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Abstract: Spatially explicit urban air quality information is important for urban fine-management
and public life. However, existing air quality measurement methods still have some limitations
on spatial coverage and system stability. A micro station is an emerging monitoring system with
multiple sensors, which can be deployed to provide dense air quality monitoring data. Here, we
proposed a method for urban air quality mapping at high-resolution for multiple pollutants. By
using the dense air quality monitoring data from 448 micro stations in Lanzhou city, we developed
a decision tree model to infer the distribution of citywide air quality at a 500 m × 500 m × 1 h
resolution, with a coefficient of determination (R2) value of 0.740 for PM2.5, 0.754 for CO and 0.716
for SO2. Meanwhile, we also show that the deployment density of the monitoring stations can have a
significant impact on the air quality inference results. Our method is able to show both short-term and
long-term distribution of multiple important pollutants in the city, which demonstrates the potential
and feasibility of dense monitoring data combined with advanced data science methods to support
urban atmospheric environment fine-management, policy making, and public health studies.

Keywords: air quality mapping; high-resolution; micro monitoring stations; LCS network;
machine learning

1. Introduction

Urban air pollution seriously affects public health in both developed and developing
countries [1–3]. It is worth noting that more than 50% of the world’s population lives in
urban areas where most of the air pollution-related health impact occurs [4].

Because of the severe urban air pollution, there is a growing demand for air quality
monitoring services, which aim to understand the real-time air quality of any area in
the city (e.g., street, community, school), as well as their spatial–temporal variations at a
higher resolution [5]. Such information could greatly help public decision making (such
as whether to take exercise outdoors) and urban fine-management and policy making
(such as performing controls for the area that often produce severe air pollution) to reduce
public health and capital loss. However, inferring the citywide air quality at both a high
spatial and temporal resolution can be extremely challenging. First, the standard air quality
monitoring stations are limited worldwide due to their high cost and space limitation.
Even in affluent regions, air quality monitors are also sparse (i.e., there are 18 continuous
regulatory monitors in the New York metropolitan area [6] and 35 in Beijing, China [7]),
which provide only limited coverage of air quality monitoring. Second, the air pollutants’
distribution can vary greatly at both small spatial and temporal scales due to complex
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physical–chemical transformations and multiple emission sources, especially in populous
urban areas [5,8]. Third, urban air pollution is a complex dynamic system, which not only
has a strong spatial dependency with adjacent areas [9], but also can be affected by a variety
of factors (e.g., meteorological, urban structures).

Currently, a variety of methods have been used to infer urban air quality, but still with
various limitations. The classical dispersion models and chemical transport models are
in most cases a function of meteorology, receptor locations, traffic volumes, and emission
factors. These models can offer high fidelity but tend to be computationally expensive
and need empirical assumptions and parameters [10–12]. Spatial interpolation methods
are based on the air quality reports from nearby monitoring stations, which are usually
employed by public websites releasing AQIs. However, their inference accuracy is often
not guaranteed due to air quality varying across locations non-linearly [13]. Land-use
regression can provide air quality estimations with a high spatial resolution but lack
sufficient temporal resolution. Meanwhile, it highly relies on the availability of updated
local land-use data [14–16]. Some studies use satellite remote sensing data to estimate air
quality [17,18], but they are usually spatially coarse (1−10 km resolution) [19] and easily
affected by cloudy weather and water/snow glint reflectance [20,21].

In recent years, many studies have utilized machine learning methods and low-cost
sensor (LCS) technology for urban air quality inference modeling, and it has been proved
to have a better performance [5,22]. However, we note that existing studies still needs
further improvement. First, most studies based on such as land-use regression or satellite
remote sensing lack a sufficient temporal resolution, which can only model daily variations
in urban air quality [19,23,24]. In turn, urban air pollution showed obvious differences
over continuous hours [5,8]; thus, it is necessary to understand the hourly variations in air
quality for public daily decision-making and urban fine-management. Second, regarding
spatial resolution, many studies inferred air quality at coarse resolutions (10 km) [23,25–27],
with only a few exceptions at 1 km [28,29]. However, in multicenter health studies, there
are dense residents in many urban areas where air pollution exposures may vary greatly
within a 10-km2 or smaller grid cells. Third, the LCS sensors have higher spatial–temporal
measurement resolution [5,30], but existing LCS-based methods still have some limitations.
The portable monitoring devices are not necessarily accurate due to cost and volume
limitations, and often focus on a specific area rather than the whole city [14]. The vehicles
equipped with sensors cannot guarantee the monitoring time (less observation at night)
and are easily affected by human factors (forgetting to open) or operating environments
(the wind in driving) [19,31]. Therefore, it is necessary to explore a method to steadily infer
the variations in urban air quality at both a high spatial and temporal resolution.

