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Abstract: Hydroplaning risk evaluation plays a pivotal role in highway safety management. It is
also an important component in the intelligent transportation system (ITS) ensuring human driving
safety. Water-film is the widely accepted vital factor resulting in hydroplaning and thus continuously
gained researchers’ attention in recent years. This paper provides a new framework to evaluate the
hydroplaning potential based on emerging 3D laser scanning technology and water-film thickness
estimation. The 3D information of the road surface was captured using a vehicle-mounted Light
Detection and Ranging (LiDAR) system and then processed by a wavelet-based filter to remove the
redundant information (surrounding environment: trees, buildings, and vehicles). Then, the water
film thickness on the given road surface was estimated based on a proposed numerical algorithm
developed by the two-dimensional depth-averaged Shallow Water Equations (2DDA-SWE). The
effect of the road surface geometry was also investigated based on several field test data in Shanghai,
China, in January 2021. The results indicated that the water-film is more likely to appear on the
rutting tracks and the pavement with local unevenness. Based on the estimated water-film, the
hydroplaning speeds were then estimated to represent the hydroplaning risk of asphalt pavement in
rainy weather. The proposed method provides new insights into the water-film estimation, which
can help drivers make effective decisions to maintain safe driving.

Keywords: hydroplaning risk; water-film thickness; 3D laser scanning; LiDAR; pavement profile

1. Introduction

Hydroplaning is a significant factor affecting driving safety on highways and express-
ways [1]. According to the FWHA (Federal Highway Administration) report, 12.6% percent
of the total accidents in 2000~2009 in the United States occurred on wet pavement due to
hydroplaning resulting from low skid resistance [2]. The hydroplaning phenomenon is
becoming an important safety issue in ITS and one of the most important sources of risk [3].
Investigation of the hydroplaning risk evaluation and prevention methods is necessary to
improve traffic safety and prevent traffic accidents in emerging ITS.

Hydroplaning is a situation in which a vehicle tire rides up on a thin surface of the
water, losing contact with the road surface and resulting in a sudden loss of control [4]. It
has been a matter of concern for drivers on wet roads [5]. In the past decades, many experi-
mental and numerical studies have been conducted to evaluate and predict hydroplaning
risk [6–8]. It is widely accepted that the key factor resulting in hydroplaning is the water-
film on the pavement [8]. A layer of water-film between tire and pavement would generate
uplift force or pressure and then raise a portion of the tire off the pavement [9]. When
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vehicle speed exceeds a critical value, the tire is only supported by the water-film and loses
all contact with the pavement [10]. The critical speed, named hydroplaning speed, has been
widely studied to evaluate the hydroplaning risk for road safety management [6].

Water-film thickness is related to pavement texture, road slopes, and rainfall intensity.
Pavement texture affects the water accumulation and dispersion of road surfaces. It
determines the flow paths of water and a well-textured pavement can provide flow paths
to allow water in front of the tire to be forced under pressure. Pavement slopes (cross and
longitudinal slopes) also determine water flow paths. A road surface with appropriate
slopes with no ruts or potholes is crucial to guarantee good drainage performance. In the
past decades, many methods were proposed for water-film thickness estimation. Empirical
and analytical methods are the two most common-used methods. Empirical methods were
based on experiments and measured empirical data. One of the common-used empirical
methods is using in-pavement or roadside liquid-film sensors. Plenty of sensors were
developed since 1991. In recent years, the emerging optical fiber sensor technology is
becoming the research focus due to its advantages of real-time high-precision and long-
term monitoring [11–13]. However, it is still challenging to estimate large-scale water-
film thickness because the optical fiber sensor can only measure the thickness at single
points. Compared with the empirical method, the analytical method estimates the water-
film thickness utilizing mathematical hydrodynamics models. The main inputs of the
mathematical model are the rainfall intensity and road surface profiles. By capturing the
profile information of the road surface, we can estimate the water-film thickness in different
conditions of rainfall intensity.

The development of 3D laser scanning technology provides a new solution for mea-
suring the road surface profile [14], and thus makes it possible for large-scale water-film
thickness estimation. Table 1 compared the specifications of the three different water-film
detection methods (in-pavement sensor, roadside sensor, and 3D laser scanning). As one
of the most emerging technologies, the light detection and ranging (LiDAR) system can
measure the 3D profile of the road surface and even the macro pavement texture [15].
Compared with the conventional laser scanning method, the LiDAR system can capture
the laser point data of roads with a larger coverage (over 40 m-wide, which can cover
all the lanes) and higher speed (>60 km/h). The captured laser point data of road con-
tains rich information about road surface, including the geometrical features of interest
(e.g., cracks and bumps), the pavement roughness, and even the skid resistance [16–18].
Although this technique is slightly less precise than other methods, it provides a rapid,
large-scale solution for water layer estimation on roads. Since the laser point data includes
the geometric information, we can estimate the water-film thickness by introducing the
analytical models. Using this method, researchers [19,20] proved the feasibility of the 3D
surface data for water-film estimation, demonstrating the feasibility of hydroplaning risk
evaluation. However, current studies focus mainly on a relatively small region (one single
lane) due to the coverage limits of the laser detection system. Most of them captured the
road surface data based on the digital highway data vehicle equipped with two laser 3D
cameras. The range of the two cameras can only cover one single lane but hardly measure
the geometry information of the whole road surface, which cannot meet the real-time
perception requirement for traffic safety. In order to ensure driving safety and provide
in-time hydroplaning risk information, it is necessary to estimate the road surface condition
rapidly and in a wide range. To this end, this study attempted to use the emerging LiDAR
technology to rapidly capture the wide-range road surface geometry data and propose an
algorithm to estimate the two-dimensional distribution of hydroplaning risks accurately,
becoming an important module of the safety information service in future ITS.
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Table 1. Comparison between different water-film thickness measurement techniques.

