
Citation: Zeng, L. The Driving

Mechanism of Urban Land Green

Use Efficiency in China Based on the

EBM Model with Undesirable

Outputs and the Spatial Dubin

Model. Int. J. Environ. Res. Public

Health 2022, 19, 10748. https://

doi.org/10.3390/ijerph191710748

Academic Editor: Yongli Cai

Received: 23 June 2022

Accepted: 22 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

The Driving Mechanism of Urban Land Green Use Efficiency in
China Based on the EBM Model with Undesirable Outputs and
the Spatial Dubin Model
Liangen Zeng

College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; zengliangen@pku.edu.cn

Abstract: Green development is necessary for building a high-quality modern economic system.
The contribution of the article mainly includes the following three parts: First is the study on the
urban land green use efficiency (ULGUE) in 30 provinces of China from 2008 to 2018 by adopting the
epsilon-based measure (EBM) model with undesirable outputs to yield a more accurate and reasonable
assessment result. In addition, the spatial agglomeration characteristics were analysed according
to the spatial autocorrelation analysis. Thirdly, the spatial Durbin model was applied to analyse
the driving factors of the WRGUE, which considers the spatial effects. The findings are as follows:
(1) The regional differences in ULGUE were very significant, with the number decreasing from the
coastal region to inland. (2) ULGUE showed a significantly positive spatial autocorrelation, and the
spatial homogeneity was more significant than the spatial heterogeneity for ULGUE. (3) Economic
development level, technical progress level, and urban population density have a significant impact
on ULGUE, while the higher the proportion of the secondary industry in GDP, the lower the level of
ULGUE. The research results may be a useful reference point for policymakers.

Keywords: urban land green use efficiency; EBM model with undesirable outputs; spatial durbin
model

1. Introduction

Urban land is not only the carrier of urban economic activities, but also the basic living
space of urban residents [1]. Rapid urbanisation seriously changed the Earth’s surface due
to natural surface transformation [2]. The globe is at the stage of rapid urbanisation with the
dividends of economic growth, employment increase, and improvement in living standards.
Still, it also faces many problems, such as the excessive use of biological resources, causing
negative environmental impacts. In such a context, green development gradually became
an effective method to ease the double pressure of economic development and resource
shortage, which considers the restrain imposed by limited resources and pollution of
the environment.

Since the opening up of the economy, the pace of urbanisation in China quickened
continuously. The urbanisation level rose from 17.9% in 1978 to 64.7% in 2021 [3]. Although
the urban construction in China is enormous, there are problems at the same time. First,
urban construction in China is consuming a lot of land resources and energy, and it is
causing serious environmental pollution. In addition, urban regions in China are consuming
large quantities of energy and emitting large volumes of pollutants. As Figure 1 shows, the
urban construction land area in China increased from 10,816.5 km2 in 1987 to 56,075.9 km2

in 2018 [1]. Available land for urban construction is becoming scarce, and this constrains the
development of urbanisation. Therefore, improving urban land use efficiency is necessary
for the Chinese government to tackle the human–land contradiction, and to ensure the
sustainable utilisation of urban land.

Urban land use efficiency is one of the main indicators used to measure the land
output capacity and development quality of urban areas [4]. The main calculation methods
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of ULUE are stochastic frontier analysis (SFA) and data envelopment analysis (DEA). SFA
is a parametric method for calculating the technical efficiency of the decision-making unit,
which considers the influence of random factors on efficiency [5]. The DEA method is non-
parametric, and it can deal with complex systems that have multiple inputs and outputs [6].
The traditional ULUE only considers the economic and social scope of land use [7], and
it ignores the green concept of the coordinated development of economic, social and
environmental factors [8]. In recent years, many scholars explored the undesirable output
factors in the index system of ULUE measurement, either with SFA [9–12] or DEA [4,13–17].
SFA is the requirement for prior assumptions of functional form. Thus, inaccurate results
may occur because of incorrect functional forms. DEA does not need any prior specification
on the functional form of the frontier. Hence, DEA methods are more widely used for
ULUE measurements than SFA methods. However, there is no explicit conception of the
comprehensive ULUE that takes account of undesirable output factors. With the wide
spread of green development concepts, many scholars put forward the concept of urban
land green use efficiency (ULGUE), which pursues more economic outputs based on less
resource consumption and pollutant emission from urban land [8]. Yan and Wang [18], and
Wang et al. [19] all applied DEA methods to calculate ULGUE.
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In summary, the existing research had some successes, and the main measurement
methods are DEA methods, which can be classified into two types: radial models, such as
CCR or BCC, and non-radial models, such as SBM. The SBM model directly captures the
non-radial slacks that are not considered in the radial models, which may cause the loss of
the original proportionality [20–23]. Therefore, the SBM became the main DEA method for
calculating ULUE. However, SBM still has some shortcomings. One such shortcoming is
that the linear proportion information between input variables is not considered, so the
efficiency scores of the decision-making unit may be underestimated [24,25]. To overcome
the deficiencies of the SBM method, Tone and Tsutsui [26] proposed an EBM DEA model,
which combines the advantages of the traditional DEA model and the SBM model, and
is compatible with radial and non-radial mixed distance functions. Therefore, the paper
applied the EBM model with undesirable outputs to calculate the ULGUE of 30 provinces
in China from 2008 to 2018. This led to more reasonable results for ULGUE.
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This paper evaluated the ULGUE of 30 provincial administrative regions in China
from 2008 to 2018, and then analysed its spatiotemporal characteristics and its driving
factors. The main contributions of this paper are: (1) Applying a more precise method for
measuring ULGUE. An epsilon-based measure (EBM) model with undesirable outputs was
applied to evaluate the ULGUE, which makes up for the defects of SBM methods and can
get more reasonable results of efficiency calculation. (2) The spatiotemporal characteristics
of ULGUE in the country, as well as the eight regions, were carefully analysed; the spatial
agglomeration characteristics of ULGUE of the 30 provinces were comprehensively anal-
ysed according to Moran’s I. Therefore, we can get an overall, transparent and in-depth
understanding of the green development level of urban land from the paper. (3) The
spatial Dubin model (SDM) was used for an empirical analysis of the influencing factors of
ULGUE. The empirical research results can be used as a reference in promoting ULGUE
and formulating the policies related to land and space governance.

