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Abstract: The treatment of arsenic (As) in tin tailings (TT) has been an urgent environmental problem,
and stabilization/solidification (S/S) treatment is considered an effective technology to eliminate
contamination of As. In this study, we developed a low-carbon and low-alkalinity material to S/S of
As, and the results showed that the leaching concentration of As after treatment was lower than the
Chinese soil environmental quality standard (0.1 mg/L). Based on a series of characterization tests,
we found that OH− promoted the dissolution of As(III)-S, Fe-As(V), and amorphous As(III)-O species
and formed Ca-As(III) and Ca-(V) species with Ca2+. Simultaneously, hydration produces calcium
silicate hydrate (C-S-H) gel and ettringite by the form of adsorption and ion exchange to achieve
S/S of As. We also assessed the durability of this material to acidity and temperature, and showed
that the leaching concentration of As was below 0.1 mg/L at pH = 1–5 and temperature 20–60 ◦C.
The method proposed in this study, S/S of As, has excellent effect and environmental durability,
providing a new solution for harmless treatment of TT and its practical application.

Keywords: arsenic; environmental durability; mechanism of stabilization/solidification; tin tail-
ings (TT)

1. Introduction

The rapid development of industry has greatly improved people’s material life; simul-
taneously, the awareness of environmental protection has gradually increased. Especially
in the development and utilization of mineral resources, a huge amount of low-utilization
tailings are often produced, which not only take massive valuable land resources but also
the harmful elements such as arsenic (As) in the tailings will spread to the surrounding
soil and water sources over time, which will eventually endanger human life and health
through the action of the food chain [1,2].

As is a metallic element that is widely distributed in the Earth’s crust and can be As3−

(arsine), As0 (arsenic monomers), As3+ (arsenite), and As5+ (arsenate) valence states. As
monomers exist in three isotopes: gray As, yellow As, and black As [3]. Gray As is the most
common As monomer, a bilayer structure, which is composed of many interlocked vertical
six-membered rings with weak bonding between the layers [4,5]. The As3+ form and the
As5+ form are the most common valence states, and inorganic compounds consisting of
As3+ are more toxic than As5+ [6]. Currently, the use of As is limited and is commonly
used as wood preservation, pesticides, etc. [7]. As in minerals is mainly in the form of
sulfides such as arsenopyrite (FeAsS) [8], realgar (As4S4) [9], and orpiment (As2S3) [10], and
these compounds are often found in tailings and are relatively stable in strong alkaline and
reducing environments [11]. Under the action of natural weathering conditions, As will
be released into the environment [12]. The process of FeAsS oxidation reaction is shown
as follows:

4FeAsS + 11O2+6H2O→ 4Fe2++4H3AsO3+4SO4
2− (1)
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2H3AsO3+O2 → 2H2AsO4
−+2H+ (2)

4Fe2++O2+4H+ → 4Fe3++2H2O (3)

As4S4 is easily converted to As2O3 under oxidation conditions. The process of As2S3
oxidation reaction is shown as follows:

As4S4+7O2 → 2As2O3+4SO2 (4)

2As2S3+3O2 → 2As2O3+6S ↓ (5)

As2O3+3H2O→ 2H3AsO3 (6)

Under different weathering conditions, the oxidation products of As are different,
but most of them are produced in the form of arsenate. Oxidation of As-S minerals such
as FeAsS will result in an increase in the leaching of As from the tailings, which poses a
serious hazard to the surrounding environment [13]. Studies have shown that the reaction
of iron and calcium salts with arsenate ions produces the corresponding precipitates, which
can effectively reduce the leaching of As from tailings [14–16]. However, there are some
differences in the composition and types of As-containing minerals in different types
of tailings or the same type of tailings from different regions [9]. Current studies have
generally focused on the study of As in gold tailings, but little attention has been paid to
the species and transformation processes of As in tin tailings (TT), and different species of
As may have different effects on the immobilization of As in tailings.