Techniques Rationale Road Destructive Measurement Range Precision

In-pavement
monitoring [11]

Directly measuring water-film
thickness by the embedded sensor Road destructive Point measurement

width < 10 cm Resolution < 0.1 mm

Roadside detection [19] Measuring water-film thickness by
infrared remote sensing technology Non-destructive Point measurement

width < 50 cm Resolution < 0.1 mm

3D laser scanning [20]
Measuring the 3D profile of

pavement and estimating the
water-film thickness

Non-destructive Continuous measurement
width > 10 cm Resolution < 0.3 mm

The pipeline of the proposed method is illustrated in Figure 1. A vehicle-mounted
LiDAR system firstly captures the 3D profile of the road. Then, the raw 3D point cloud data
is processed to extract the road surface through coordination transformation and wavelet-
based processing. Using the processed road surface data as the input, a numerical model of
the two-dimensional depth-averaged Shallow Water Equations (2DDA-SWE) is adopted to
solve the water-film distribution under different rainfall intensities. The 3D profile mea-
surement and two-dimensional water-film thickness estimation are respectively validated
through field tests. The effects of spatial sampling interval, the rainfall intensity, and the sur-
face profiles of pavement sections (cross slopes\longitudinal slopes\rutting\rough surface)
are investigated. The hydroplaning risk is then analyzed based on hydroplaning speed
estimation based on the estimated water-film distribution data. The following sections
describe the data and algorithms of each step in sufficient detail.
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2. 3D Laser Scanning Data

LiDAR systems use a laser to measure the 3D information of the surrounding envi-
ronment. The generic LiDAR systems include the stationary laser scanner, the airborne
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laser scanner, and the vehicle-mounted mobile scanning system. In this study, we used
the vehicle-mounted mapping system to capture the LiDAR point cloud data of pavement.
This mapping system integrates a multi-frequency GPS/GLONASS receiver, IMU, and
a Riegl VUX-1HZ laser scanner, allowing us to measure the 3D road surface data under
moving conditions. The performance of 3D laser scanning depends on the selection of
laser channels, the vertical field of view, and the vertical resolution of laser beams. We
installed the LiDAR sensor on the top of the test vehicle with no inclination to guarantee
adequate coverage and maintain high accuracy. The height of the sensor was 6 ft above
the ground. The scanning frequency, angular resolution, and scanning radius were set to
be 75 Hz, 0.5◦, and over 50 m, respectively. Under a fixed scanning frequency and radius,
the density of the LiDAR point cloud is only related to the speed. A lower speed is always
recommended to obtain a denser point cloud data, and thus the vehicle speed is controlled
at about 40 km/h in this study, corresponding to the spatial interval of 0.5~2 cm.

2.1. Data Description

The output point cloud data of the LiDAR system include the information of 3D
position (x, y, z), intensity, RGB, time, and heading angle. This study utilized the 3D
position information to generate the 3D surface of the pavement and estimate the water-
film distribution. As shown in Figure 1, the geometries of pavement and the surrounding
environment can be effectively sensed by the LiDAR system.

2.2. 3D Data Processing

The raw laser point cloud data must be well-processed before water-film thickness
estimation to be a standard input matrix for water-film analysis. To this end, we proposed
a multi-step data processing method. The first step is to extract the valuable part (the
point clouds of pavement) from the complex raw point cloud data. Then, a coordinate
transformation algorithm was proposed to transform the global coordinates system into a
local system. Finally, a wavelet-based filter was developed to capture the road surface’s
basic geometry.

(1) Pavement region extraction (Figure 2).
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The raw laser point cloud data contains plenty of redundant information, including the
roadside buildings, the trees, the traffic lights, and even the moving vehicles, making the
raw data too complex to process. As shown in Figure 2, the point clouds of the surrounding
environment are inevitably measured when the LiDAR system is working. The point
clouds of trees, buildings, and even the sidewalks are both redundant data for water-film
thickness analysis. To extract the pavement point clouds data from the raw data, we firstly
adopted a passthrough filter to separate the ground part from the others. The threshold
was determined based on the observed height value of the pavement.

Although the passthrough filter eliminates the most point clouds of trees, lights, and
buildings, some outliers with low heights can hardly be obliterated. Therefore, we then
used the random sample consensus (RANSAC) method to extract the pavement region
from the ground point clouds.

The last step for pavement region extraction is to identify the curbs and determine the
boundaries of the pavement region. The curbs are located between the sidewalks/central
strips and the pavement. The point clouds of curbs can easily be identified based on the
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height differences, which are generally 10~20 cm. Wei [21] proposed a height-based method
for pavement region separation, as shown in Figure 3. The section is firstly divided into
several segments along the transverse direction. In each segment, the least square method
is used to fit the points and calculate the estimated slope of the plane. For the points in the
curb region, the slopes would be relatively high compared with the pavement region. Then,
the following equation is determined for curb identification:{

i f Smin < S < Smax curb candidate
else non− curb region

, (1)

where S denotes the estimated slope of the segment, Smin and Smax denote the lower and
upper thresholds. This method can extract the bidirectional information on the road surface
for the roads without central strips. However, only one-direction surface information can
be extracted for the roads with central strips.
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(2) Coordinates transformation.