The structure of the article is: The methodology is shown in Section 2. The Results
and Discussion are in Section 3, which analyses the characteristics of ULGUE in China and
discusses the influence factors of ULGUE. Section 4 summarises the conclusions, gives
policy suggestions, and proposes some future work.

2. Methodology
2.1. Research Area and Framework

This study selected the ULGUE of 30 provincial administrative regions in the Chinese
Mainland from 2008 to 2018 as the main research object (the data for Tibet had significant
missing material and were eliminated), and analysed its temporal and spatial distribution
properties and influencing factors. The provinces are divided into eight regions based on
the National Bureau of Statistic of China (Figure 2). The analysis framework of this paper
is presented in Figure 1.
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2.2. The Conceptual Framework of ULGUE

Based on comprehensive and scientific principles, ULGUE is defined as the compre-
hensive mapping of an urban land production system, seeking more economic outputs
and less environmental impacts in a condition of stable or decreasing inputs of productive
factors [27]. The core of ULGUE is to pursue the coordination and unity of economic
growth, resources, and the environment in the urban land production system. Therefore,
the indicator selection for the ULGUE calculation considers not only the economic benefits
of urban land, but also the social and environmental benefits. In reference to existing
studies of Ge et al. [4], Liu et al. [13], Zhang et al. [14], Song et al. [15], Jiang [16], and
Wu et al. [17], this paper selected urban capital stock, urban employees and urban construc-
tion land as the input indicators, the added value of the second and the third industries as
the desired output, and the CO2 emissions from the second and the third industries as the
undesired output (Table 1).

Table 1. ULGUE evaluation indicator system.

Primary Indicators Secondary Indicators Std. Dev. Max Min

Inputs
Urban Capital stock (Unit: 108 Yuan) 52,880 298,431 5141
Urban employees (unit: 104 persons) 853 5769 83

Urban construction land (unit: 104 mu) 1094 5577 109

Desired outputs Added value of the second and the third
industries (unit: RMB 108 Yuan) 14,523 81,470 793

Undesired outputs CO2 emissions of the second and the third
industries (unit: 106 tons) 189 869 23

Urban capital stock. This paper used the equation Kit = I + (1 − δ)Kit−1, where K
and I are the capital stock and the urban investment in fixed assets; i and t stand for the
province and year; and δ represents the depreciation rate. According to Zhang et al. [28],
δ is 9.6%. The urban capital stock in 2008 was equal to the value of the urban investment in
fixed assets in 2008 divided by 10%. The data of the urban investment in fixed assets were
converted to the 2008 constant price and came from the NBSC [1].

Urban employees. This paper selected employees of the second and the third industries
as the urban employees. The data were gathered from the statistical yearbooks of the
Chinese provinces (2009–2019) [1].

Urban construction land. This paper chose the urban construction land of each
province as one of the input indicators. The data came from NBSC [1].

The added value of the second and the third industries: To diminish the impact of
inflation, the added value of the second and the third industries were converted to the 2008
constant price. The data came from China Statistical Yearbook (CSY) (2009–2019) [29].

CO2 emissions from the second and the third industries: the date came from the China
Emission Accounts and Datasets (https://www.ceads.net/data/province/, accessed on
22 August 2022).

2.3. The Influential Mechanism of ULGUE

In reference to the relevant literature, this study selected economic development level,
government regulation, industrial structure, technical progress level, urban population
density, and opening up level as the independent variables (Table 2). The data came from
NBSC [1] and CSY (2009–2019) [29].

2.3.1. Economic Development Level

Economic development level determines the number of input elements per unit land
area that can affect urban land use. If the region has a higher level of economic development,
the more high-quality production factors would be attracted to the region, which may
improve the ULGUE [30]. Based on the studies of Zhong et al. [8], Song et al. [15], Yang

https://www.ceads.net/data/province/
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and Wang [18], Zeng et al. [31], Jiang et al. [32], and Yu and Su [33], the level of economic
development was measured by using per-capita GDP.

2.3.2. Government Regulation

Government regulation affects urban land use. Government financial expenditure will
affect the relevant decisions of urban land use, and change the specific land use behaviour
of land. In the economic growth-oriented performance appraisal system, local governments
mainly formulate land requisition policies to expand urban land areas to alleviate problems,
such as the shortage of local financial resources [30]. Based on Lu et al. [6], Ge et al. [14],
Lu et al. [30], Fan et al. [34], Tu et al. [35], and Ge and Liu [36], the proportion of government
expenditure in GDP was selected to measure government regulation.