In this paper, we propose a method to address the challenges of high-resolution urban
air quality mapping by exploring the potential of combining dense LCS networks and
machine learning techniques. Specifically, we collected air quality data from 448 micro
monitoring stations (micro station) in Lanzhou City. Then, we developed a decision tree
model to infer the citywide air quality at a 500 m × 500 m × 1 h resolution by using these
dense monitoring data and external data (meteorological and land-use data). The results
show that our method can accurately infer the distribution of and variation in multiple
important pollutants at ahigh spatio-temporal resolution, which demonstrates the potential
and feasibility of dense monitoring data for urban air quality mapping, and provide
support for urban atmospheric environment fine-management, policy making, and public
health studies.

2. Materials and Methods
2.1. Study Area and Micro Stations Distribution

Lanzhou is the capital of Gansu Province, China, which covers about 1073 km2 with
four administrative districts. The Xigu District is the core industrial area, Anning District
is the science and education center, and Qilihe District and Chengguan District are the
business areas. As a center for the petrochemical industry and heavy industry and also
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an important transportation hub, it suffers from severe air pollution. Therefore, a dense
air quality monitoring network with 448 micro stations (about 0.4 stations per square
kilometer) has been established here to assist in air pollution control. Most of these stations
are located in the core area with a high density (335 stations in 184 km2, about 2 stations
per square kilometer) (Figure 1). The dense network can monitor the hourly concentrations
of both particulate matters (PM2.5, PM10) and gaseous pollutants (CO, O3, NO2, and SO2)
(Supplementary Material Table S1). Figure S1 shows the station distribution number of the
micro stations in each administrative district.
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Figure 1. Study area and the distribution of micro stations in Lanzhou City, China, where the red
dots represent the stations in the core area.

2.2. Data Collection
2.2.1. Air Quality Data

In this study, we focused on urban air quality in winter, when severe air pollution is
more likely to occur and vary greatly (Figure S2). A one-phase air quality data collection
campaign was conducted from 11 October 2021 to 19 February 2022 in Lanzhou City. The air
quality data comes from 448 micro stations, including real-time air pollutant concentrations,
collection timestamp, and collection location (longitude, latitude, and street). A total of
1,339,055 h of air quality monitoring data were obtained after removing erroneous data,
and the data-missing rate was 2.3% in the time series. Figure S2 shows the regional average
of the air pollutant concentrations during the study period. All micro stations are managed
by the Department of Ecology and Environment of Gansu Province, China. They are factory
calibrated and regularly maintained to ensure the readings have acceptable precision. More
details about the parameters and performance of the monitoring equipment are presented
in the Supplementary Material.

2.2.2. Meteorological and Land-Use Data

We also collected meteorological conditions data during the study period. The me-
teorological data comes from 51 streets in Lanzhou city, including weather, temperature,
relative humidity, wind direction, wind level, collection timestamp, and collection location
(longitude, latitude, and street). Finally, a total of 118,773 h of meteorological data were
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obtained. Our study uses the land-use data of Lanzhou city at a 30 m spatial resolution;
there are 6 first-level types, including cultivated land, forest land, grassland, water area,
construction land, unused land, and 25 s-level types, including forest land, shrubland,
sparse forest land, other forest land, and high, medium, and low coverage grassland.

2.3. City Grid

First, the geographical coordinate system WGS2000 was used for the geographical
registration of the entire study area, and the city vector shape was extracted. We divided
the study area into 4139 grids based on the distribution density of the micro stations, and
each grid size was 500 m × 500 m. Next, all micro stations, as well as the air quality
monitoring data, were assigned to the corresponding grids based on their location (latitude
and longitude). The pollutant concentrations of each grid area were from the observed
value of its corresponding micro station. For grids that contain multiple stations, we
took the average value of the multiple stations and assigned it to these grids. Finally,
for all grids in the study area, including the blank grids without assigned micro stations,
the spatially adjacent data were searched and allocated to the grids based on the spatial
distance between each grid and adjacent units. We obtained high-resolution data for all
grids in the study area: (1) Location: longitude and latitude; (2) Air quality data: air quality
monitoring data from the nearest 10 micro stations at the same hour (i.e., spatial neighbors);
(3) Meteorological data: hourly weather, temperature, relative humidity, wind direction,
and wind force data from the nearest street; (4) Land-use data: the size of each of the
25 land-use types in each grid. These data were used in the next step as the input variables
of each grid for developing the air quality inference model for the entire study area.

