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Abstract: Variations in marine and terrestrial geographical environments can cause considerable
differences in meteorological conditions, economic features, and population density (PD) levels
between coastal and inland cities, which in turn can affect the urban air quality. In this study, a
five-year (2016–2020) dataset encompassing air monitoring (from the China National Environmental
Monitoring Centre), socioeconomic statistical (from the Shandong Province Bureau of Statistics) and
meteorological data (from the U.S. National Centers for Environmental Information, National Oceanic
and Atmospheric Administration) was employed to investigate the spatiotemporal distribution
characteristics and underlying drivers of urban ozone (O3) in Shandong Province, a region with both
land and sea environments in eastern China. The main research methods included the multiscale
geographically weighted regression (MGWR) model and wavelet analysis. From 2016 to 2019, the
O3 concentration increased year by year in most cities, but in 2020, the O3 concentration in all cities
decreased. O3 concentration exhibited obvious regional differences, with higher levels in inland
areas and lower levels in eastern coastal areas. The MGWR analysis results indicated the relationship
between PD, urbanization rate (UR), and O3 was greater in coastal cities than that in the inland
cities. Furthermore, the wavelet coherence (WTC) analysis results indicated that the daily maximum
temperature was the most important factor influencing the O3 concentration. Compared with NO,
NO2, and NOx (NOx ≡ NO + NO2), the ratio of NO2/NO was more coherent with O3. In addition,
the temperature, the wind speed, nitrogen oxides, and fine particulate matter (PM2.5) exerted a
greater impact on O3 in coastal cities than that in inland cities. In summary, the effects of the various
abovementioned factors on O3 differed between coastal cities and inland cities. The present study
could provide a scientific basis for targeted O3 pollution control in coastal and inland cities.

Keywords: ozone; coastal and inland cities; spatiotemporal distribution; wavelet analysis; multiscale
geographically weighted regression

1. Introduction

Ozone (O3) is a typical secondary pollutant gas produced via photochemical oxidation
reactions [1]. Recently, O3 pollution has received profound attention in China. Through
various efforts over the past few years, the concentration of fine particulate matter (PM2.5)
has been effectively controlled in most parts of China, but O3 pollution is increasing [2,3].
From 2016 to 2020, the proportion of Chinese cities at the prefecture level and above with
the daily maximum 8-h average (DMA8) O3 concentration exceeding the national secondary
standard (160 µg/m3) was 17.5%, 32.3%, 34.6%, 30.6%, and 16.6% [4–8]. Many previous
studies have examined O3 pollution in the North China Plain, Yangtze River Delta, and
Pearl River Delta [9–17]. When a certain O3 concentration is exceeded, this can exert an
adverse impact on the ecological environment, food safety, human health, and climate

Int. J. Environ. Res. Public Health 2022, 19, 9687. https://doi.org/10.3390/ijerph19159687 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19159687
https://doi.org/10.3390/ijerph19159687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph19159687
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19159687?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 9687 2 of 19

change [18–25]. Therefore, the Chinese government issued relevant policies in 2020 to
promote the prevention and control of O3 pollution [26].

Volatile organic compounds (VOCs) and nitrogen oxides (NOx ≡ NO + NO2) are
precursors of O3 [27]. Many studies have explored the relationship, photochemical reaction
mechanism, and influence factors between O3 and its precursors [28–33]. Meteorological
conditions are important factors of O3 generation and transmission. Radiation enhance-
ment, temperature increase, and sunshine time extension facilitate O3 generation, while
a high relative humidity reduces O3 [3,34–36]. In addition to meteorological conditions,
there may also be a relationship between socioeconomic factors and the spatial distribution
of air pollution [37]. Many studies have analyzed the correlation between PM2.5 and so-
cioeconomic factors [38,39]. However, there is little research on the socioeconomic factors
of O3. Even more notably, few studies have examined the combined impact of the O3
precursors, meteorological conditions, and socioeconomic factors on O3 pollution from a
spatiotemporal perspective. These influencing factors may have different effects in different
regions, which is worth exploring.