Stabilization/solidification (S/S) is a technique which can eliminate or reduce the haz-
ards of solid waste by using a binder to physically encapsulate and chemically immobilize
the hazardous components in the solid waste [17,18]. It has a series of advantages, such
as the ability to control the content of As quickly, low treatment cost, and simple process
operation [19]. Ordinary Portland cement (OPC) is a typical binder, and the calcium silicate
hydrate (C-S-H) gel generated by the OPC hydration process can effectively adsorb or ion
exchange with As. Furthermore, the alkaline environment is also favorable to promote the
generation of As precipitation [20]. However, the heavy use of OPC increases the treatment
cost, energy consumption, and CO2 emissions [21]. Therefore, it is necessary to develop
an efficient and environmentally friendly solution for S/S of As. This article is based on
adding no alkali activator or any foreign additives, using low OPC clinker and TT for S/S
of As; calcium hydroxide (Ca(OH)2) generated by OPC hydration can also activate TT [14].
Theoretically, it can maintain a certain strength and immobilization efficiency, and can
greatly reduce the price and environment cost. In addition, 3CaO·Al2O3 (C3A) in OPC will
generate ettringite in the presence of gypsum (CaSO4·2H2O) and Ca(OH)2 [22]. Ettringite
is considered to be an ideal substance for S/S of As, and it mainly undergoes chemical
substitution with As [23]. This study also comprehensively assesses the environmental
durability to S/S of As. In natural environments, pH and temperature are important factors
affecting the leaching of As in the encapsulator [24,25]. Under acidic conditions, the As
precipitates in the encapsulator may be dissolved and re-released into the environment.
The hydration products C-S-H gel and ettringite will also be affected [26,27]. There is a
certain relationship between temperature and microstructure changes in the encapsulator,
which would lead to a decrease in the performance for S/S of As [27].

In this work, we analyzed TT and investigated the compressive strength and leach
property of As in the encapsulator at different OPC additions by the technology of S/S. The
main species and stabilization mechanism of As in the encapsulator was also determined by
various characterization tests. Durability studies were also performed for the encapsulator
with different pH and temperature.

2. Materials and Methods
2.1. Materials and Experimental Procedure

The TT used in this study come from Gejiu, Yunnan Province, China, which enjoys the
reputation of the word capital of tin—it has a very long mining history. There are a lot of
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harmful elements such as As in the TT. OPC was purchased from a factory in Zhengzhou
City, Henan Province. The chemical compositions of OPC and TT were measured by X-ray
fluorescence analysis (XRF), as shown in Table 1. In order to explore the effect on S/S of As,
OPC and ground TT were mixed in different proportions according to the scheme in Table 2.
The percentage of OPC was increased from 25 wt% to 75 wt%, and the water–binder ratio
was adjusted to 0.28 according to the actual situation. Then, the mixed slurry was poured
into a 40 mm × 40 mm × 40 mm plastic mold and placed at room temperature for 24 h.
Then, the hardened slurry was demolded, cured to the corresponding age in a curing
box at 90% humidity and 20 ◦C, and its compressive strength and leaching concentration
of As tested. The chemical reagents nitric acid (HNO3), glacial acetic acid (CH3COOH),
and sodium hydroxide (NaOH) used in this experiment were obtained from Shanghai
Sinopharm Chemical Reagent Factory.

Table 1. Chemical compositions of OPC and TT (wt%).

Material Al2O3 CaO Fe2O3 K2O MgO P2O5 SiO2 SO3 LOI

OPC 7.1 41.3 6.2 0.3 2.8 0.09 24.5 0.05 17.66
TT 6.2 28.5 16.4 1.1 0.08 0.06 31.7 2.4 13.56

LOI: Loss on ignition.

Table 2. Mixture formulations (wt%) for OPC and TT.

Sample Mixture Ratio (wt%) Water Cement Ratio
(W/C)TT OPC

CM1 75 25

0.28
CM2 66.7 33.3
CM3 50 50
CM4 33.3 66.7
CM5 25 75

2.2. Leaching Tests

The leaching test was performed according to the TCLP Standard [28], and the ratio
of sample to leachate was kept at 1 kg/20 L. An aqueous solution of acetic acid with pH
maintained at 2.88 ± 0.05 was used as the leachate, and the pH was adjusted with HNO3
or NaOH. The solution was turned over at 30 rmp for 18 h at room temperature, and
the pH of the solution after flipping was measured. The leachate was filtered through a
0.45 µm microporous membrane. Finally, the As leaching concentration was measured after
acidifying with HNO3 to pH < 2. To better evaluate the environmental durability of the
encapsulator, the samples were immersed in acidic solutions of pH 0–5 to investigate the
effect of pH on the leachability of As, while the same samples were immersed in solutions
with temperature gradients of 20–60 ◦C. As leaching concentrations were tested after 7 days.