2.4. Air Quality Inference Model
2.4.1. Model Construction

For urban air quality, the air pollutant concentrations of a given grid is spatially
correlated to its adjacent units. For example, the air quality of a location is likely to
be bad if the air quality of its adjacent areas is bad. In addition, external factors, such
as meteorological conditions, can affect regional pollutant transport and local pollutant
deposition. In order to capture the potential impact of multiple factors on urban air
quality, we developed a machine learning model based on Extreme Gradient Boosting
(XGBoost) [32] to infer the air quality of a given grid by using multiple spatially adjacent
data related to the grid.

The XGBoost algorithm was improved based on the gradient boosted decision
tree (GBDT), which offered additional functions (e.g., column sampling and shrinkage)
to avoid overfitting and enhance the model predictability [32]. By introducing the
regularization item to measure the complexity of the tree model in the objective function,
XGBoost can reduce the risk of model overfitting. The decision tree was used as the basic
learner of XGBoost, and the weight of the learner was updated by the error gained from
each iteration. Finally, the learners with different weights formed an ensemble model,
and the prediction was generated by the weighted average. In general, XGBoost has
better accuracy due to its additional training process, and takes less time to build the
model. In our study, the nonlinear spatial correlation of air pollution in adjacent areas,
heterogeneous external data, and the advantages of XGBoost being fast and accurate
were integrated into a universal study framework for urban air quality inference. As
shown in Figure 2, our goal is that the framework can derive hourly citywide air quality
inference as soon as updated data are available.
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Figure 2. Study framework.

2.4.2. Variable Selection and Model Hyperparameters

A variety of methods are used to further construct the inference model. We selected
the needed predictors by the feature importance of the XGBoost algorithm, which is a
backward elimination procedure (i.e., gradually removing the variables with the lowest
importance). The model hyperparameters are optimized by a parameter search method
called GridSearchCV with 5-fold cross-validation, choosing the hyperparameters set that
minimizes RMSE. The search range of different hyperparameters is shown in Table 1.
The experiments were mainly run on a computing server, and the model was built using
python (hardware information and software versions are shown in Table S2).

Table 1. Hyperparameters search range in the GridSearchCV.

Hyperparameter Range Interval

n_estimators 100~500 100
learning_rate 0.05~0.1 0.01
max_depth 3~10 1

min_child_weight 1~6 1
colsample_bytree 0.7~1 0.1

Subsample 0.7~1 0.1

2.4.3. Evaluation Metric

In our study, three metrics were used to evaluate the air quality infer performance,
where yi is the true value, ŷi is the inference value, and yi is the sample mean.

Root mean squared error (RMSE):

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

Coefficient of determination (R2):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

Pearson correlation coefficient (COR):

COR =
COV(ŷi, yi)√
Var[ŷi]Var[yi]

(3)
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3. Results
3.1. Data Analysis
3.1.1. Spatio-Temporal Characteristics for Urban Air Pollutants

Taking PM2.5 as an example, the highest level of concentration appeared on 15 February
2022, 9:00 p.m. (129.3 micrograms per cubic meter (µg/m3)) and the lowest level appeared
on 12 October 2021, 8:00 a.m. (17.9 µg/m3). For spatial distribution, the highest level of
the PM2.5 concentration average was observed at a thermal power plant in Xigu District
(68.2 µg/m3) and the lower level was obtained at a village in the suburbs of Chengguan
District (42.7 µg/m3). Figure 3a shows the PM2.5 concentration differences between two
adjacent stations at the same hour during the study period, with about 24.3% of the data
having differences higher than 10 micrograms per cubic meter (µg/m3). Similarly, with
about 14.5% of the data having differences over 10 µg/m3 for the same stations between two
consecutive hours. Several studies have shown that a 10 µg/m3 increase in PM2.5 pollution
can significantly increase the all-cause mortality as well as respiratory and cardiovascular
disease hospitalizations [33–36]. These results show that urban PM2.5 pollution has a
relatively significant variation at both small temporal and spatial scales. This may be
the result of a complex urban structure, human activities, and the uneven distribution of
various emission sources. In addition, it also shows the effectiveness of micro stations to
capture the significant spatial heterogeneity of urban air pollutants.
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3.1.2. Correlation and Feature Importance