The raw point cloud data is measured using a global coordinates system instead
of a local system, making it inappropriate for point cloud data meshing. Coordinate
transformation is required before further analysis. Thus, the translation and rotation
equations were adopted to process the raw point cloud data, as shown in Equations (2)
and (3).


xt
yt
zt

 =


x
y
z

+ T, T = − 1
n



n
∑

i=1
xi

n
∑

i=1
yi

n
∑

i=1
zi


, (2)

where the subscript t indicates the translated coordinates and n is the number of points
in the pavement region. Then, the spatial coordinates are rotated by the following matrix
operation:xr1 xr2 · · · xrm

yr1 yr2 · · · yrm
zr1 zr2 · · · zrn

 = R ·

xt1 xt2 · · · xtn
yt1 yt2 · · · ytn
zt1 zt2 · · · ztn

, R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

, (3)

where θ denotes the direction angle of the road centerline. In this study, we proposed a
linear-fitting-based algorithm for estimating the direction angle and calculating the rotated
matrix, shown as follows (Algorithm 1):
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Algorithm 1. Numerical Algorithm for Coordinates Rotation

STEP 1. Input the 3D surface data, and extract the plane coordinates x, y.
STEP 2. Estimate the slope of the plane coordinates s using linear fitting.
STEP 3. Verify the slope condition:
(i) if s ≤ 0.05, proceed to Step 6.
(ii) if s > 0.05, proceed to Step 4.
STEP 4. Calculate θ based on s using the equation: θ = −1 · ac tan(s)
STEP 5. Calculate the rotated matrix using Equation (3). Return to Step 2 and continue the slope calculation
until the slope condition is satisfied.
STEP 6. Output the final coordinates matrix as the rotated result.

Once the coordinates were translated and rotated, a quadratic surface fitting method
was used to mesh the discrete cloud points. Figure 4 shows the meshed result after
coordinates transformation and surface fitting. The meshing size was set to be 0.1 m. The
selection of meshing size was discussed in Section 3 based on the sampling interval for
water-film thickness estimation.
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(3) Point cloud data denoising and filtering.

The measured point cloud data usually contains abrupt data due to obstacles on
pavement, such as leaves. The abrupt data appeared as prominent abrupt peaks in the 3D
data graph. We proposed a wavelet-based method for 3D data filtering to remove such
outliers.

A wavelet transform approach is a widely accepted tool for signal filtering and multi-
scale analysis. Specifically, wavelet transform uses adjustable-width basis functions (called
wavelets) to decompose a signal into an equivalent approximation signal and a detail signal.
The approximation signal is subsequently decomposed into another set of approximation
and detail signals. The decomposition step can be repeated several times to extract the
low-frequency and high-frequency components.

By applying several wavelet transforms on the target signal, we can obtain the de-
composition results in different scales, corresponding to different frequency bands. The
obstacle-induced outliers in the point cloud data belong to the high-frequency information
and thus can be separated through wavelet transform. Therefore, the 3D data can be well-
filtered through wavelet transform by removing the high-frequency signals and reserving
the low-frequency components.

The selection of the wavelet basis (mother wavelet) is an essential factor affecting
the wavelet decomposition performance. It should be as similar to the original signal to
ensure a better decomposition result. DbN (N = 1, 2, . . . . . . , n) and symN (N = 1, 2, . . .
. . . , n) are the most common-used mother wavelets for pavement profile analysis [22]. As
Weng’s study [14] recommended, we selected the mother wavelet “sym4” for developing
the wavelet-based filter. The level of wavelet decomposition determines the fineness of the
decomposition result. This study utilized the MATLAB Wavelet Toolbox to decompose the
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raw data into three levels (in both horizontal and vertical directions), two of which were
the detailed signals denoted as Level 1 (0.1~0.2 m), Level 2 (0.2~0.4 m). Level 3 (>0.4 m)
was the residual signal. As we decomposed the raw 3D signal in horizontal and vertical
directions, nine decomposed components were obtained, including eight detailed signals
and one residual signal, as shown in Figure 5.
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Figure 6 shows the raw data and filtered results. It is observed the 3D data is well-
smoothed, which is more appropriate for water-film analysis. From Figure 6 we also see
that the obstacle-induced outliers are eliminated through the proposed wavelet-based
filtering, while the 3D profile of the road surface, including the rutting, is well reserved.
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2.3. Validation for 3D Road Surface Measurement

The road surface measurement performance of the LiD technique is required to be
validated to ensure the reliability of subsequent water-film thickness prediction. We
introduced a portable laser profiler in the validation test, a common-used device for
road profile measurement and pavement roughness evaluation. The validation tests were
conducted on an asphalt highway in Shanghai, and a road section of 33 m × 50 m was
selected for road elevation measurement comparison. Since the portable laser profiler
can only measure the one-dimensional road profile, we set two test lines (see Figure 7:
longitudinal line and cross line) for comparison.
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The LiDAR system was first applied to measure the 3D surface of the selected road
section, road profile data corresponding to the two test lines were then extracted from the
3D point cloud data. Then, we used the portable laser profiler to measure the road profiles
of the two test lines. Figure 7 shows the comparison results between the 3D scanning and
laser profiler data. The two elevation curves match well in both cross-line and longitudinal
lines. The average differences were 1.7 mm and 2.1 mm, respectively, demonstrating that
the Lidar-based 3D scanning can precisely measure the road surface profiles.

3. Water-Film Prediction Based on 3D Surface Data
3.1. Governing Equations

The water film accumulating on the road surface is much smaller than the horizontal
dimension of the pavement area. Moreover, the vertical component of water velocity is
negligible compared to the horizontal component. Thus, the distribution of water-film
can be described using the two-dimensional depth-averaged Shallow Water Equations
(2DDA-SWE) [23,24]. In conservative form, the 2DDA-SWE is written as the following
equation:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= Q, (4)

in which

U =

 h
uh
vh

, F =

 uh
u2h + 1

2 gh2

uvh

, G =

 vh
uvh

v2h + 1
2 gh2

, Q =

 qr

ghS0,x − ghS f ,x
ghS0,y − ghS f ,y

 (5)

where h is the water-film thickness (m), u and v are the horizontal component of water
velocity along x and y directions, respectively (m/s), qr is the rainfall intensity (m/s), g is
gravity constant (m/s2), S0 is the bed slop which can be directly calculated with 3D surface
data:

S0,x = − ∂z
∂x

, S0,y = − ∂z
∂y

, (6)
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where z is the pavement elevation. Sf is the friction term which is derived by Manning’s
Equations as follows:

S f ,x =
n2

c u
√

u2 + v2

h4/3 , S f ,y =
n2

c v
√

u2 + v2

h4/3 , (7)

where nc is the Manning roughness coefficient.