The difference in thermal conditions between land and oceans results in distinct
climates between inland and coastal areas. Coupled with differences in the geographical
environment, there could occur a comprehensive effect leading to different economic
development and population distributions between inland and coastal areas. Within
the context of global warming, the contrast between land and ocean warming levels is
increasing (land warming enhanced), which intensifies aerosol pollution [40]. Considering
that the influence of various factors on the O3 concentration in coastal and inland cities
may differ, it is therefore necessary to evaluate these differences.

The multiscale geographically weighted regression (MGWR) model is an extension
of the geographically weighted regression (GWR) model, which is commonly used in the
analysis of spatial influencing factors [41]. The MGWR model considers that different
spatial scales exert different effects of the action mode and intensity on the spatial relation-
ship between the considered factors and dependent variables, so it can explore the spatial
heterogeneity of influencing factors [41]. MGWR has been widely used in the environmen-
tal field, such as PM2.5, PM10, NO2, and other air pollutants [42–44]. Zhan et al. (2022)
has examined the spatial heterogeneity effects of both socioeconomic factors and natural
factors on continuous air pollution with a MGWR [45]. Thus, we attempted to analyze
the underlying drivers affecting the spatial distribution of O3 and its spatial heterogeneity
from socioeconomic aspects using MGWR.

Wavelet analysis was developed based on the Fourier transform [46]. The wavelet
transform extends time series into the time–frequency space to overcome the limitations
of the Fourier transform [47]. Wavelet analysis is a powerful analysis tool highly suitable
to study nonstationary processes in the finite space–time domain [46,48]. This method
has been widely applied in geophysics, economics, and public health research [49–56].
Therefore, this study will explore the potential drivers affecting the spatial distribution
of O3 from the perspective of meteorological conditions and other air pollutants through
wavelet analysis (wavelet coherence (WTC)).

Shandong Province is located in eastern China, bordering the Bohai Sea and Yellow
Sea. There occur both typical coastal cities and typical inland cities due to the large
east–west span. In addition, Shandong Province ranks third in terms of its economy
and second in terms of its population in China. The well-developed economy, large
population, and high consumption of resources have caused serious air pollution, including
O3 pollution, in this area. Based on the above, we reasonably assume that the differences
in the socioeconomic and natural environment of Shandong Province lead to significant
differences in O3 concentrations between coastal and inland areas, and the influence
of various factors in different cities is different. This study will first attempt to combine
MGWR and wavelet analysis to explore the influence of various factors on O3 from multiple
perspectives, so as to identify the key factors influencing the O3 distribution. This study
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can provide the Chinese government with a more targeted reference for the treatment of
O3 pollution in coastal and inland cities.

2. Data and Methods
2.1. Study Area

Shandong Province is located between 34◦22.90′~38◦24.01′ N and 114◦47.50′~122◦

42.30′ E (Figure 1). The region contains a complex, diverse terrain, and a long coastline, with
four typical coastal cities: Qingdao, Yantai, Weihai and Rizhao. Shandong Province exhibits
four distinct seasons, belonging to the warm temperate monsoon climate. The weather
is changeable in spring, with less rain and windy sand-prone conditions. In summer,
controlled by the southeast marine monsoon, southerly winds prevail. In autumn, the
weather is sunny and moderate. Winter is controlled by the continental monsoon climate,
mostly involving northerlies. The mountains in the central part of the territory are raised,
which comprise mountains with an altitude higher than a kilometer, such as Mount Tai,
Mount Lu, Mount Yi, and Mount Meng. The surrounding areas gradually transition from
low mountains and hills into plains.
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2.2. O3 and Other Air Pollutants Data

The DMA8 O3 concentration and the 24-h average concentrations of NO, NO2, NOx,
PM2.5, and respirable particles (PM10) were considered in this study. Data pertaining to 16
cities in Shandong Province from 1 January 2016, to 31 December 2020, were obtained from
the China National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/,
accessed on 13 September 2021). The annual O3 concentration is defined as the 90th
percentile of DMA8 O3 concentration [57]. O3 monitoring and recording were carried out
in strict accordance with Chinese national standards [58]. The data statistical validity of
each evaluation project was implemented in accordance with the relevant provisions of the
Chinese national standard [59].

http://www.cnemc.cn/
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2.3. Socioeconomic and Meteorological Data