2.3.3. Industrial Structure

The development of industry depends on land, and different industrial structures will
have different impacts on land use mode. Generally speaking, second industry is the main
source of CO2 emissions. Based on Ge et al. [14] and Jiang et al. [32], Ge and Liu [36], and
Gao et al. [37], the proportion of secondary industry in GDP was selected to measure the
industrial structure.

2.3.4. Technical Progress Level

Technical progress can effectively promote the use level of land, as well as change
the mode of urban land use and improve ULGUE. Based on the existing research of
Lu et al. [6], Zhong et al. [8], Yu et al. [38], and Chang and Chen [39], this study selected
technical progress level as the independent variable.

2.3.5. Urban Population Density

The increase in urban population density will bring capital, technology, labour, and
other production factors to the city, which brings about scale economies and promotes
technological efficiency. However, when the urban population density is too high, it
causes congestion and leads to the destruction of the ecological environment. Based on
Wang et al. [2], Lu et al. [6], Song et al. [15], Jiang et al. [32], and Yang et al. [40], urban
population density was selected as an important dependent variable.

2.3.6. Opening up Level

Theoretically, if the region has higher levels of openness, the region will be more
likely to enjoy the fruits of knowledge and technology spillover from overseas. Based on
Jiang et al. [32] and Yu and Su [33], this study selected the foreign trade volume as a
proportion of total GDP to measure the opening-up degree of each city.

Table 2. ULGUE driving factors.

Explanatory Variable Variable Definition and Unit References Expectation

Economic development level Per capita GDP (104 RMB) [8,15,18,31–33] Positive

Governmental regulation Proportion of fiscal expenditure in GDP (%) [6,14,30,34–36] Unknown

Industrial structure Proportion of the added value of the secondary
industry in GDP (%) [14,32,36,37] Positive

Technical progress level Proportion of the R&D expenditure in GDP (%) [6,8,38,39] Negative

Urban population density Urban resident population per square
kilometre (person/sq. km) [2,6,15,32,40] Unknown

Opening up level Proportion of foreign trade in GDP (%) [32,33] Positive
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2.4. The EBM Model with Undesirable Outputs

In this paper, the EBM model with undesirable outputs was used to measure the
ULGUE, which not only combines the advantages of both radial and non-radial DEA
methods, but also can deal with the undesirable outputs. The EBM model with undesirable
outputs is indicated in Formula (1) [41]:

T∗ = min

 θ−εx∑m
i=1

w−i s−i
xio

ϕ+εx∑s
r=1

w+
r s+r
yro

+εb∑
q
p=1

w−p s−p
bpo



s.t


∑n

j=1 xijλj + s−i = θxio i = 1, 2, . . . , m
∑n

j=1 yrjλj − s+r = ϕyro r = 1, 2, . . . , s

∑
q
j=1 bpjλj + s−p = ϕbpo p = 1, 2, . . . , q

λj ≥ 0, s−i ≥ 0, s+r ≥ 0, s−p ≥ 0

(1)

In where T* indicates the technical efficiency value of the the decision-making unit o
(0 < T ≤ 1); n is the number of the decision-making units; m, s and q represent the inputs,
desirable outputs, and undesirable outputs, respectively; θ and ϕ stand for the radial
programming parameters; λ is the intensity vector; w−i , w+

r , and w−p represent the weights
of the input, desirable output and undesirable output variables, respectively, and satisfy
∑m

i w−i = 1, ∑s
r w+

r = 1, and ∑
q
p w−p = 1 (w−i ≥ 0, w+

r ≥ 0, w−p ≥ 0, ∀m, s, q); s−i , s+r , and s−p
are the slacks of the input i, desirable output r and undesirable output p, respectively, and ε
indicates the importance of the non-radial measure efficiency and is in the range of [0, 1].

2.5. Spatial Correlation Analysis

In this paper, Moran’s I is applied to analyse the spatial autocorrelation of ULGUE
among provinces in China. Spatial autocorrelation refers to the mutual dependence of
spatial element attributes on spatial location and is a measure of the spatial agglomeration
degree. Global Moran’s I can examine the spatial dependence of ULGUE in the whole
region, which is as follows:

Global Moran′ I=
∑N

i=1 ∑N
j=1 Wi,j(ULGUEi,t−ULGUEt)(ULGUEj,t−ULGUEt)[

1
N ∑N

i=1(ULGUEi,t−ULGUEt)
2]

∑N
i=1 ∑N

j=1 Wi,j
(2)

In Formula (2), i and j stand for province i and province j, respectively; n is the number
of provinces studied; and in this paper, n = 30. Wij stands for the spatial weight matrix
between province i and province j. If province i is adjacent to province j, Wij = 1, otherwise
Wij = 0. ULGUE is the average value of the ULGUE. The value range of Global Moran’s I is
[−1, 1]. If the value is larger than 0, it means that there is a positive spatial dependence for
ULGUE, while the value less than 0 indicates a negative spatial autocorrelation.