3.2. Numerical Algorithms

The governing equations consist of three non-linear partial differential equations
commonly solved by numerical methods. The finite volume method (FVM) and HLL
approximate Riemann solver are implemented to obtain the solution of the 2DDA-SWE.

A cell-centered finite volume scheme based on a cartesian grid is used for spatial
discretization. The averaged variables are stored at the center of the grid, and each grid is
defined as the control volume. The two-dimensional cartesian grid is shown in Figure 8.
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where nc is the Manning roughness coefficient. 
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The time discretization is performed by using the integral conservation form of 2DDA-
SWE, which can be obtained by integrating (1) over each computational cell Ωi with area
Ai: ∫

Ωi

U
∂t

dΩ +
∮

Γ
E · ndΓ =

∫
Ωi

QdΩ, (8)

where n = (nx, ny) denotes the outward unit normal vector of cell Ωi and Γ is the boundary
of cell Ωi, E = (F, G) is the flux passing through the cell boundary. Using the TVD Runge-
Kutta method of two-order accuracy for time discretization [25], the discretized form of
Equation (8) can be written as:

Ûn+1 = Un + ∆t
(

Qn − En · n dΓ
dΩ

)
(9a)

Un+1 =
1
2

Un +

[
1
2

Ûn+1 +
1
2

∆t
(

Q̂n+1 − Ên+1 · n dΓ
dΩ

)]
, (9b)

The calculation of intercell flux E is called the Riemann problem mathematically,
which can be solved by Harten-Lax-van Leer (HLL) approximate Riemann solver [26,27].
Moreover, to ensure the stability of the numerical algorithm, the iteration time step is
constrained by Courant-Friedrichs-Lewy (CFL) condition, which is defined as:

CFL =
∆t

min(∆x, ∆y)

(√
u2 + v2 +

√
gh
)
≤ 1, (10)

The ghost grid method calculates the grid fluxes at the boundary. By adding ghost
grids at the boundary, the interface fluxes of the original boundary grids can be calculated
in the same way as the internal grid. The variable values of the ghost grids are determined
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by the pavement drainage condition. Since the water cannot be discharged freely across
the grid for the boundary with curbs, the wall boundary conditions are applied. The ghost
grid and boundary grid have the same water film thickness and opposite normal water
velocity. For the free drainage boundary, the water can be discharged freely without the
influence of the roadside facilities, and the open boundary conditions are applied. In this
case, the water velocity of the ghost grid is the same as the boundary grid and the water
film thickness is calculated by linear extrapolation.

Based on Equations (4)–(10), the numerical algorithm for calculating the spatial and
temporal distribution of water-film is summarized as follows (Algorithm 2):

Algorithm 2. Numerical Algorithm for 2DDA-SWE

STEP 1. Input 3D surface data, rainfall intensity data, and initial parameters. The values of z, qr, g, and nc are
known. Set the calculation period T and initial the model time t = 0.
STEP 2. According to solution time and accuracy requirements, set time step ∆t and spatial step ∆x and ∆y.
STEP 3. Calculate the intercell flux by Equations (7)–(9).
STEP 4. Update the model time to t = (n + 1) ∆t by Equation (6).
STEP 5. Verify the CFL condition:
(i) if CFL ≤ 1, proceed to Step 6.
(ii) if CFL > 1, increase ∆x and ∆y or decrease ∆t. Then return to Step 3.
STEP 6. Return to Step 3 and continue until the calculation period is completed.

3.3. Model Parameter Acquisition

For model application, parameters such as rainfall intensity, Manning roughness coef-
ficient, and pavement elevation must be obtained first. The rainfall intensity is calculated
by the real-time cumulative precipitation. The relevant data can be collected from the rain
gauge or meteorological station. The Manning roughness coefficient is determined by the
pavement texture, which can be obtained by referring to relative standards or calculated
based on the research of Stong and Reed [28].

The pavement elevation obtained from the 3D surface data is the critical influencing
parameter of the water-film distribution. The sample interval of the data directly affects
the calculation accuracy and efficiency. Acceptable sample interval leads to a more precise
calculation result, but on the other hand, more time consumption will be generated. There-
fore, to determine the optimal sample interval of 3D surface data, the water-film thickness
distribution of the same pavement under different sample intervals was calculated by
implementing the 2DDA-SWE model on a flat road surface. The results are shown in
Figure 9 and Table 2. The calculated water-film thickness under the minimum sample
interval (0.5 mm) is taken as the actual value. It is indicated that the calculated results
are gradually close to the actual value with the decrease of the sample interval. When
the sample interval is no more than 0.25 m, the difference between the calculated and
actual values is within 0.3 mm, which satisfies the calculation requirements. However,
the time consumption is significantly increased with the further decrease of the sample
interval. A 500 times sample interval reduction will lead to more than 80,000 times the time
consumption. As a result, after balancing the calculation accuracy and consumption, the
sample interval in the range of 0.1 m to 0.25 m is selected as the optimal range.

Table 2. Time Consumption for Different Sample Intervals.