The socioeconomic data were derived from the statistics, including data on the popula-
tion, gross domestic product (GDP), industrial power consumption, and number of civil ve-
hicles (NCV) for 16 cities from 2016 to 2020 [60–64]. We also compiled the daily meteorologi-
cal data from National Oceanic and Atmospheric Administration (NOAA) National Centers
for Environmental Information (https://www.ncei.noaa.gov/maps/global-summaries/,
accessed on 5 September 2021). The meteorological monitoring sites are located in Jinan
(116.9833◦ E, 36.6833◦ N) and Qingdao (120.3744◦ E, 36.2661◦ N). The specific monitor-
ing items include average wind speed (WDSP, m/s), maximum continuous wind speed
(MXSPD, m/s), maximum temperature (MAX, ◦C), and average temperature (TEMP, ◦C).

2.4. Methods and Mechanism

We used ArcGIS to visualize the spatiotemporal variation characteristics of O3 con-
centration in Shandong Province from 2016 to 2020 and conduct hot spot analysis. OLS
analysis was performed in R 4.0.5 invented by Rose Ihaka and Robert Gentleman of New
Zealand. The GWR and MGWR models were implemented in MGWR 2.2 provided by
the School of Geographical Sciences and Urban Planning at Arizona State University
(https://sgsup.asu.edu accessed on 5 September 2021). Wavelet analysis was performed
using publicly available MATLAB code.

2.4.1. GWR and MGWR

The GWR model is a new method to incorporate spatial correlation into a regression
model, which allows regression coefficients to vary in space [41]. The expression of GWR
model is as follows:

yi = β0(ui, vi) + ∑
j

β j(ui, vi)xij + εi (1)

where (ui, vi) denotes the spatial coordinates of the ith observation point, β (ui, vi) is the
regression coefficient of the jth independent variable at the ith observation point, β0 (ui, vi)
is the intercept of the model at the ith observation point, and ei is the error term.

The MGWR model is an extension of the GWR model [41]. The largest difference
between these models is the bandwidth. All variables in the GWR model exhibit the
same bandwidth. However, the MGWR model specifies a dedicated bandwidth for each
variable, thus reducing estimation errors and ensuring a more realistic and useful spatial
process model. Different bandwidths can reveal the scale effect of different factors on
O3 concentration changes. Generally, the larger the bandwidth is, the lower the spatial
heterogeneity [44]. The calculation equation is as follows:

yi = β0(ui, vi) + ∑
j

βbwj(ui, vi)xij + εi (2)

where (ui, vi) denotes the coordinates of position i, bwj denotes the bandwidth considered
by the regression coefficient of the jth variable, and βbw j(ui, vi) is the regression coefficient
of the jth variable at i.

2.4.2. Wavelet Analysis

Wavelet analysis is based on Fourier analysis. Elucidation of the localization character-
istics of the analyzed object in the time and frequency domains constitutes the advantage
of wavelet analysis [65]. The continuous wavelet transform (CWT) method entails wavelet
superposition of different scales and displacement levels [66]. One frequently applied
wavelet function is the Morlet wavelet, which is also adopted in this paper. Based on two
CWTs, Grinsted et al. (2004) constructed the cross-wavelet transform (XWT), which exposes
the high common power and relative phase in time–frequency space [67]. The XWT of two
time series xn and yn is denoted as WXY, and the cross-wavelet power is denoted as |WXY|.

https://www.ncei.noaa.gov/maps/global-summaries/
https://sgsup.asu.edu
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The complex argument arg(WXY) can be interpreted as the local relative phase between xn
and yn in time–frequency space and is given as follows:

φ(s, t) = tan−1(Im
(↔

W
y,x

(s, t)
)

/Re
↔
W

y,x
(s, t)) (3)

where
↔
W

y,x
(s, t) is the matrix of the smoothed cross-wavelet power spectra between xn

and yn and Im and Re denote the imaginary and real parts, respectively, of
↔
W

y,x
(s, t) [51].

The phase angle can be determined to analyze the variation relationship (lag or consistent
change) between two time series [49]. Consequently, left- and right-pointing phase angles
indicate antiphase and in-phase relationships, respectively.