The Global Moran’s I can reflect the overall spatial correlation of ULGUE, but some
local features may be ignored. The Local Moran’s I can test the degree of clustering or
dispersion in local regions, which is calculated as:

LocalMoran′I=
N(ULGUEi,t−ULGUEt)∑N

j=1 Wi,j(ULGUEj,t−ULGUEt)

∑N
i=1(ULGUEi,t−ULGUEt)

2 (3)

The local Moran’s I usually can be represented by the Moran scatter plot (MSP) map
and local indicators of spatial association (LISA) map. The MSP and LISA maps are divided
into four quadrants: the first quadrant is the high–high (HH) agglomeration area, which
means that the province with a high ULGUE value is close to other provinces with high
ULGUE values. The second quadrant is the low–high (LH) agglomeration area, indicating
that the province has a low ULGUE value but is surrounded by provinces with high ULGUE
values. The third quadrant is the low–low (LL) agglomeration area, indicating that the
province with a low ULGUE value is surrounded by other provinces with low ULGUE
values. The fourth quadrant is the high–low (HL) agglomeration area, which implies that
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a province has a high ULGUE value, but is surrounded by provinces with low ULGUE
values [42,43].

2.6. Spatial Durbin Model

When there is a strong spatial relationship with the dependent variable, the spatial
econometric model should be introduced, which makes the parameter estimation results
more convincing. There are three classical spatial econometric models: the spatial lag
model (SLM), the spatial error model (SEM), and the spatial Dubin model (SDM). In this
section, we bring in these three models, and then select the most proper one by Wald and
likelihood ratio tests.

The SLM contains endogenous interaction effects among the explained variables [25],
indicating that the spatial autocorrelation can be explained by a spatially lagged explained
variable [22]. The equation of the SLM is as follows:

Y = ρWY + βX + ε ε ~ N(0, σ2 In) (4)

In Equation (4), Y is the explained variable; X indicates the explanatory variable; ρ
is the spatial autoregression coefficient; β indicates the regressive spatial coefficients; W
represents the spatial weight matrix; and ε indicates a random error term.

The SEM contains interaction effects among the error terms, implying that an explained
variable is randomly affected by adjacent areas [22]. The expression of the SEM is as follows:

Y = βX +µ µ = λWX + ε ε ~ N(0, σ2 In) (5)

In Equation (5), µ denotes the random error vector. Other variables in Equation (5) are
consistent with those in Equation (4).

The SDM considers the spatial effects caused by explained variables or explanatory
variables or error terms well [44–46], and it can obtain more accurate regression coefficient
estimates [47], so it is more widely used than SEM or SLM. Therefore, the SDM was applied
to analyse the driving factors of ULGUE in China. The SDM can be expressed as:

Y = ρWY + βX + θWX + ε ε ~ N(0, σ2 In) (6)

In Equation (6), θ stands for the spatial regressive coefficients; in the same vein, the
variables in Equation (6) have the matching definition in Equation (4).

Wald and likelihood ratio tests were carried out to assess whether SDM could be
degraded to SEM or SLM. As Table 3 shows, the test results all reject the null hypothesis
that SDM can be simplified into SEM or SLM at the significance level of 1%.

Table 3. The results of Wald and LR tests.

Fixed Effects Random Effects

Wald test spatial lag 87.55 *** 75.18 ***
Likelihood ratio test spatial lag 78.69 *** 70.76 ***

Wald test spatial error 70.90 *** 53.39 ***
Likelihood ratio test spatial error 74.50 *** 67.09 ***

*** represents p < 0.01.

3. Results and Discussion
3.1. National Characteristics of ULGUE

The ULGUEs of 30 provinces in China from 2008 to 2018 were calculated and are
shown in Table 4 and Figure 3. From the national perspective, the annual mean value of
ULGUE in China’s 30 provinces was 0.759 during the study period. The national level of
ULGUE fluctuated between 0.722 and 0.78, with the highest year being 2013 and the lowest
year being 2009. Figure 3 shows that there were significant spatial differences in ULGUE
decreasing from the east coast to the inland west. Figure 4 gives the evolutionary trends of
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UGLUE and shows that the level of ULGUE in coastal provinces is generally high, while
that in the Northeast and Northwest regions is generally low (Table 5).

Table 4. The values of ULGUE for 30 provinces in China (2008–2018).

Regions Provinces 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

Northern
coast

Beijing 1 1 1 1 1 1 1 1 1 1 1 1
Tianjing 0.881 0.864 1 0.944 1 1 1 1 1 1 0.954 0.968
Hebei 0.878 0.709 0.85 0.87 0.854 0.845 0.853 0.811 0.816 0.851 0.821 0.833

Shandong 0.906 0.821 0.868 0.903 0.915 0.933 0.917 0.903 1 1 1 0.924

Eastern
coast

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1
Jiangsu 1 1 1 1 1 0.917 0.941 1 0.901 0.879 0.897 0.958

Zhejiang 1 1 1 0.975 0.964 0.926 0.928 0.921 0.933 0.899 0.886 0.948

Southern
coast

Fujian 1 1 1 1 1 1 1 1 1 1 1 1
Guangdong 1 1 1 1 1 1 1 1 0.903 0.855 0.874 0.967

Hainan 0.454 0.541 0.538 0.521 0.541 0.54 0.577 0.503 0.549 0.599 0.533 0.536

Northeast
Liaoning 0.631 0.591 0.628 0.64 0.643 0.643 0.639 0.666 0.701 0.704 0.735 0.656

Jilin 0.476 0.451 0.46 0.482 0.481 0.466 0.469 0.465 0.448 0.465 0.48 0.468
Heilongjiang 0.486 0.5 0.504 0.535 0.538 0.582 0.606 0.629 0.625 0.612 0.608 0.566

Middle
Yellow
River

Shanxi 0.839 0.711 0.776 0.798 0.738 0.779 0.767 0.715 0.663 0.659 0.669 0.738
Inner