Sample Interval 0.5 mm 50 mm 0.1 m 0.25 m 0.5 m 1 m

Time Consumption 83,134.02 s 11.02 s 3.26 s 1.01 s 0.78 s 0.67 s



Int. J. Environ. Res. Public Health 2022, 19, 7699 11 of 18

Int. J. Environ. Res. Public Health 2022, 19, x 11 of 19 
 

 

the rain gauge or meteorological station. The Manning roughness coefficient is deter-
mined by the pavement texture, which can be obtained by referring to relative standards 
or calculated based on the research of Stong and Reed [28]. 

The pavement elevation obtained from the 3D surface data is the critical influencing 
parameter of the water-film distribution. The sample interval of the data directly affects 
the calculation accuracy and efficiency. Acceptable sample interval leads to a more precise 
calculation result, but on the other hand, more time consumption will be generated. There-
fore, to determine the optimal sample interval of 3D surface data, the water-film thickness 
distribution of the same pavement under different sample intervals was calculated by im-
plementing the 2DDA-SWE model on a flat road surface. The results are shown in Figure 
9 and Table 2. The calculated water-film thickness under the minimum sample interval 
(0.5 mm) is taken as the actual value. It is indicated that the calculated results are gradually 
close to the actual value with the decrease of the sample interval. When the sample inter-
val is no more than 0.25 m, the difference between the calculated and actual values is 
within 0.3 mm, which satisfies the calculation requirements. However, the time consump-
tion is significantly increased with the further decrease of the sample interval. A 500 times 
sample interval reduction will lead to more than 80,000 times the time consumption. As a 
result, after balancing the calculation accuracy and consumption, the sample interval in 
the range of 0.1 m to 0.25 m is selected as the optimal range. 

 
Figure 9. Water-film thickness estimation results using different sampling intervals. 

Table 2. Time Consumption for Different Sample Intervals. 

Sample Interval 0.5 mm 50 mm 0.1 m 0.25 m 0.5 m 1 m 
Time Consumption 83,134.02 s 11.02 s 3.26 s 1.01 s 0.78 s 0.67 s 

3.4. Model Validation 
This part aims to validate the water-film thickness estimation algorithm on a given 

road surface. The model validation was conducted based on field monitoring data col-
lected from a highway in Shanxi, China. Since the road section for validation was a new-
constructed road, the road surface was regarded as a flat surface with longitudinal and 
cross slopes. The longitudinal and cross slopes were measured using a high-precision To-
tal Station (TS): longitudinal slope—0.15%; cross slope—1.5%. A remote road surface state 
sensor was used to measure the water-film thickness on the road surface based on the 
spectroscopic measuring principle. Figure 10 shows the schematic diagram of the valida-
tion test. The sensor was installed on the roadside at the height of 35 cm, measuring the 
water-film thickness of the outer lane in real-time. A rainfall sensor was also installed 
nearby to capture the rainfall intensity information. Once the rainfall information was 

Figure 9. Water-film thickness estimation results using different sampling intervals.

3.4. Model Validation

This part aims to validate the water-film thickness estimation algorithm on a given road
surface. The model validation was conducted based on field monitoring data collected from
a highway in Shanxi, China. Since the road section for validation was a new-constructed
road, the road surface was regarded as a flat surface with longitudinal and cross slopes.
The longitudinal and cross slopes were measured using a high-precision Total Station (TS):
longitudinal slope—0.15%; cross slope—1.5%. A remote road surface state sensor was
used to measure the water-film thickness on the road surface based on the spectroscopic
measuring principle. Figure 10 shows the schematic diagram of the validation test. The
sensor was installed on the roadside at the height of 35 cm, measuring the water-film
thickness of the outer lane in real-time. A rainfall sensor was also installed nearby to
capture the rainfall intensity information. Once the rainfall information was well-collected,
the numerical method was applied to calculate the water-film thickness during the rainfall
period.
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During the numerical calculation, the road surface with the measured slopes was first
developed, the rainfall intensity data was then put into the 2DDA-SWE-based model, and
the time series of water-film thickness were then solved following the proposed procedures.
Figure 11 shows the result comparison of the calculated water film and the measured data.
It is first seen that the variation trend of water-film thickness with time was consistent with
the rainfall curve. It is also noted that the difference between the calculated and measured
data was relatively small, and the trend was consistent. The root mean square error and
the maximum error of results are 0.17 mm and 0.76 mm, proving the model’s reliability in
calculating water-film thickness distribution.
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4. Water-Film Thickness Estimation on Road Surfaces with Different Profiles

The geometry of the road surface is an important factor affecting the drainage and
water-film distribution on the road surface. Cross slopes, longitudinal slopes, ruts, and
unevenness of the road surface will affect the drainage path on the pavement, resulting in
uneven distribution of water film. To analyze the water-film distribution on road surfaces
with different geometry types, we selected several samples of measured 3D surface data
for water-film analysis based on the proposed algorithms. The sample data was measured
on four highways in Shanghai, as shown in Figure 12. Three scenarios were considered:
surface with slopes, surface with rutting, and roughness surface, as listed in Table 3. The
pavement type of the four highways is impervious SMA (stone matrix asphalt); thus, the
effect of water seepage was not considered. According to the historical data, the rainfall
intensity was set to be 2.925 mm/min, which is the ten-year precipitation in Shanghai. The
open boundary conditions are applied in this part of the analysis.
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Table 3. Scenarios for water-film thickness estimation.