WTC analysis can be employed to study the correlation between two data series in
time–frequency space. The WTC can significantly enhance the linear relationship and
determine the covariance intensity between two time series [49,51]. Grinsted et al. (2004)
defined the WTC of two time series as follows:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
·S
(

s−1|WX
n (s)|2

) (4)

where S is a smoothing operator and WX and WY are the CWTs of xn and yn, respectively.
R2 ranges from 0 to 1.

S(W) = Sscale(Stime(Wn(s))) (5)

where Sscale denotes the smoothing level along the wavelet scale axis and Stime denotes the
smoothing level in time.

2.5. Choice of Two Typical Cities

Qingdao is the most economically well-developed city in Shandong Province, and
Jinan is the capital city of Shandong Province. Furthermore, Qingdao is a coastal city, while
Jinan is an inland city (Figure 1). There are great geographical differences between these
cities. Thus, this study chose Jinan and Qingdao as typical representative cities to explore
the differences of the time–frequency relationship between O3 and meteorological factors
and other air pollutants between coastal and inland cities.

3. Results and Discussion
3.1. Spatiotemporal Distribution Characteristics of O3

The annual O3 concentration changes in 16 cities in Shandong Province are shown in
Figure 2. Significant spatiotemporal variations in the O3 distribution were observed. Over
the past five years, only three cities in Shandong saw a slight decrease in O3 concentration in
2020, while the other 13 cities saw an increase. The growth range of the O3 concentration in
the 13 cities was 2.42~49.60%, with an average increase of 15.40%. From 2016 to 2019, the O3
concentration in most cities increased year by year. An important reason for the observed
increase could be enhancement in anthropogenic precursors. However, in 2020, the O3
concentration was reduced due to strict control measures implemented by the Chinese
government and the COVID-19 pandemic. The same trend is also shown in Figure 3,
which indicates the annual changes in the O3 concentration attainment rate in each city.
The standard II concentration limit of the DMA8 O3 concentration is 100 µg/m3, which
is consistent with the air quality guideline (AQG) level of the World Health Organization
Global Air Quality Guidelines (WHOGAQG) [68]. The standard II concentration limit of
the DMA8 O3 concentration is 160 µg/m3, which is consistent with the interim target 1 level
of the WHOGAQG [68]. From 2016 to 2020, the proportion of the number of days when the
O3 concentration reached standard I in Shandong Province was 60.55%, 55.92%, 51.61%,
46.61%, and 49.62%, respectively. The number of days when the O3 concentration reached
standard II accounted for 90.83%, 87.00%, 84.47%, 79.95%, and 85.11%, respectively. The
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most serious O3 pollution occurred in 2019, with 53.39% and 21.05% exceeding standard I
and standard II, respectively. Only three coastal cities (Qingdao: 207/365; Rizhao: 188/365;
Yantai: 187/365) exhibited more than half of the total number of days with the concentration
reaching standard I.
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Moreover, there were obvious differences in the O3 distribution between inland and
coastal areas. The O3 concentration in the inland areas (central and northwestern Shandong)
was higher than that on the Jiaodong Peninsula (mainly coastal cities), which is consistent
with Yao et al. (2019) [69]. This study further explored the spatial distribution characteristics
of O3 through hot spot analysis (Figure 4). O3 cold spot areas were located in Qingdao,
Yantai and Weihai. In addition, O3 high risk areas expanded from Jinan in 2016 to Jinan
and surrounding areas in 2020, including Dezhou, Binzhou and Zibo.
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3.2. Socioeconomic Impacts

In this study, redundant factors were eliminated according to the variance inflation fac-
tor (VIF) value (VIF < 7.5) of the ordinary least squares (OLS) model. VIF is a multicollinear-
ity test method. The closer the VIF value is to 1, the lighter the multicollinearity is, and vice
versa. Seven factors were selected: time, population density (PD, 10,000 people·hm−2),
urbanization rate (UR, %), proportion of the secondary industry (PSI, %), output value of
farming, forestry, animal husbandry and fishery (OFFAF, CNY), industrial power consump-
tion (IPC, Billion kW·h), and NCV (unit). We tried to use PD to describe the population
distribution, UR to represent the level of regional economic development, PSI to show the
industrial structure, OFFAF to represent the development level of the primary industry,
IPC to mean the industrial emissions of ozone, and NCV to represent the motor vehicle
emissions of ozone. Three models, namely, OLS, GWR, and MGWR models, were employed
to explore the socioeconomic relationship between these factors and the O3 concentration.