First, Spearman correlation analysis was conducted on PM2.5 pollution and Figure 3c
shows the correlation between the PM2.5 data and other spatially adjacent data. It can
be seen that the closer stations have more significant impacts on local PM2.5 pollution,
which follows the First Law of Geography [37]; i.e., “Everything is related to everything else,
but near things are more related than distant things”. Meanwhile, the external data are also
correlated with PM2.5 pollution. Then, we used the XGBoost algorithm to calculate the
feature importance of different predictors for PM2.5 pollution inference. The result is shown
in Figure 3d; overall, the pollution data from the nearest two micro stations have the highest
importance for PM2.5 inference performance, which is consistent with the result in the
Spearman correlation analysis. In meteorological conditions, both relative humidity and
temperature are of high importance to PM2.5 inference. For the impact of temperature on
model inference, this may be due to the winter heating activities that vary with temperature.
This phenomenon is consistent with Mateusz Zaręba and Tomasz Danek’s study in Krakow,
Poland [38]. They proved that temperature has a direct and important impact on the PM
concentration in winter/early spring months. Relative humidity also shows obvious impact
on PM2.5 inference, which may be related to its fluctuation [39]. Significantly, the wind
direction had the lowest F-score for PM2.5 inference, which may be closely related to the
unobvious wind direction variations in Lanzhou city. Among the meteorological data
collected, the northeasterly wind accounts for about 63.6%, and the non-sustained wind
accounts for about 19.7%. Similarly, for wind force, about 36% of the data were of the same
wind force, which may be the reason for its relatively low impact on PM2.5 inferences.

3.2. Performance on Air Quality Inference

One common challenge faced by urban air quality inference is the lack of sufficient
monitors to provide a spatially distributed benchmark as the ground truth. In our study
area, there are 448 micro stations located in various regions, which enable us to develop
and validate the air quality inference model based on their monitoring data. Specifically,
we first used the data from grids assigned with micro stations for ground truthing, to train
and test the air quality inference model. Then, the tested model was used to estimate the
air quality of all grids in the study area.

We developed and tested various methods for making air quality inference.
Support Vector Regression (SVR): SVR is expected to find an optimal fitting line

so that all data points can be as close as possible to this line, thus making a prediction.
The SVR model in our study was developed based on the “sklearn” package in Python.

k-Nearest Neighbor (KNN): The core of the KNN algorithm is to find k nearest
neighbors of a given sample in the feature space and assign the attributes’ average of
these neighbors to the sample for prediction. KNN and SVR are both classical regression
algorithms, which are taken as the baselines to compare the performance improvement of
existing popular algorithms in air quality inference tasks. The KNN model in our study
was developed based on the “sklearn” package in Python, and the number of neighbors
was selected as three.

Deep Neural Network (DNN): DNN is a kind of artificial neural network, which
receives a variety of predictors as inputs from the input layer, and by training the neurons
in hidden layers, the final air quality inference results are produced in the output layer.
With a large number of training samples, DNN often has excellent performance, but may
also need more computing resources. We used DNN as one of the baselines to evaluate
its time-cost and accuracy in the air quality inference task. The DNN model in our study
was developed based on the “Keras” package in Python, and there is one input layer
(64 neurons) and two hidden layers (32 and 16 neurons).

Random Forest (RF): RF is composed of multiple classification or regression trees.
The input predictors are randomly split into each tree using a bootstrap method, and the
data in each tree are employed to train the prediction model. It tends to have a lower
risk of model overfitting and we chose it as one of the baselines. The RF model in our
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study was developed based on the “sklearn” package in Python, and n_estimators = 100,
min_samples_split = 2 were used.

XGBoost: As one of the most popular algorithms in regression tasks, its tree structure
often achieves the better performance in both time cost and accuracy. Meanwhile, the
feature importance from XGBoost is helpful for the understanding of the inferred results.
For the XGBoost model, it was developed based on the “xgboost” package in Python, and
n_estimators = 100, learning_rate = 0.08, max_depth = 7, min_child_weight = 3, colsam-
ple_bytree = 1, and subsample = 1 were used.

The air pollutant concentrations from the adjacent micro stations at the same hour,
meteorological data, and land-use data were taken as input variables. For categorical
variables (e.g., weather, land-use data), we used the one-hot encoding to transform them
into feature vectors. In total, 70% of the data were used as the training set and the rest, 30%,
as the test set. Finally, we tested the inference performance of three important air pollutants
(PM2.5, CO, and SO2) in winter, and all the pollutants’ data were analyzed following the
procedures in Section 3.1. The performance of each method on the test set is shown in
Table 2.

Table 2. Model performance comparison.

