. 2003, 3, 1125–1154. [CrossRef]

53. Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.E.; Olsen, L.; Jørgensen, F.S. Classification of Cytochrome
P450 1A2 Inhibitors and Noninhibitors by Machine Learning Techniques. Drug Metab. Dispos. 2008, 37, 658–664. [CrossRef]

54. Lynch, T.; Neff, A.P. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam.
Physician 2007, 76, 391–396.

55. Singh, S.; Singh, D.B.; Singh, A.; Gautam, B.; Ram, G.; Dwivedi, S.; Ramteke, P.W. An Approach for Identification of Novel Drug
Targets in Streptococcus pyogenes SF370 Through Pathway Analysis. Interdiscip. Sci. Comput. Life Sci. 2016, 8, 388–394. [CrossRef]

http://doi.org/10.1002/9781118681121.ch15
http://doi.org/10.6026/97320630008974
http://doi.org/10.1002/jcc.20084
http://doi.org/10.2174/156802608786786624
http://doi.org/10.1186/s13321-020-00424-9
http://doi.org/10.1021/ja0697875
http://doi.org/10.1002/jcc.21538
http://doi.org/10.1016/j.molliq.2021.115699
http://doi.org/10.1016/j.drudis.2014.01.006
http://www.ncbi.nlm.nih.gov/pubmed/24451294
http://doi.org/10.4103/pm.pm_62_17
http://www.ncbi.nlm.nih.gov/pubmed/29576712
http://doi.org/10.1007/s40495-020-00241-6
http://doi.org/10.1016/S0043-1648(00)00358-6
http://doi.org/10.7717/peerj.11171
http://www.ncbi.nlm.nih.gov/pubmed/33981493
http://doi.org/10.22331/q-2020-08-31-314
http://doi.org/10.1080/07391102.2014.931825
http://doi.org/10.1021/acs.jpcb.1c09424
http://doi.org/10.1128/jb.179.9.3068-3072.1997
http://doi.org/10.4172/jcsb.1000038
http://doi.org/10.1002/ddr.20413
http://doi.org/10.4490/algae.2021.36.12.7
http://doi.org/10.22159/ajpcr.2018.v11i3.22105
http://doi.org/10.3389/fgene.2021.564056
http://doi.org/10.1038/s42256-020-00290-y
http://doi.org/10.2174/1568026033452096
http://doi.org/10.1124/dmd.108.023507
http://doi.org/10.1007/s12539-015-0139-2

	Introduction 
	Materials and Methods 
	Collection of Data and Core Proteomics Analysis 
	Identification and Removal of Paralogs 
	Identification of Non-Homologous Proteins 
	Prioritization of Putative Drug Targets 
	Structure Prediction and Structure Evaluation 
	Refinement of Protein Receptors 
	Library Preparation 
	Molecular Docking Studies 
	Drug Toxicity Prediction and Pharmacological Evaluation 
	Molecular Dynamics Simulation 
	Binding Energy Analysis (MMGBSA/MMPBSA) 

	Results 
	Analysis of Core Proteome 
	Prediction of Target Proteins 
	Draggability Analysis 
	Structure Prediction and Structure Evaluation 
	Molecular Docking Analysis 
	Drug Likeness 
	ADMET Profiling 
	MD Simulation 
	Binding Energy Analysis (MMGBSA/MMPBSA) 

	Discussion 
	Conclusions 
	References