According to the corrected AICc, R2 and adj-R2 values of these three models (Table 1),
the MGWR model achieved the best fitting effect. Compared with the OLS model, the R2

and adj-R2 values of the GWR and MGWR were greatly improved. But MGWR can more
truly reflect the relationship between socioeconomic factors and O3 than GWR because the
bandwidth of the MGWR model is variable, while the bandwidth of the GWR model is
fixed. The MGWR model can reflect the spatial difference of the relationship between the
independent variable and the dependent variable.
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Table 1. Regression results of the ordinary least squares (OLS) model, the geographically weighted
regression (GWR) model, and the multiscale geographically weighted regression (MGWR) model.
C is coefficient; Max is maximum value of coefficient; Mean is average value of coefficient; Min is
minimum value of coefficient; AICc (Akaike information criterion) is a correction for small sample
sizes, the smaller the value, the higher the goodness of fit.

Factors
OLS GWR MGWR

C P VIF Max Mean Min Max Mean Min Bandwidth

Time 0.577 0.000 1.471 0.752 0.507 0.275 0.534 0.481 0.441 71
PD 0.294 0.032 1.963 0.495 0.096 −0.367 0.135 0.079 0.054 71
UR −0.249 0.032 1.394 0.282 −0.097 −0.460 0.158 −0.065 −0.362 62
PSI 0.336 0.029 2.458 0.821 0.214 −0.142 0.149 0.135 0.125 71

OFFAF −0.092 0.544 2.361 0.170 −0.079 −0.368 0.158 0.003 −0.081 57
IPC 0.180 0.119 1.377 0.351 0.058 −0.181 0.155 0.012 −0.064 57

NCV −0.010 0.954 3.050 0.305 −0.001 −0.166 −0.026 −0.057 −0.087 71
AICc 218.54 180.85 171.102

R2 0.305 0.683 0.700
Adj. R2 0.237 0.599 0.630

Bandwidth 62

According to the OLS results (Table 1), there was a significant correlation between Time,
PD, UR, PSI, and O3. Combined with Figures 2 and 3, the O3 concentration had a distinct
increasing trend from 2016 to 2020. The effects of PD and PSI on the O3 concentration were
positive across the whole province. An increase in PD and PSI could lead to an increase
in the O3 concentration to varying degrees. Densely populated areas contributed more
to O3 due to the consumption of many resources as fuel [70]. Cities with high industrial
proportions produced more O3 precursors, resulting in higher O3 concentration. In most
areas of Shandong Province, especially in coastal areas, there existed a stronger negative
correlation between UR and the O3 concentration. This is because coastal cities had a
high degree of urbanization, but their O3 concentration was low because of low emissions
and favorable diffusion conditions. OFFAF, IPC, and NCV slightly affected O3 and the
relationship between them was not significant. Figure 5 indicates that compared with
vehicle exhaust emissions, industrial emissions contributed more in the south of Shandong
Province. The socioeconomic environment had a certain and extremely complex impact
on the formation of O3. Greater population density and higher industrialization levels
may lead to more O3 precursors. In addition, due to the implementation of air pollution
prevention and control policies, the areas with higher economic development levels are
willing to invest higher more in air pollution control and better treatment effects. Notably,
Lee et al. (2021) found that the number of houses, number of parking lots, and area of
reconstruction projects were positively correlated with O3 rates [71].

In this study, the effects of the mode and intensity of Time, PD, PSI, and NCV on the
change in O3 concentration were roughly similar on a large spatial scale, and the spatial
relationship tended to remain stable (bandwidth is 71). The spatial heterogeneity in the
impact of UR, OFFAF, and IPC on the O3 concentration was high (bandwidths are 62, 57,
and 57 respectively). What is more, Figure 5 shows the relationship between PD, UR, and
O3 is greater in coastal cities than that in the inland cities.