PM2.5 CO SO2

Methods RMSE R2 COR RMSE R2 COR RMSE R2 COR

KNN 12.710 0.653 0.814 0.524 0.659 0.816 6.426 0.618 0.794
SVR 11.666 0.708 0.851 0.518 0.668 0.858 6.135 0.652 0.844

DNN 11.171 0.732 0.860 0.452 0.747 0.865 5.607 0.709 0.842
Random Forest 11.188 0.731 0.856 0.455 0.743 0.862 5.645 0.705 0.840

XGBoost 10.999 0.740 0.861 0.445 0.754 0.869 5.537 0.716 0.846

Overall, the XGBoost model performs the best on all three metrics, and DNN, Random
Forest, and XGBoost have a similar performance. Significantly, the XGBoost model has
the fastest model computing speed, with 12 s on the training set and 0.09 s on the test
set. In contrast, the Random Forest model took 1 min 31 s on the training set and 3.12 s
on the test set. The DNN model took the longest time, 24 min 55 s, on the training set,
and 3.8 s on the test set. The parallelized tree construction may be one of the reasons
that the XGBoost model has the lowest time cost compared to other models, and it can
greatly facilitate the model deployment in real-world practice. The XGBoost model has
good inference performance for hourly concentrations of three pollutants, which proves
that our model results are stable and robust for inferring multiple pollutants in the city.
Furthermore, Table 3 shows the comparison of the impact of different predictors on the
model performance, which shows that more micro stations, as well as external data, are
beneficial for air quality inference performance.

Then, we divided the grid data in the test set into five categories based on the distance
between each grid and its nearest micro stations. It helps to understand how the dense
monitoring data affect the model performance for different grids. As shown in Figure 4a,
overall, the closer monitoring points can further improve model performance, and the
good performance comes from the grids with micro stations within a radius of 500 m
(500 m-grids). We then further explored the impact of the number of micro stations on
model performance for the 500 m-grids (Figure 4b). Similarly, more micro stations per-
form better for air quality inference in general. These results indicate that there are very
fine-grained spatial variations in urban air quality, and it is important to consider these
variations to improve the accuracy of air quality inference.
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Table 3. The impact of different predictors on the XGBoost model performance.

PM2.5 CO SO2

Predictors RMSE R2 COR RMSE R2 COR RMSE R2 COR

1 station 12.820 0.647 0.806 0.567 0.602 0.784 6.806 0.571 0.763
3 stations 11.414 0.721 0.849 0.469 0.727 0.853 5.879 0.680 0.825
5 stations 11.183 0.732 0.856 0.458 0.740 0.861 5.649 0.705 0.840
7 stations 11.093 0.736 0.858 0.452 0.747 0.864 5.569 0.713 0.844

10 stations 11.055 0.738 0.859 0.449 0.750 0.866 5.550 0.715 0.846
10 s + m 1 11.045 0.738 0.859 0.449 0.750 0.866 5.545 0.715 0.846
10 s + l 2 11.021 0.739 0.860 0.447 0.753 0.868 5.538 0.716 0.846

10 s + m + l 10.999 0.740 0.861 0.445 0.754 0.869 5.537 0.716 0.846
1 Meteorological data; 2 Land-use data.
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3.3. Mapping Citywide Air Quality at a High Resolution
3.3.1. Continuous Variations in the Short Term

Figure 5 shows the spatial and temporal distribution of PM2.5 pollution measured
continuously for 24 h (8 February 2022, a typical weekday) in Lanzhou, inferred by the best-
performing XGBoost model. According to the hourly inference results, the citywide PM2.5
concentration remained at a relatively low level between 01:00 and 07:00, which is consistent
with the fact of suspension of industrial and human activities during midnight. The PM2.5
concentration in the core area began to rise from 11:00, and at 13:00, we can clearly identify
a pollution hotspot in Xigu district and its dissipation within four hours. This pollution
hotspot inferred by our model is also consistent with a maximum observation of 136 µg/m3

and an average of 96.46 µg/m3 reported by micro stations in the area. Our results are able
to show the citywide air quality at a 500 m × 500 m × 1 h resolution, which is useful for
assessing air pollution exposure at multiple locations within a 500 m × 500 m grid. Several
studies, as well as our results, have shown that urban air quality has obvious variations
at both small temporal and spatial scales [5,8,19]. Therefore, it is of great significance
for urban fine-management and health research to infer urban air quality at the smallest
possible scale.
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3.3.2. Long-Term Distribution

Figure 6 depicts the long-term average distribution of PM2.5, CO, and SO2 pollution
in the study area inferred by our model. Obviously, there was a great difference in the
long-term distribution of air pollutants in different areas. Xigu district has a higher PM2.5
level, which may be closely related to the intensive industrial activities. In contrast,
the Anning district and the northern suburbs of the Chengguan district have a lower
PM2.5 level. For CO pollution, the Chengguan district and the southern Qilihe district
has higher pollution levels. This may be due to intensive vehicle emissions in these
areas. The SO2 pollution is mainly concentrated in the west of the Qilihe district, and
hourly concentration observation in this area also shows the same distribution trend. This
suggests that SO2 pollution is likely to be closely related to specific local emission sources.
The long-term inferred results from our method can provide important information for
urban management and policy making.
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3.3.3. More Monitors Are Always Better?