Mongolia 0.676 0.623 0.683 0.738 0.734 0.693 0.641 0.674 0.71 0.672 0.716 0.687

Henan 0.877 0.803 0.874 0.871 0.863 0.911 0.89 0.846 0.851 0.815 0.826 0.857
Shaanxi 0.815 0.85 1 1 1 0.846 0.829 0.765 0.815 0.759 0.741 0.856

Middle
Yangtze

River

Anhui 0.74 0.689 0.698 0.742 0.731 0.74 0.725 0.689 0.662 0.65 0.644 0.701
Jiangxi 0.701 0.705 0.756 0.731 0.713 0.74 0.742 0.68 0.706 0.67 0.672 0.711
Hubei 0.7 0.682 0.684 0.675 0.686 0.773 0.743 0.735 0.746 0.712 0.743 0.716
Hunan 0.779 0.735 0.808 0.804 0.839 0.857 0.873 0.831 1 1 1 0.866

Southwest

Guangxi 0.579 0.618 0.637 0.638 0.634 0.668 0.676 0.634 0.579 0.569 0.558 0.617
Chongqing 0.738 0.702 0.762 0.731 0.809 0.794 0.78 0.695 0.767 0.753 0.731 0.751

Sichuan 0.734 0.715 0.788 0.818 0.828 0.835 0.834 0.701 0.707 0.876 0.88 0.792
Guizhou 0.628 0.597 0.682 0.692 0.665 0.683 0.706 0.68 0.669 0.649 0.637 0.663
Yunnan 0.629 0.621 0.639 0.656 0.698 0.756 0.717 0.838 0.759 0.726 0.719 0.705

Northwest

Gansu 0.553 0.547 0.559 0.58 0.595 0.607 0.593 0.575 0.546 0.523 0.546 0.566
Qinghai 0.649 0.621 0.682 0.705 0.715 0.669 0.674 0.653 0.628 0.619 0.614 0.657
Ningxia 0.544 0.455 0.537 0.526 0.542 0.601 0.556 0.503 0.517 0.505 0.604 0.535
Xinjiang 0.53 0.514 0.542 0.553 0.552 0.592 0.58 0.546 0.533 0.421 0.532 0.536

Mean value of all
provinces 0.747 0.722 0.765 0.771 0.776 0.780 0.775 0.755 0.758 0.748 0.754 0.759

Table 5. ULGUE values for eight Chinese regions (2008–2018).

Regions 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

Northern coast 0.916 0.849 0.930 0.929 0.942 0.945 0.943 0.929 0.954 0.963 0.944 0.931
Eastern coast 1 1 1 0.992 0.988 0.948 0.956 0.974 0.945 0.926 0.928 0.969

Southern coast 0.818 0.847 0.846 0.840 0.847 0.847 0.859 0.834 0.817 0.818 0.802 0.834
Northeast 0.531 0.514 0.531 0.552 0.554 0.564 0.571 0.587 0.591 0.594 0.608 0.563

Middle Yellow River 0.802 0.747 0.833 0.852 0.834 0.807 0.782 0.750 0.760 0.726 0.738 0.785
Middle Yangtze River 0.730 0.703 0.737 0.738 0.742 0.778 0.771 0.734 0.779 0.758 0.765 0.748

Southwest 0.662 0.651 0.702 0.707 0.727 0.747 0.743 0.710 0.696 0.715 0.705 0.706
Northwest 0.569 0.534 0.580 0.591 0.601 0.617 0.601 0.569 0.556 0.517 0.574 0.574
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3.2. The Regional Characteristics of ULGUE
3.2.1. Northern Coast

The annual mean value of ULGUE in the northern coast is 0.931, which is at a high
level. The northern coast is the economic centre of northern China. The Beijing–Tianjin–
Hebei urban agglomeration and the Shandong Peninsula urban agglomeration in the region
reached the mature stage, and the levels of urban land use and emission reduction are
high. The region is the political, cultural, international communication, and innovative
center of China [48]. Beijing was on the production frontier surface during the research
period, with Tianjin, Shandong and Hebei behind. The deregulation of Beijing’s non-capital
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functions relocated many manufacturing industries in the urban area into Hebei, affecting
the ULGUE of Hebei.

3.2.2. Eastern Coast

The eastern coast has the highest level of ULGUE of the eight regions. It contains the
most dynamic economic areas, it is at the forefront of opening up in China, and it has the
strongest innovation capability in China [49], along with a high level of land use technology.
Shanghai was on the production frontier surface during the research period, and the annual
mean values of Zhejiang and Jiangsu were 0.958 and 0.948, so the difference between these
two provinces is small.

3.2.3. Southern Coast

The annual mean value of ULGUE on the southern coast was 0.834, which is a high
level. The southern coast is one of the most developed areas for light industry in China,
and it was also the first to carry out reform and to open up. It benefited from the spillover
of land use technology and management experience from abroad, which promotes ULGUE.
Fujian was on the production frontier surface during the research period, while the ULGUE
level of Hainan was relatively low.

3.2.4. Northeast

Northeast China has the lowest level among the eight regions. Northeast China is
China’s traditional old industrial base, as its industrial structure is dominated by heavy
industry with large urban land pollution. There was both continuous population outflows
and the lack of vitality in economic growth in northeast China in recent years [50], which seri-
ously inhibited regional development. The annual mean values of ULGUE in Liaoning, Jilin,
and Heilongjiang are 0.656, 0.468, and 0.566, respectively, showing significant differences.