Scenarios Typical Geometry

Surface with slope: four samples
Cao’an Highway
Boyuan Highway
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4.1. Surface with Slope

Figure 13 shows the calculation results of water-film thickness on the road surfaces
with slopes, which is 1–2% approximately. For the road surfaces with good roughness
and no obvious rutting, the water-film thickness is mainly within 1 cm under heavy rain,
indicating that the pavement drainage performance is good. It is also observed that cross
slope has a more significant effect than longitudinal slope on the pavement drainage. The
thick water film occurs at the curbs instead of the slope bottom. Moreover, note that the
proposed water-film thickness estimation method did not consider the effect of roadside
drainage wells, and thus the calculation results are inconsistent with the actual situation.
In practical application, it can guide the design of drainage wells based on the positions of
high-water-film-depth regions.
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4.2. Surface with Rutting

Figure 14 shows the calculation results of water-film thickness on the road surfaces
with rutting. It can be seen that the rutting affects the water-film distribution very signifi-
cantly. The distribution of water-film thickness shows an apparent “double peak” shape,
and the water-film thickness on the outer lane (usually the truck lane) is higher than that
on the inner lane. The maximum water-film thickness can even reach over 2 cm. Moreover,
there is no significant difference between the start and end regions, indicating that the
impact of rutting is much more significant than that of the longitudinal road slope.
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4.3. Rough Surface

Figure 15 shows the calculation results of water-film thickness on rough surfaces, the
International Roughness Indexes of the three road sections are in the range of Scenario 1 in
[2.59, 4.51], Scenario 2 in [4.22, 7.10], Scenario 3 in [3.52, 10.27]. The water-film distribution
on a rough surface is irregular compared with slope and rutting scenarios. The local
unevenness (depression, corrugation, and shoving) would change the water path on the
road surface, resulting in thick water-film on those regions. As shown in Figure 13, the
maximum water-film thicknesses in the three scenarios exceed 3 cm, much larger than in
the other scenarios.
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5. Hydroplaning Risk Evaluation

The hydroplaning speed is usually used to evaluate the hydroplaning risk by com-
paring it with the posted speed limit. Thus, the key to hydroplaning risk evaluation is to
estimate the hydroplaning speed based on the road surface parameters. Various water-film-
based methods have been developed to estimate hydroplaning speed based on analytical
derivations or empirical formulas. It is widely accepted that the pavement hydroplaning
speed is highly associated with water-film thickness, mean texture depth (MTD), and
tire parameters (pressure and tread depth). Selecting an appropriate hydroplaning speed
estimation model for different pavement scenarios is required.

In this study, we adopted the Gallaway model [29] and the USF (University of South
Florida) model [30] based on Luo’s DFT (Dynamic Friction Tester) test results [20], which
indicated that the two models provide more accurate results in hydroplaning speed pre-
diction than other models. The Gallaway model is a classic model developed in 1979 by
Gallaway B.M. et al. [29]. for the US Department of Transportation. It should be noted
that the Gallway formula for hydroplaning speed estimation is only valid for speeds up
to 55 km/h or 95 km/h, and it is recommended that a maximum water-film thickness of
4 mm should be achieved. The USF model was proposed by Ong and Fwa in 2007 [8]. It
was developed by a comprehensive finite element model formulated to predict hydroplan-
ing conditions accurately. This model considered the effect of wheel load, an important
parameter affecting hydroplaning. The formulas of the two models are as follows (Table 4):

Table 4. Gallaway model and USF model.

Gallaway model
vp = 0.9143 · SD0.04P0.3

t (TD + 0.794)0.06 A

A = max.o f


(

12.639
WFT0.06

)
+ 3.507[(

22.351
WFT0.06

)
− 4.97

]
MTD0.14

USF model vp = W0.2P0.5
t

(
0.82

WFT0.06 + 0.49
)

Where SD denotes the spin-down ratio (fixed as 1.0), Pt denotes the tire’s inflation
pressure, TD is the tire tread depth, W is the wheel load. For the selected sample road
surfaces, we adopted the following variables (Table 5):

Table 5. Variables for hydroplaning speed estimation.

Variable Value

MTD 1.0 mm
Tire pressure (Pt) 250 Kpa
Wheel load (W) 5000 N

SD 1.0
Tire tread depth 1.0 mm

We can estimate the hydroplaning speed distribution based on the water-film distribu-
tion using the hydroplaning speed estimation models. Figure 16 (Gallaway model) and
Figure 17 (USF model) illustrate the estimation results of three typical scenarios: Slope
Scenario 4 in Figure 13, Rutting Scenario 1 in Figure 14, and Rough Scenario 2 in Figure 15.
Note that the road surface of the Rough Scenario 2 was measured in two ways, and the
yellow center area corresponds to the upper edge of the pavement. It is observed that
the hydroplaning speed estimation results of the two models have apparent similarities
in their distribution contours, although the calculated hydroplaning speed values have a
maximum difference of 20 km/h. Moreover, it is observed that hydroplaning is more likely
to occur on rutting tracks and uneven sections. The hydroplaning speed can be lower than
70~90 km/h, almost close to the highway’s speed limit. The vehicle should decelerate or
steer to avoid hydroplaning in these regions.
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6. Conclusions

Rapid detection and evaluation of highway hydroplaning risk has always been the
focus of traffic safety research. As the core factor resulting in hydroplaning, the water-film
on the road surface can significantly reduce the friction between tire and road surface,
influencing public transportation health.

This paper proposes to develop a new rapid method for water-film thickness estima-
tion on asphalt pavement based on 3D laser scanning, becoming an essential component
in the ITS for improving driving safety and preventing traffic accidents. This method’s
basic idea is to use a numerical method to estimate the water-film distribution based on
LiDAR-captured 3D road surface data. Compared with traditional methods, this method
allows us to rapidly predict the water-film thickness on a large scale (over 10 m-width,
100 m-length) within 10 s. The water-film estimation results were well-validated using the
measured data on a highway in Shanxi, China.