Figure 4 shows the impact of micro station distribution on inference performance
for a given grid. However, it is not clear how many deployed stations are sufficient for
a particular city to achieve acceptable performance. Therefore, we further explored the
impact of different monitoring network densities on the citywide air quality mapping
results. Specifically, we randomly selected 10%, 25%, 50%, and 75% from 448 micro
stations to map citywide PM2.5 pollution based on our model. As shown in Figure 7,
with the number of stations decreasing, the inference performance for PM2.5 pollution
gradually decreases. Specifically, it is difficult to accurately infer PM2.5 hotspots
and variations when the number of stations is 10% (less than 0.05 micro stations per
square kilometer, and still more than the number of standard stations deployed in
most cities). This is mainly because without the dense monitoring data, the model
inputs for each grid are largely similar without significant variations. This suggests
that more monitoring data are always beneficial, and there is a trade-off between the
monitoring costs and the inference accuracy, as fewer micro stations can still provide
rough inferences about the air quality variations. Therefore, for those areas in which
deploying LCS networks is considered, they can decide on the monitoring network
density based on their budget and the severity of the pollution.
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4. Discussion

In recent years, there has never been a bigger need for user-focused urban air quality
monitoring services in support of safe, healthy, and resilient cities [5,40]. Especially for
industrial cities such as Lanzhou, air quality monitoring is particularly important to guide
urban management, public decision making, and health studies. In fact, in our results,
the Xigu district is more prone to severe PM2.5 pollution than other regions, which may
be closely related to its role as an industrial cluster. This pattern of pollution distribution
has been confirmed by other studies [41,42]. There are significant differences in the long-
term distribution of multiple pollutants, which may be due to the uneven distribution
of emission sources in the city (e.g., industrial emissions are mainly from Xigu district).
For Lanzhou, as a city in northern China, the frequent heating activities in winter have a
significant influence on air quality variations. Another study in Krakow also demonstrated
this phenomenon [38]. Meanwhile, in our results, land-use information has an obvious
importance for air quality inference, which is consistent with the findings of a study on the
relationship between land use and air quality in Lanzhou city [43].

Our results show the obvious variations in urban air quality at a finer temporal and
spatial resolution, which may be closely related to the complex urban structure, human
activities, or multiple emission sources [8,44]. The high-resolution air quality inferences
may be useful for multicenter health studies with highly dense urban populations. A
variety of methods have been used for urban air quality inference, but still lack sufficient
spatio-temporal coverage, resolution, and sustainability to meet social needs [5,14,19,45].
The lack of sufficient monitoring data and stable monitoring equipment may be the reason
for this progress being hindered. In addition, compared with the dense monitoring network
in our study, it is difficult to continuously model spatial correlation of air quality between
adjacent areas due to the sparse distribution of air quality monitoring stations. Thus, they
may ignore a lot of spatial information, leading to inaccurate inference. Our method can
complement atmospheric studies to provide both a high temporal and spatial resolution of
multiple important pollutants in the city, which cannot be differentiated in previous studies.
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For urban air quality mapping, more community efforts are needed. Our method
can be applied to other similar cities or regions for air quality inference studies. They can
fine-tune our model to infer the air quality in the target city by using their monitoring data.
This is especially important for cities that do not yet have sufficient air quality monitoring
measures. In addition, we further show the impact of station deployment density on
air quality infer performance, which can provide valuable references for air pollution
management in other cities.

Urban air quality is a complex dynamic system, which is affected by many factors. In
this study, the feature importance from the XGboost algorithm is crucial for us to efficiently
select predictors that are beneficial for model inference. In future work, more potential
effects and factors (e.g., other pollutants, traffic, and points of interest (POI)) should be
further considered, which is helpful to improve the accuracy and reliability of the air quality
inferences. Furthermore, it is also worth studying the influence relationship between the
different pollutants by their inferred results.