2.3. Analysis and Characterization

A pH meter (Mettler FB28, benchtop acidity meter) was used to measure the weak
alkalinity of the TT, pH = 8.64. The compressive strength of the samples at the corre-
sponding age was measured by a digital pressure tester. The concentration of As in the
solution after leaching the encapsulator was measured by inductively coupled plasma
emission spectrometry (ICP-OES). Chemical speciation of As in TT obtained by Euro-
pean Community Bureau of Reference (BCR) sequential extraction analysis is presented in
Figure 1, in which As is divided into acid soluble/exchangeable (F1), reducible-fraction
(F2), oxidizable-fraction (F3), and residual (R) [29]. The physical phase composition of
OPC, TT, and samples was determined by X-ray diffraction (XRD), setting the scan range to
5–70◦ and scan speed to 5◦/min. Analysis of sample morphology using Scanning electron
microscopy (SEM, Hitachi Regulus8100). The elemental composition of the sample was
measured and analyzed by Energy dispersive spectroscopy (EDS). The functional groups
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of the samples were measured by Fourier transform infrared spectroscopy (FTIR) with a
set scan range of 4000–400 cm−1, a resolution of 4 cm−1, and 16 scans. The samples were
tested by X-ray photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB XI+) to analyze
the binding energy, valence, and chemical shifts of the relevant As elements.
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Figure 1. The percentage of each fraction of As in TT extracted by the BCR sequential extraction
procedure.

3. Results and Discussion
3.1. X-ray Diffraction Analysis of TT and Sample

Figure 2a is the XRD spectra of TT, and the main minerals are calcite (CaCO3), quartz
(SiO2), fluorite (CaF2), and hedenbergite (CaFe [2Si2O6]). In addition, orpiment (As2S3,
PDF#24-0075) and iron hydrogen arsenate hydrate (PDF#26-0784) were also detected.
Fe(H2AsO4)3·H2O is the phase formed by the oxidation of As and sulfur minerals in TT.
Other phases, such as sekaninaite (Fe2Al4Si5O18) and phlogopite (KMg3(Si3Al)O10(OH)2)
also correspond to the major elements in the chemical composition.
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Figure 2. XRD spectra of tin tailing (a) and sample of CM1 to CM5 (b). 
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In order to understand the change process of As species after curing, the phase
composition of the sample was analyzed by XRD, as shown in Figure 2b. Except for the
presence of calcite (CaCO3, PDF#47-1743), quartz (SiO2, PDF#46-1045) and fluorite (CaF2,
PDF#35-0816) phases in the TT, obviously, the mineral species of As changed before and
after the S/S treatment with the appearance of johnbaumite (Ca5(AsO4)3(OH), PDF#33-
0265), which indicates that the As species in the TT underwent chemical reactions during
solidification. Fe(H2AsO4)3·H2O from TT released Fe3+ and H2AsO4− in water, and
produced Ca5(AsO4)3(OH) in the presence of Ca2+ and OH−, the transformation process
of As is shown below:

Fe(H2AsO4)3·H2O + OH− → Fe3++3H2AsO−4 +H2O (7)

H2AsO−4 +2OH− → AsO4
3−+H2O (8)

Fe3++3OH− → Fe(OH)3 (9)

5Ca2++OH−+3AsO4
3− → Ca5(AsO4)3(OH) (10)

It was shown that the diffraction peaks around 30◦ are related to the formation of
C-S-H gels which are usually in an amorphous state, so that no distinct characteristic peaks
are observed [30]. A distinct calcium hydroxide (Ca(OH)2, PDF#44-1481) diffraction peak
can also be observed, which is due to the reaction of CaO in the cement with water to
generate Ca(OH)2 [31]. With the increase of OPC content, the amount of Ca(OH)2 generated
increases, and the intensity of the diffraction peak increases, which is also consistent with
the increase of pH value of the leaching solution in Figure 3b. The appearance of ettringite
is due to the chemical reaction between C3A with a small amount of gypsum (CaSO4·2H2O)
doped in the mixture, which is beneficial to the S/S of As. The peak intensity of ettringite
increases with increasing OPC content, indicating that more ettringite was generated, which
also explains the increasing trend of compressive strength. Ca(OH)2 can also be used as an
alkali activator to activate the TT [32], and with the increase of OPC content, ettringite has
a tendency to gradually increase.
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3.2. Compressive Strength and Leaching Test