Through applying this method to three different types of road surfaces on four high-
ways, the results revealed that the pavement profile significantly impacts the water-film
distribution on the pavement. For the road surface with slope, it is found that the water-film
thickness becomes greater as the distance from the upper edge of the pavement increases.
For the road surface with rutting, the water film on the rutting tracks is significantly thicker
than in other regions. The maximum water-film thickness reached 2 cm, increasing the
hydroplaning risk significantly. The water-film distribution on rough road surfaces shows
an irregular pattern. The water film is much thicker in the depression region than in other
regions. Using the Gallaway and USF models to calculate the hydroplaning speeds based
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on the estimated water-film thickness, it is found that the minimum hydroplaning speed
on the rutting tracks and rough regions can be lower than 90 km/h, significantly affecting
driving safety. Driving vehicles should avoid rutting tracks and rough regions on rainy
days or take appropriate measures to prevent traffic accidents.

It should be emphasized that this study was focused on the hydroplaning risk evalu-
ation method. We did not study how to improve driving safety on wet road surfaces. It
would also be an interesting topic for further research. Our future work will focus mainly
on the effect of rainfall intensity, and a detailed vehicle control strategy for safe driving in
rainy weather will be studied.

Author Contributions: Conceptualization, W.Y. and B.T.; methodology, D.W.; software, J.C.; vali-
dation, Y.F. and L.Z.; formal analysis, D.W. and W.Y.; investigation, D.W. and J.C.; resources, B.T.;
writing—original draft preparation, W.Y., D.W. and J.C.; writing—review and editing, Y.F. and B.T.;
supervision, B.T.; funding acquisition, B.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was jointly funded by the science and technology innovation program of the
department of transportation, Yunnan province, China (No. 2019303 and [2020]75), the general
program of key science and technology in transportation, the ministry of transport, China (No. 2018-
MS4-102 && ZL-2018-04), the research fund of the Nanjing joint institute for atmospheric sciences
(No. BJG202101), the science and technology demonstration project of ministry of transport, China
(No. 2017-09), and the general program of natural science foundation, Yunnan province, China (No.
202201AT070245).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ding, Y.; Li, D.; Huang, M.; Cao, X.; Tang, B. Study on the Influence of Skid Resistance on Traffic Safety of Highway with a High

Ratio of Bridges and Tunnels. Transp. Saf. Environ. 2021, 3, tdab025. [CrossRef]
2. Fwa, T.F.; Chu, L. The Concept of Pavement Skid Resistance State. Road Mater. Pavement Des. 2021, 22, 101–120. [CrossRef]
3. McCarthy, R.; Flintsch, G.; de León Izeppi, E. Impact of Skid Resistance on Dry and Wet Weather Crashes. J. Transp. Eng. Part B

Pavements 2021, 147, 04021029. [CrossRef]
4. Liu, M.; Oeda, Y.; Sumi, T. Modeling Free-Flow Speed According to Different Water Depths—From the Viewpoint of Dynamic

Hydraulic Pressure. Transp. Res. Part D 2016, 47, 13–21. [CrossRef]
5. Spitzhüttl, F.; Goizet, F.; Unger, T.; Biesse, F. The Real Impact of Full Hydroplaning on Driving Safety. Accid. Anal. Prev. 2020, 138,

105458. [CrossRef]
6. Fwa, T.F.; Ong, G.P. Wet-Pavement Hydroplaning Risk and Skid Resistance: Analysis. J. Transp. Eng. 2008, 134, 182–190.

[CrossRef]
7. Ding, Y.M.; Wang, H. Computational Investigation of Hydroplaning Risk of Wide-Base Truck Tyres on Roadway. Int. J. Pavement

Eng. 2020, 21, 122–133. [CrossRef]
8. Ong, G.P.; Fwa, T.F. Prediction of Wet-Pavement Skid Resistance and Hydroplaning Potential. Transp. Res. Rec. 2007, 2005,

160–171. [CrossRef]
9. Horne, W.B.; Joyner, U.T. Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance. SAE Trans. 1966, 74, 623–650.
10. Zhong, K.; Sun, M.; Liu, Z.; Zheng, K. Research on Dynamic Evaluation Model and Early Warning Technology of Anti-Sliding

Risk for the Airport Pavement. Constr. Build. Mater. 2020, 239, 117820. [CrossRef]
11. Bi, Y.; Pei, J.; Guo, F.; Li, R.; Zhang, J.; Shi, N. Implementation of Polymer Optical Fibre Sensor System for Monitoring Water

Membrane Thickness on Pavement Surface. Int. J. Pavement Eng. 2021, 22, 872–881. [CrossRef]
12. Cai, J.; Zhao, H.; Zhu, X.; Cao, J. Wide-Area Dynamic Sensing Method of Water Film Thickness on Asphalt Runway. J. Test. Eval.

2019, 48, 2129–2143. [CrossRef]
13. Fujimoto, A.; Yamada, T.; Osara, K.; Okuno, R.; Terasaki, H. Development of a Device for Measuring the Thickness of the Road

Surface Water Film Using a Vehicle-Mounted Salinity Sensor. J. Japan Soc. Civ. Eng. 2019, 75, I_1–I_8. [CrossRef]
14. Yu, M.; You, Z.; Wu, G.; Kong, L.; Liu, C.; Gao, J. Measurement and Modeling of Skid Resistance of Asphalt Pavement: A Review.