3.2.5. Middle Yellow River

The overall level of ULGUE in the Middle Yellow River is slightly higher than the
national average level. It is worth noting that the regional ULGUE level shows a downward
trend since 2011. Middle Yellow River is an important base of the energy and chemical
industries in China, and the regional industrial structure has the characteristics of resource-
intensive and labour-intensive industries, so it is difficult to reduce emissions. In the
region, the ULGUE in Henan and Shaanxi are at a relatively high level, while that of Inner
Mongolia is low.

3.2.6. Middle Yangtze River

Compared to the national average level, the ULGUE of Middle Yangtze River is slightly
low. The region is an important energy, raw material, and equipment manufacturing base
in China, and has a comprehensive transportation hub. Regional economic development
highly depends on resources, and has the characteristic of a high proportion of low-level
industries with high consumption of energy and resources [51]. After the government
implemented the central rise strategy, a number of industrial parks were established in the
Middle Yangtze River, and they took many high-emission industries away from coastal
areas, affecting ULGUE. In the region, Hunan has the highest level of ULGUE. The ULGUE
level of the other three provinces is similar.

3.2.7. Southwest

The annual mean value of ULGUE during the study period in southwest China was
0.706. In the region, only Sichuan (0.795) exceeded the national average level, and the other
three provinces were less than the mean level of the whole country. In recent decades, the
population growth and economic development in southwest China led to large-scale urban
expansion, and the regional urban resident population increased by 49.7% from 2008 to
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2018, which is higher than that of China as a whole (38.5%) in the same period [1]. This
rapid urbanisation caused many negative effects on regional ULGUE.

3.2.8. Northwest

The annual mean value of ULGUE in each province during the study period in north-
west China was only 0.574, which is lower than average in China. From the perspective
of provinces, the average annual values in Gansu, Qinghai, Ningxia, and Xinjiang were
0.566, 0.657, 0.535, and 0.536, respectively, which are far lower than the national average.
Due to their remote geographical locations and poor natural environments, the technical
accumulation and economic output of urban land in northwest China are low, resulting in
a low level of ULGUE.

3.3. Spatial Autocorrelation Analysis of ULGUE

The Global Moran’s I was used to test spatial autocorrelation in the whole region. The
results are in Table 6. During this period, the values of the Global Moran’s I are greater than
0, and are significant at the inspection level, suggesting that China’s ULGLE shows a trend
of agglomeration among the provinces. Therefore, we concluded that spatial distribution
of ULGLE in China was not random, but a spatial agglomeration pattern over space, and
that the spatial econometric model should be applied to analyse the influencing factors
of ULGLE.

Table 6. Value of Global Moran’s I of provincial ULGLE in China (2008–2018).

Year Global Moran’s I Z-Score p-Value

2008 0.416 *** 3.603 0.000
2009 0.432 *** 3.749 0.000
2010 0.386 *** 3.364 0.001
2011 0.324 *** 2.863 0.004
2012 0.312 *** 2.769 0.006
2013 0.383 *** 3.350 0.001
2014 0.436 *** 3.771 0.000
2015 0.348 *** 3.072 0.002
2016 0.349 *** 2.929 0.003
2017 0.210 *** 3.977 0.002
2018 0.263 ** 2.377 0.017

*** represents p < 0.01, ** represents p < 0.05.

In this article, the MSP and LISA maps were applied to analyse the local spatial
autocorrelation. The acronyms of 30 provinces in China are shown in Table 7. Figures 5–7
present the MSPs of ULGLE in China in 2008, 2013, and 2018, respectively. In 2008, 2013,
and 2018, most provinces were in the first and third quadrants, and only a few provinces
were in the second and fourth quadrants, indicating that the positive spatial correlations
of ULGLE above or below the average value were very obvious. However, in 2018, the
number of provinces in the second quadrant increased significantly, indicating that the
spatial heterogeneity had a certain degree of increase.

Table 7. The acronyms of 30 provinces in China.

Provinces Acronyms Provinces Acronyms

Beijing BJ Henan HN
Tianjin TJ Hubei HB
Hebei HB Hunan HUN
Shanxi SX Guangdong GD

Inner Mongoria IM Guangxi GX
Liaoning LN Hainan HN

Jilin JL Chongqing CQ
Heilongjiang HLJ Sichuan SC
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Table 7. Cont.

Provinces Acronyms Provinces Acronyms

Shanghai SH Guizhou GZ
Jiangsu JS Yunnan YN

Zhejiang ZJ Shaanxi SAX
Anhui AH Gansu GS
Fujian FJ Qinghai QH
Jiangxi JX Ningxia NX