As a secondary air pollutant, processes leading to variations in surface O3 are complex
because they are impacted by natural and human factors. The impact of socioeconomic
conditions on O3 is only a small part, while the meteorological environment has a greater
impact on O3. Therefore, it is difficult to explain the O3 variations simply by socioeconomic
statistics. To this end, we used meteorological and other air pollution data in the next
section to further analyze its impact on O3.
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3.3. Impact of Other Air Pollutants and Meteorological Factors
3.3.1. Wavelet Power Spectrum of O3 in Jinan and Qingdao

The area enclosed by the black line in the Figure 6 indicates that the periodicity within
the time series is significant. There occurred an obvious annual cycle in Qingdao and
Jinan. The O3 concentrations in those two cities frequently fluctuated in summer (June to
August) and autumn (September to November). In addition, the Qingdao O3 concentration
exhibited a moderate cycle of approximately 150 days from 2016 to 2019. This indicates
that double peaks occurred in the O3 concentration change in Qingdao, one peak in May or
June and the other peak in September (Supplementary Figure S1). Affected by the summer
monsoon climate, Qingdao is rainy in July and August. This led to a significant decline in
the O3 concentration in summer due to lack of light [34,72].

3.3.2. Wavelet Coherence Coefficient

In this study, NO, NO2, NOx, NO2/NO, PM10, PM2.5, WDSP, MXSPD, TEMP, and
MAX were selected to explore the corresponding time–frequency relationship with O3.
The arithmetic mean value of the WTC coefficient (ARsq) is provided in Table 2. In
summary, the variation in O3 in Qingdao was more closely related to other air pollutants
than that in Jinan. Perhaps it is because Qingdao is greatly affected by the Yellow Sea,
unlike Jinan, which is affected by many surrounding cities (Supplementary Figure S2).
The time–frequency relationship between O3 and other gas pollutants in Jinan was more
complex. Among the meteorological elements, the coherence between the temperature
and O3 in Jinan was higher than that in Qingdao, while the coherence between the wind
speed and O3 in Qingdao was relatively higher. Previous studies have reported that O3
generation largely depends on high temperatures and strong solar radiation [3,73]. Jinan’s
temperature fluctuated more greatly than that in Qingdao because Jinan is located far from
the ocean. As a result, O3 in Jinan was more vulnerable to the temperature. The wind speed
notably impacted O3 in Qingdao due to the prevalence of sea and land breezes. The daily
maximum temperature exerted the strongest impact on O3 in Jinan and Qingdao, followed
by NO2/NO. Li et al. (2020) also believes that high temperature is the main meteorological
driver in summer. In contrast to Jinan, PM2.5 had a greater impact on O3 in Qingdao [73].
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Table 2. ARsq (wavelet coherence coefficient) of meteorological conditions and other air pollutants
with O3.

NO NO2 NOx NO2/NO PM2.5 PM10 WDSP MXSPD TEMP MAX

Jinan 0.397 0.406 0.404 0.488 0.446 0.458 0.401 0.387 0.604 0.628
Qingdao 0.435 0.412 0.419 0.527 0.509 0.454 0.418 0.403 0.519 0.544

3.3.3. Time Frequency and Phase Relationship between O3 and Other Air Pollutants

(1) NO, NO2, NOx, and NO2/NO. In the annual cycle, nitrogen oxides (including NO,
NO2, and NOx) and O3 attained an inverse phase relationship, in which the value/phase
of one parameter increased and that of the other parameter decreased (Figure 7). NO
and O3 exhibited an inverse phase relationship with a short period (less than 14 days).
This may occur as a result of NO titration reaction (R1). NO2 and O3, NOx and
O3 mostly attained a positive phase relationship in summer and an inverse phase
relationship in winter in the short period. O3 production in winter was generally
in the NOx-saturated regime that high NOx concentration restrains O3 formation.
Simultaneously, high NO emissions titration contributed to a reduction in O3 [11]. In
summer, O3 was in the NOx-limited regime that the increase of NO2 was conducive to
O3 formation (R2). Xia et al. (2021) similarly showed that the daily O3 concentration
is higher when the daily NO2 concentration is higher in summer [36]. In addition to
NOx, VOCs are also important precursors for O3 formation, which readily affect the
variation of O3 concentration in winter [74–76]. However, VOCs were not regarded as
an influencing factor in this paper. The unexplained part of the figure may be mainly
attributed to VOCs.
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NO + O3—→NO2 R1