5. Conclusions

In this paper, we proposed a method for high-resolution urban air quality mapping
based on dense monitoring data and machine learning techniques. We applied the method
in Lanzhou City using the air quality monitoring data from 448 micro stations in winter.
The results show that the XGBoost model we developed can accurately infer the spatio-
temporal distribution of and variations in urban air pollutants at a 500 m × 500 m × 1 h
resolution, with an R2 value of 0.740 for PM2.5, 0.754 for CO, and 0.716 for SO2. The inferred
short-term variations in PM2.5 missions clearly identify pollution hotspots and their tran-
sitions throughout the day. Meanwhile, the inferred long-term distribution of multiple
pollutants is significantly different, which may be due to the uneven distribution of emis-
sion sources in the city. We also compared the impact of the distance and density of
station deployment on air quality inference performance. The results indicate that more
stations are always beneficial as they provide more spatial information. However, one also
needs to consider the balance between monitoring costs and inference accuracy in real
urban management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19138005/s1, Figure S1: The distribution number of micro
stations in each administrative district; Figure S2: The regional average of air pollutant concentrations
during study period; Table S1: Air pollutants monitoring data from micro station No. 12395 on
25 October 2021; Table S2: Experiment environment; Table S3: Device parameters for air quality
monitoring; Table S4: Device performance indicators of particulate matters monitoring; Table S5:
Device performance indicators of gaseous pollutants monitoring.

Author Contributions: Conceptualization, R.G. and Q.Z.; methodology, R.G.; resources, Q.Z.; soft-
ware, Z.P. and F.W.; supervision, Q.Z.; validation, Y.Q., B.Z. and Z.P.; visualization, R.G. and S.W.;
writing—original draft, R.G.; writing—review and editing, Y.Q., B.Z., F.W. and S.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Gansu Academy of Eco-environmental Sciences of China:
Research on water quality prediction model of Yellow River Basin based on deep learning, and the
National Natural Science Foundation of China: No. 71764025.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We sincerely thank the reviewers for their helpful comments and suggestions
about our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijerph19138005/s1
https://www.mdpi.com/article/10.3390/ijerph19138005/s1


Int. J. Environ. Res. Public Health 2022, 19, 8005 14 of 15

References
1. Gharibvand, L.; Shavlik, D.; Ghamsary, M.; Beeson, W.L.; Soret, S.; Knutsen, R.; Knutsen, S.F. The Association between Ambient

Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study. Environ. Health Perspect. 2017, 125,
378–384. [CrossRef] [PubMed]

2. Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other
risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [CrossRef] [PubMed]

3. Li, X.; Jin, L.; Kan, H. Air pollution: A global problem needs local fixes. Nature 2019, 570, 437–439. [CrossRef] [PubMed]
4. World Bank. Urban Population (% of Total Population); The World Bank Group: Washington, DC, USA, 27 October 2019.

Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.in.zs (accessed on 10 April 2020).
5. Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al.

Advances in air quality research—current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [CrossRef]
6. New York State Ambient Air Monitoring Program—2021 Monitoring Network Plan. Available online: https://www.dec.ny.gov/

chemical/33276.html (accessed on 1 March 2022).
7. Li, W.; Shao, L.; Wang, W.; Li, H.; Wang, X.; Li, Y.; Li, W.; Jones, T.; Zhang, D. Air quality improvement in response to intensified

control strategies in Beijing during 2013–2019. Sci. Total Environ. 2020, 744, 140776. [CrossRef]
8. Boogaard, H.; Kos, G.P.; Weijers, E.P.; Janssen, N.A.; Fischer, P.H.; van der Zee, S.C.; de Hartog, J.J.; Hoek, G. Contrast in

air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental
composition, nitrogen oxide and ultrafine particle number. Atmos. Environ. 2011, 45, 650–658. [CrossRef]

9. Yi, X.; Zhang, J.; Wang, Z.; Li, T.; Zheng, Y. Deep distributed fusion network for air quality prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018.

10. Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.;
Jonson, J.E.; et al. The EMEP MSC-W chemical transport model–technical description. Atmos.Chem. Phys. 2012, 12, 7825–7865.
[CrossRef]

11. Gibson, M.D.; Kundu, S.; Satish, M. Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in
Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Pollut. Res. 2013, 4, 157–167. [CrossRef]

12. Zhang, L.; Yin, Y.; Chen, S. Robust signal timing optimization with environmental concerns. Transp. Res. Part C Emerg. Technol.
2013, 29, 55–71. [CrossRef]

13. Zheng, Y.; Liu, F.; Hsieh, H.-P. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013.

14. Lim, C.C.; Kim, H.; Vilcassim, M.R.; Thurston, G.D.; Gordon, T.; Chen, L.-C.; Lee, K.; Heimbinder, M.; Kim, S.-Y. Mapping
urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea. Environ. Int. 2019,
131, 105022. [CrossRef]

15. Qi, Z.; Wang, T.; Song, G.; Hu, W.; Li, X.; Zhang, Z.M. Deep Air Learning: Interpolation, Prediction, and Feature Analysis of
Fine-Grained Air Quality. IEEE Trans. Knowl. Data Eng. 2018, 30, 2285–2297. [CrossRef]