Shandong SD Xinjiang XJ

In addition, the MSPs in 2008, 2013, and 2018 indicate that many provinces also have
relatively fixed positions. Specifically, Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, and Henan always belonged to the first quadrant (HH agglomeration
area), implying that these nine provinces had high ULGLE and were surrounded by
provinces with relatively high ULGLE; these provinces are mainly located in eastern
coastal China. Anhui, Jiangxi, Hubei, and Hainan were always in the second quadrant
(LH agglomeration area), indicating that these four provinces had low ULGLE and were
surrounded by provinces with relatively high ULGLE; these provinces are mainly located
in central China. Inner Mongolia, Liaoning, Jilin, Heilongjiang, Yunnan, Gansu, Qinghai,
Ningxia, and Xinjiang were always in the third quadrant (LL agglomeration area), implying
that these nine provinces had low ULGLE and were surrounded by provinces with relatively
low ULGLE; these provinces are mainly in northeast and western China. Hunan and
Guangdong were always in the fourth quadrant (HL agglomeration area), indicating that
these two provinces had high ULGLE and were surrounded by provinces with relatively
low ULGLE.
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MSP maps cannot show the significance of ULGLE in each province. LISA maps can
solve this problem. Figures 8–10 depict provinces with significant locations colour coded
by different types of LISA coefficients of ULGLE in China. The red, pink, blue, and yellow
areas represent the HH, LH, LL, and HL agglomeration areas at the significance level
(p ≤ 0.05), respectively. As the figures show, the provinces at the significance level were in
the HH, LH, and the LL agglomeration areas.
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In 2008, nine provinces passed the significance level test. Beijing, Shanghai, Jiangsu,
Zhejiang, and Fujian belonged to the HH aggregation area, Hainan was in the LH aggrega-
tion area, and Jilin, Heilongjiang, and Gansu were in the LL aggregation area. In 2013, there
were eight provinces at the significance level. Tianjin, Beijing, Shanghai, and Fujian were in
the HH aggregation area, Hainan stayed in the LH aggregation area, and Xinjiang, Jilin,
and Heilongjiang belonged to the LL aggregation area. In 2018, there were five provinces at
the significance level. Beijing, Tianjin, and Shanghai were in the HH aggregation area, and
Gansu and Xinjiang were in the LL aggregation area. Therefore, China’s ULGLE formed an
HH agglomeration area centred on Beijing and Shanghai in 2008, 2013, and 2018.
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3.4. Empirical Analysis

To avoid the problem of multicollinearity among variables, this paper conducted
Pearson correlation analysis and variance inflation factor (VIF) tests. As Table 8 shows,
some correlation coefficients between variables were greater than 0.6, indicating that there
may be multicollinearity among the variables. The results of the VIF test (Table 9) show
that all the values of VIF were less than 5, indicating that severe multicollinearity does not
exist in this model [51]. This provided a basis for the next regression analysis.

Table 8. The correlation test.

LnULGUE LnEDL LnGR LnIS LnTPL LnUPD LnOUL

LnULGUE 1
LnEDL 0.588 *** 1
LnGR 0.130 ** −0.271 *** 1
LnIS 0.663 *** 0.745 *** −0.063 1

LnTPL 0.022 −0.158 *** 0.222 *** −0.086 1
LnUPD −0.676 *** −0.343 *** −0.333 *** −0.484 *** 0.102 * 1
LnOUP 0.529 *** 0.644 *** −0.169 *** 0.623 *** −0.164 *** −0.563 *** 1

*** represents p < 0.01, ** represents p < 0.05, * represents p < 0.1.

Table 9. The VIF test.

LnEDL LnGR LnIS LnTPL LnUPD LnOUL

VIF 2.81 2.16 2.67 1.1 2.46 1.60
1/VIF 0.356 0.462 0.375 0.912 0.407 0.625
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The Hausman test was applied to test which of the two effects (fixed or random) was
the most appropriate for the panel data. The statistical value of the Hausman test was 33.21
(p < 0.01), so the fixed effect is the proper approach. The specific expression of the SDM
with fixed effects is as follows:

LnULGUEi,t = ρW*LnULGUEi,t + β1LnDELi,t + β2LnGRi,t + β3LnISi,t + β4LnTPLi,t +
β5LnUPDi,t + β6LnOUPi,t + θ1W*LnDELi,t + θ2W*LnGRi,t + θ3W*LnISi,t + θ4W*LnTPLi,t

+ θ5W*LnUPDi,t + θ6W*LnOUPi,t + εi,t εi,t ~ N(0, σ2
i,t In)

(7)

where EDL, GR, IS, TPL, UPD, and OUL express economic development level, government
regulation, industrial structure, technical progress level, urban population density, and
opening up level, respectively. The SDM with fixed effects contains spatial-fixed effects,
time-fixed effects, and spatial- and time-fixed effects. The value of log likelihood in Table 10
suggests that the spatial- and time-fixed effects (log likelihood value = 504.565) had a better
fit than the other two effects (Log likelihood values = 289.278 and 510.484). Therefore, it is
most reasonable to apply the SDM with spatial and time-fixed effects to empirical analysis.

Table 10. The regression results of SDM.

Variables Spatial Fixed-Effects Time Fixed-Effects Spatial and Time
Fixed-Effects

InEDL 0.323 *** 0.286 *** 0.280 ***
InGR −0.184 *** −0.068 −0.075
InIS 0.075 ** −0.202 *** −0.229 ***

InTPL 0.138 *** 0.076 ** 0.067 **
InUPD 0.103 *** 0.053 ** 0.048 **
InOUP −0.083 *** −0.004 0.007

W*InEDL −0.535 *** −0.159 * −0.257 *
W*InGR −0.073 0.1578 ** 0.111
W*InIS −0.164 * 0.615 *** 0.532 ***

W*InTPL −0.033 −0.228 *** −0.235 ***
W*InUPD 0.054 0.073 * 0.051
W*InOUP 0.150 *** 0.025 0.013
R-squared 0.621 0.202 0.122

Log likelihood 289.278 504.565 510.484
*** represents p < 0.01, ** represents p < 0.05, * represents p < 0.1.