Constr. Build. Mater. 2020, 260, 119878. [CrossRef]

http://doi.org/10.1093/tse/tdab025
http://doi.org/10.1080/14680629.2019.1618366
http://doi.org/10.1061/JPEODX.0000286
http://doi.org/10.1016/j.trd.2016.04.009
http://doi.org/10.1016/j.aap.2020.105458
http://doi.org/10.1061/(ASCE)0733-947X(2008)134:5(182)
http://doi.org/10.1080/10298436.2018.1445249
http://doi.org/10.3141/2005-17
http://doi.org/10.1016/j.conbuildmat.2019.117820
http://doi.org/10.1080/10298436.2019.1652298
http://doi.org/10.1520/JTE20190172
http://doi.org/10.2208/jscejpe.75.2_I_1
http://doi.org/10.1016/j.conbuildmat.2020.119878


Int. J. Environ. Res. Public Health 2022, 19, 7699 18 of 18

15. Díaz-Vilariño, L.; González-Jorge, H.; Bueno, M.; Arias, P.; Puente, I. Automatic Classification of Urban Pavements Using Mobile
LiDAR Data and Roughness Descriptors. Constr. Build. Mater. 2016, 102, 208–215. [CrossRef]

16. Du, Y.; Li, Y.; Jiang, S.; Shen, Y. Mobile Light Detection and Ranging for Automated Pavement Friction Estimation. Transp. Res.
Rec. 2019, 2673, 663–672. [CrossRef]

17. Du, Y.; Weng, Z.; Li, F.; Ablat, G.; Wu, D.; Liu, C. A Novel Approach for Pavement Texture Characterisation Using 2D-Wavelet
Decomposition. Int. J. Pavement Eng. 2020, 23, 1851–1866. [CrossRef]

18. Du, Y.; Liu, C.; Song, Y.; Li, Y.; Shen, Y. Rapid Estimation of Road Friction for Anti-Skid Autonomous Driving. IEEE Trans. Intell.
Transp. Syst. 2020, 21, 2461–2470. [CrossRef]

19. Ruan, C.; Wang, Y.; Ma, X.; Kang, H. Road Meteorological Condition Sensor Based on Multi-Wavelength Light Detection. In
Proceedings of the Third International Conference on Photonics and Optical Engineering, London, UK, 14–15 June 2019.

20. Luo, W.; Wang, K.C.P.; Li, L. Hydroplaning on Sloping Pavements Based on Inertial Measurement Unit (IMU) and 1mm 3D Laser
Imaging Data. Period. Polytech. Transp. Eng. 2016, 44, 42–49. [CrossRef]

21. Wei, S.; Pan, N.; Yue, J.; Du, Y. Three-Dimentional Feature Detection Method of Pavement Surface Deformation Distress Based on
Mobile LiDAR Data. In Proceedings of the Transportation Research Board, 100th Annual Meeting, Washington, DC, USA, 12–16
January 2020.

22. Zelelew, H.M.; Papagiannakis, A.T.; Izeppi, E. Pavement Macro-Texture Analysis Using Wavelets. Int. J. Pavement Eng. 2013, 14,
725–735. [CrossRef]

23. Hubbard, M.E.; Baines, M.J. Upwinding for the steady two-dimensional shallow water equations. J. Comput. Phys. 1997, 138,
419–448. [CrossRef]

24. Yu, C.; Duan, J. Two-Dimensional Hydrodynamic Model for Surface-Flow Routing. J. Hydraul. Eng. 2014, 140, 4014045. [CrossRef]
25. Chen, L.; Ke, X.; Zhao, Y. A TVD Discretization Method for Shallow Water Equations: Numerical Simulations of Tailing Dam

Break. Int. J. Model. Simul. Sci. Comput. 2017, 8, 1850001.
26. Harten, A. On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes. SIAM J. Numer. Anal. 1982, 21, 1–23.

[CrossRef]
27. Ressel, W.; Wolff, A.; Alber, S.; Rucker, I. Modelling and Simulation of Pavement Drainage. Int. J. Pavement Eng. 2019, 20, 801–810.

[CrossRef]
28. Stong, J.B.; Reed, J.R. Waterfilm Flow Depth and Hydraulic Resistance From Runoff Experiments on Portland Cement Concrete

Surfaces. In Proceedings of the Integrated Water Resources Planning for Century, Cambridge, MA, USA, 7–11 May 1995; American
Society of Civil Engineers: New York, NY, USA, 2014.

29. Huebner, B.R.S.; Reed, J.R.; Henry, J.J. Criteria for Predicting Hydroplaning Potential. J. Transp. Eng. 1987, 112, 549–553. [CrossRef]
30. Gunaratne, M.; Lu, Q.; Yang, J.; Metz, J.; Jayasooriya, W.; Yassin, M.; Amarasiri, S. Hydroplaning on Multi Lane Facilities; University

of South Florida. Department of Civil and Environmental Engineering: Tampa, FL, USA, 2012.

http://doi.org/10.1016/j.conbuildmat.2015.10.199
http://doi.org/10.1177/0361198119847610
http://doi.org/10.1080/10298436.2020.1825712
http://doi.org/10.1109/TITS.2019.2918567
http://doi.org/10.3311/PPtr.8208
http://doi.org/10.1080/10298436.2012.705004
http://doi.org/10.1006/jcph.1997.5823
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000913
http://doi.org/10.1137/0721001
http://doi.org/10.1080/10298436.2017.1347437
http://doi.org/10.1061/(ASCE)0733-947X(1986)112:5(549)

	Introduction 
	3D Laser Scanning Data 
	Data Description 
	3D Data Processing 
	Validation for 3D Road Surface Measurement 

	Water-Film Prediction Based on 3D Surface Data 
	Governing Equations 
	Numerical Algorithms 
	Model Parameter Acquisition 
	Model Validation 

	Water-Film Thickness Estimation on Road Surfaces with Different Profiles 
	Surface with Slope 
	Surface with Rutting 
	Rough Surface 

	Hydroplaning Risk Evaluation 
	Conclusions 
	References