16. Schmitz, O.; Beelen, R.; Strak, M.; Hoek, G.; Soenario, I.; Brunekreef, B.; Vaartjes, I.; Dijst, M.J.; Grobbee, D.E.; Karssenberg, D.
High resolution annual average air pollution concentration maps for the Netherlands. Sci. Data 2019, 6, 190035. [CrossRef]
[PubMed]

17. Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-
based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019,
130, 104909. [CrossRef]

18. Shtein, A.; Kloog, I.; Schwartz, J.; Silibello, C.; Michelozzi, P.; Gariazzo, C.; Viegi, G.; Forastiere, F.; Karnieli, A.; Just, A.C.; et al.
Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ. Sci. Technol. 2019, 54, 120–128. [CrossRef]

19. Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.; Vermeulen, R.C.;
Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol.
2017, 51, 6999–7008. [CrossRef]

20. Christopher, S.A.; Gupta, P. Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem. J. Air Waste
Manag. Assoc. 2010, 60, 596–602. [CrossRef]

21. Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi,
P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use
random-forest model. Environ. Int. 2019, 124, 170–179. [CrossRef]

22. Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt,
U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop
Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [CrossRef]

23. Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method
to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ.
2018, 636, 52–60. [CrossRef]

24. Xiao, Q.; Geng, G.; Cheng, J.; Liang, F.; Li, R.; Meng, X.; Xue, T.; Huang, X.; Kan, H.; Zhang, Q.; et al. Evaluation of gap-filling
approaches in satellite-based daily PM2.5 prediction models. Atmos. Environ. 2020, 244, 117921. [CrossRef]

http://doi.org/10.1289/EHP124
http://www.ncbi.nlm.nih.gov/pubmed/27519054
http://doi.org/10.1093/cvr/cvaa025
http://www.ncbi.nlm.nih.gov/pubmed/32123898
http://doi.org/10.1038/d41586-019-01960-7
http://www.ncbi.nlm.nih.gov/pubmed/31239571
https://data.worldbank.org/indicator/SP.URB.TOTL.in.zs
http://doi.org/10.5194/acp-22-4615-2022
https://www.dec.ny.gov/chemical/33276.html
https://www.dec.ny.gov/chemical/33276.html
http://doi.org/10.1016/j.scitotenv.2020.140776
http://doi.org/10.1016/j.atmosenv.2010.10.033
http://doi.org/10.5194/acp-12-7825-2012
http://doi.org/10.5094/APR.2013.016
http://doi.org/10.1016/j.trc.2013.01.003
http://doi.org/10.1016/j.envint.2019.105022
http://doi.org/10.1109/TKDE.2018.2823740
http://doi.org/10.1038/sdata.2019.35
http://www.ncbi.nlm.nih.gov/pubmed/30860500
http://doi.org/10.1016/j.envint.2019.104909
http://doi.org/10.1021/acs.est.9b04279
http://doi.org/10.1021/acs.est.7b00891
http://doi.org/10.3155/1047-3289.60.5.596
http://doi.org/10.1016/j.envint.2019.01.016
http://doi.org/10.1016/j.envint.2019.104934
http://doi.org/10.1016/j.scitotenv.2018.04.251
http://doi.org/10.1016/j.atmosenv.2020.117921


Int. J. Environ. Res. Public Health 2022, 19, 8005 15 of 15

25. Xiao, Q.; Chang, H.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model to Predict Historical PM2.5 Concentrations in China
from Satellite Data. ISEE Conf. Abstr. 2018, 2018. [CrossRef]

26. Lyu, B.; Hu, Y.; Zhang, W.; Du, Y.; Luo, B.; Sun, X.; Sun, Z.; Deng, Z.; Wang, X.; Liu, J.; et al. Fusion method combining
ground-level observations with chemical transport model predictions using an ensemble deep learning framework: Application
in China to estimate spatiotemporally-resolved PM2.5 exposure fields in 2014–2017. Environ. Sci. Technol. 2019, 53, 7306–7315.
[CrossRef] [PubMed]

27. Gui, K.; Che, H.; Zeng, Z.; Wang, Y.; Zhai, S.; Wang, Z.; Luo, M.; Zhang, L.; Liao, T.; Zhao, H.; et al. Construction of a virtual
PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient
Boosting model. Environ. Int. 2020, 141, 105801. [CrossRef]

28. Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova,
O.V.; Kahn, R.A.; et al. Global estimates and long-term trends of fine par-ticulate matter concentrations (1998–2018). Environ.
Sci. Technol. 2020, 54, 7879–7890. [CrossRef] [PubMed]

29. Jiang, T.; Chen, B.; Nie, Z.; Ren, Z.; Xu, B.; Tang, S. Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in
China using a two-stage random forest model. Atmos. Res. 2020, 248, 105146. [CrossRef]
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