ULGUE is affected positively and significantly by economic development level
(p < 0.01), which is consistent with our expectations. Contemporary China is in a tran-
sitional period from the primary stage of economic development to the advanced stage.
China’s government made use of different kinds of measures, such as fiscal and tax policy,
industrial policy, environmental regulation policy, land policy and so on, to give priority to
the development of services, high-tech industries, and other industries with high economic
outputs and low environmental impacts, which improved the ULGUE.

The estimated coefficient of government regulation is negative, but this was not
apparent. The exploitation of land resources are indispensable for local officials in the man-
agement of economic growth overall [52]. From 2008 to 2018, the proportion of government
expenditure to GDP in China grew from 19.6% to 24%. The Chinese government obviously
adopted an active fiscal policy to boost the economic growth, which gave impetus to the ex-
pansion of urban land in China. As the economy enters a “new normal” and growth slows,
the government expenditure structure needs to be optimised to improve the efficiency of
fiscal expenditure.

The industrial structure affects ULGUE markedly (p < 0.01), meaning that the increase
in secondary industry is inhibiting the ULGUE, which is consistent with the expectation.
The Chinese government’s continued effort to promote the innovation and upgrading of
secondary industry in the past was somewhat effective, and the CO2 emission intensity
of secondary industry reduced from 3.87 kg/Yuan in 2008 to 2.22 kg/Yuan in 2018, but
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the total CO2 emission of second industry is still in the ascendant. Thus, it is necessary for
China to implement more industrial upgrading policies.

ULGUE is influenced positively and significantly by technical progress level (p < 0.05).
Technological progress is a critical factor in improving the environment [53]. Technical
progress can be achieved through technology imports and independent innovation [54].
Only with independent innovation can China elevate and adjust its industrial structure. On
the basis of digesting imported advanced technology from abroad, China needs to develop
a series of innovative technologies to improve ULGUE.

The regression coefficient of the urban population density is significantly positive
(p < 0.01), which implies that the urban population aggregation effect has positive impacts
on ULGUE in China. However, that does not mean that the blind pursuit of urban popula-
tion aggregation is wise. Currently, large numbers of people began to urban agglomeration
in China [55]. The urban population density should stay in a certain range to guarantee the
healthy development of cities.

Opening up a level playing field has a positive role in the promotion of ULGUE,
but it is not significant. Opening up had a remarkably good effect on ULGUE, such as
introducing advanced production technologies and management ideas; however, the export
trade in many provinces of China is characterised by the extensive growth pattern. These
two factors counteract each other, which may make the impact of opening up level on
ULGUE unremarkable.

4. Conclusions

Due to limited land resources, the current rapid process of urbanisation and extensive
utilisation is not a sustainable urban development model [56]. The green development of
urban land lays great stress on both low resource consumption and low environmental
impact [49]. This paper empirically studied the ULGUE in China, aiming to provide a
sound assessment of ULGUE, and to ensure that the use of land and the development of
our society is sustainable.

The article first evaluated the ULGUE in 30 provinces of China using the EBM model
with undesirable outputs, and it found that the ULGUE showed significant spatial dif-
ferences among provinces. Based on the spatiotemporal characteristics and research, the
national mean level of ULGUE is shown to be fluctuating between 0.722 and 0.78, ULGUE
shows a significantly positive spatial autocorrelation, and the spatial homogeneity was
more significant than the spatial heterogeneity for ULGUE. In the end, the paper empirically
analysed the driving factors of ULGUE using the SDM method. It found that economic de-
velopment level, technical progress level, and urban population density have a significant
impact on ULGUE, while the higher the proportion of the secondary industry of GDP is,
the lower the level of ULGUE.

Based on the research results, the following countermeasures are put forward:
(1) The government needs to continue playing a key role in policy regulation and im-
posing strict controls on urban incremental land. It needs to increase the support of land
green development and strictly enforce enterprise emission standards and environmental
protection access thresholds to avoid environmental degradation and urban sprawl. (2) It
needs to exploit intensive land use potential fully, taking advantage of technical progress.
On one hand, extending outward to import, adopt, and absorb foreign technology is neces-
sary. More importantly, China should increase the input of R&D to develop technological
innovation and re-innovation after digesting the introduced technology. (3) Promoting
the green economic transformation of three industrial sectors is necessary, accelerating
the development of labour-intensive industries to knowledge- and technology-intensive
industries, promoting innovation and industrial upgrading, and advancing high-quality
growth of manufacturing. (4) Accelerating the investment of human capital is necessary to
support enterprises and private actors in providing vocational education. If cities have the
characteristic of both high density and large-scale population, city governments should
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increase the requirements for rural residents to obtain hukous in large cities [57], and avoid
the excessive growth of population inflow.

However, this study has limitations in terms of breadth and depth, so there is still
space for improvement. First, in view of the evaluation index system, the undesirable
output only included CO2, yet lacked other types of air and water pollution. Therefore,
we suggest the NBSC improve the statistical work on air and water pollution to support
a more sophisticated evaluation index system of ULGUE. Secondly, this study, based
on the nationwide data, empirically researched the driving mechanism of ULGUE by
adopting a reasonable spatial econometrics approach. Therefore, in order to yield more
comprehensive results, future research should consider the regional heterogeneity and
conduct empirical studies in each district. Furthermore, this paper measured the ULGUE
based on the provincial administrative regions. Following research can expand the scale of
the geographical unit to subordinate ones. In conclusion, future research can investigate
the ULGUE of prefecture-level cities and reveal their spatial and temporal differences, so
as to offer meaningful results for sustainable urban development.
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