NO2 + O2 + hv—→NO + O3 R2

In order to further clarify the relationship between NOx and O3, wavelet coherence
analysis of NO2/NO and O3 was performed (Figure 7). As can be seen from the Table 2 and
Figure 7, the coherence between NO2/NO and O3 was stronger than that of NO, NO2, and
NOx. There was an obvious annual cycle between the NO2/NO ratio and O3. In the annual
cycle, the NO2/NO ratio and O3 concentration in Jinan changed at the same time, while
the arrow in Qingdao gradually tilted downward, indicating that the NO2/NO ratio had
fluctuated before O3 in Qingdao since 2018. In the short cycle, NO2/NO ratio had strong
coherence with O3 from May to July, and both increased simultaneously. This is consistent
with the findings of Shao et al. (2009) and Wang et al. (2019) that the O3 concentration
increases with the NO2/NO ratio [28,74]. In spring, O3 shifted from the NOx-saturated
regime to the NOx-limited regime due to NOx concentration decrease (NO2 gradually
decreased, while NO plummeted). The magnitude of each change of NO2 concentration in
spring and summer was greater than that of NO (Supplementary Figure S3). Therefore, the
increase of NO2 concentration not only promoted the formation of O3, but also led to the
increase of NO2/NO ratio. Wang et al. (2018) believe that NO titration is generally more
significant on high-O3 days, which further leads to an increase in the NO2/NO ratio [77].
Similarly, the reduction of NO2 concentration inhibits the formation of O3. During the
transitional stage between the NOx-saturated regime and the NOx-limited regime (spring
and autumn), the changes in NO2/NO ratio and O3 were reversed. This phenomenon
was prominent in Jinan during the transition from NOx-saturated to NOx-limited (April
and May), while Qingdao was more significant in the transition from NOx-limited to NOx-
saturated (October). The concentration of NO2 decreased gradually in spring, resulting
in the decrease of the NO2/NO ratio. O3 was weakened by NOx limitation, and its
concentration gradually increased under favorable meteorological conditions (temperature
rise and light enhancement). Li et al. (2021) also reached the same conclusion that the
increase in O3 observed in spring is driven by the reduction of NOx emissions [11]. In
October, the ozone concentration in Qingdao was still at a high level. Under the condition
of high concentration of NO2, high temperature and strong radiation, the concentration
of O3 increases. The consumption of NO2 reduces the NO2/NO ratio, so that NO2/NO
showed the opposite relationship with O3.

(2) PM10 and PM2.5. Particulate matter (PM) (including PM10 and PM2.5) fluctuate
frequently in winter and spring in Jinan and Qingdao. The phase trend of PM
with O3 was inclined to the left during the annual cycle, indicating that PM and O3
exhibited an inverse phase relationship, and the change in O3 preceded that in PM
(Figure 7). In the short term (1~30 days), PM2.5 and O3 revealed opposite phases in
winter and spring but the same phase in summer. In winter and spring, the PM2.5
concentration was high due to the increase in energy consumption (heating). An
ultrahigh PM2.5 concentration could lead to light radiation weakening, which could
reduce O3 production. In addition, PM2.5 scavenges HO2 and NOx radicals, resulting
in O3 reduction [78]. O3 production is high in summer due to the high temperatures
and strong solar irradiation. The PM concentration was low in summer. When the
PM2.5 concentration increases to a certain extent, this could enhance the photochemical
reactions of O3 [36]. PM10 attained a similar periodic relationship with O3. In this
study, the relationship between PM and O3 in summer was closer in coastal areas.
This is consistent with the findings of Xia et al. (2021) that the daily maximum PM2.5
concentration has a greater impact on the daily maximum O3 concentration [36].
While Hu et al. (2021) and Wang et al. (2020) both showed that PM10 has a much
greater impact on O3 than PM2.5 due to different data accuracy and study area [14,79].
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3.3.4. Time Frequency and Phase Relationship between O3 and Meteorological Factors

(1) Wind speed. Short-term (1~30 days) in-phase variation between WDSP and O3 in
Jinan mostly occurred in winter and spring (Figure 8). The low temperature and low
light in winter and spring lead to less O3 production. The observed increase in the
O3 concentration probably occurred due to external transport. When the wind speed
is high, exogenous O3 may be transported. This could cause an O3 increase in Jinan.
Affected by sea and land winds, a complex correlation existed between WDSP and O3
in Qingdao. Sea breezes can not only lead to the accumulation of land air pollutants
but can also lead to pollutant diffusion and transport [17]. This could result in the
absence of obvious short-term coherence between WDSP and O3. In addition to WDSP,
an obvious annual cycle was observed between MXSPD and O3. The corresponding
phase relationship trended downward, indicating that the change in O3 preceded that
in the wind speed. High wind speeds occur in winter and spring in both Qingdao
and Jinan. In contrast, the O3 concentration is low in winter and spring.

(2) Temperature. TEMP and O3 attained a high correlation over the annual cycle. Over
the annual cycle, the trend was inclined upward, indicating that O3 change lagged
behind that in TEMP. This is because the temperature rises slowly in spring, and the
O3 concentration gradually increases thereafter. In the short term (within 14 days),
mostly the same phase was observed. This indicates that O3 and TEMP simultaneously
increased or decreased. A high temperature and notable radiation results in a high
O3 production rate. The time–frequency relationship between O3 and MAX was the
same as that between O3 and TEMP. However, the ARsq value between O3 and MAX
(JN: 0.6283; QD: 0.5444) was higher than that between O3 and TEMP (JN: 0.5037;
QD: 0.5185), which is consistent with Zhao et al. (2020) [3]. This may occur because
the O3 concentration was the highest in the afternoon, and the highest temperature
throughout the day also occurred in the afternoon [3.36]. Compared with Jinan,
Qingdao attained a lower coherence between O3 and temperature.

3.4. Limitations

However, the present study also suffers certain uncertainties and limitations. It
is widely acknowledged that VOCs are some of the most important precursors for O3
generation. Unfortunately, due to the lack of available high-resolution VOC data, this study
did not comprehensively evaluate the possible impact of VOCs on the spatiotemporal
distribution of O3. The analyzed O3 data encompassed the average values of urban internal
monitoring data according to Chinese national standard HJ 663-2013, while the obtained
meteorological data included single-point data. Therefore, the spatial matching results
of the meteorological and O3 data were not completely consistent, which could lead to
deviations in the analysis results in regard to the time–frequency relationship between O3
and meteorological parameters.
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4. Conclusions

The combination of MGWR and wavelet analysis is excellent in exploring the effects of
O3 distribution from multiple perspectives. This is an innovative aspect of this study, which
has not been seen in previous studies. There were significant spatiotemporal differences in
the O3 distribution in Shandong Province. On the one hand, the O3 concentration increased
annually from 2016 to 2019 but declined in 2020 under the influence of China’s strict O3
pollution cleanup policies and the global COVID-19 pandemic. On the other hand, the O3
concentration in inland areas (namely, central, and northwestern Shandong) was higher,
whereas that in eastern coastal areas was lower. In general, PD, UR, the wind speed (WDSP
and MXSDP), nitrogen oxides, and PM2.5 generated a greater impact on O3 in a coastal city
(Qingdao, China) than that in an inland city (Jinan, China). Whether coastal or inland cities,
the ratio of NO2/NO was more coherent with O3 than that NO, NO2, and NOx.

In summary, the reasons for the observed increase in the O3 concentration in winter
include the following: 1. reduction in nitrogen oxides; 2. reduction in the particle con-
centration; 3. transport of exogenous pollutants (VOCs and O3) under the action of wind;
4. temperature rise. The observed O3 concentration increase in summer is attributed to the
high temperature, PM refraction and increase in nitrogen oxides. And the reasons for the
decrease in O3 concentration in summer include rainfall, the NO titration reaction, and
reduction of NO2.

Nevertheless, China is located in eastern Asia and the west coast of the Pacific Ocean,
with many important coastal and inland cities. Therefore, clarification of the differences
in the main driving factors of O3 between coastal and inland cities could enhance our
understanding of O3 pollution and improve the performance of O3 prediction models. In
addition, it would enable the Chinese government better control O3 pollution. Regional
O3 pollution is a comprehensive reflection of the environment, society, economy, and
development, and strengthening the leadership role of the government is therefore of
crucial importance.
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