As shown in Figure 3a, the 7-day and 28-day compressive strengths of sample showed
a sequential increase with the increase of cement content. At the highest content of TT,
the compressive strengths of sample for 7 days and 28 days respectively were 11.3 MPa
and 16.2 MPa, and the presence of less active substances in TT was not conducive to the
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development of compressive strength. The compressive strengths of sample for 7 days and
28 days were 28.9 MPa and 34.7 MPa when the TT content was the lowest. The increase
in cement content promoted the formation of more C-S-H gels. These C-S-H gel phases
were filled in the voids between the hydration products, which increases the structure
compactness and greatly improves the compressive strength [33,34]. The formation of
ettringite is beneficial to improve the early compressive strength [35]. In addition, ettringite
also has a certain degree of swelling, which can reduce the porosity of the encapsulator
and further improve the compactness of the structure [36].

The trend of As leaching concentration obtained from the experiment is shown in
Figure 3b, where the concentration of As in the solution is inversely proportional to the
content of TT. With the decrease of TT, the leaching concentration of As decreased from
0.1 mg/L to 0.01 mg/L, and the pH value increased from 9.47 to 11.21. The presence
of many alkaline substances in the cement, which generated OH− during the hydration
process, explains the increase of the pH value of the leachate after 28 days, and facilitated
the formation of Ca-As compound precipitation [37], thus proving the reason for the
decrease of As leaching concentration. In addition, OPC hydration products such as C-S-H
gels have adsorption effects on As, and the hydroxide colloids formed by Fe2+ and Fe3+

in alkaline environment can adsorb different forms of As-containing compounds on the
surface or encapsulate them in the colloids [38].

3.3. Fourier Transform Infrared Spectroscopy Analysis

Figure 4 shows the FTIR spectra of CM1–CM5 with similar trends for all the curves.
The functional groups corresponding to the FTIR absorption peaks are summarized in
Table 3. The peak at 3426.9 cm−1 is due to the -OH stretching vibration from water in the
free state of the sample. The peak at 1632.5 cm−1 is H-O-H bending vibration, indicating the
presence of C-S-H. The peak at 1414.8 cm−1 is the stretching vibration caused by the O-C-O
of the carbonate. The peaks at 1112.7 cm−1 and 713.2 cm−1 are the v3 and v4 vibrations of
SO4

2−, which implies the presence of ettringite. The peaks at 1006.7 cm−1 and 518.4 cm−1

are the v3 and v4 vibrations of SiO4
2−. The peak at 875 cm−1 is attributed to the As-O

stretching vibration, which corresponds to the formation of arsenic–oxygen compounds in
Figure 2b. It is further verified that As in TT exists in the form of precipitation [39,40]. The
peak at 464 cm−1 indicates the Si-O bending vibration.
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Table 3. Peaks detected by FTIR spectroscopy and the corresponding functional groups.

Wavenumbers (cm−1) Functional Group Types of Vibration Reference

3426.9 cm−1 Free H2O stretching vibration [30]
1632.5 cm−1 H2O in C-S-H bending vibration [41]
1414.8 cm−1 O-C-O stretching vibration [42]
1112.7 cm−1 SO4

2− v3 vibrations [43]
1006.7 cm−1 SiO4

2− v3 vibrations [44]
875.0 cm−1 As-O stretching vibration [45,46]
713.2 cm−1 SO4

2− v4 vibrations [16]
518.4 cm−1 SiO4

2− v4 vibrations [47]
464.0 cm−1 Si-O bending vibration [48]

3.4. X-ray Photoelectron Spectroscopy Analysis

From the XPS spectrum of Figure 5, it was observed that As(III)-O dominates in the
sample, exists in an amorphous state, and forms a precipitate with Ca2+, the transformation
process of As is shown below:

2H3AsO3+3OH− → AsO3−
3 +3H2O (11)

3Ca2++2AsO3
3− → Ca3(AsO3)2 (12)

As in TT is mainly present in the form of As2S3 and FeAsS species in Figure 2. The
presence of As(V)-O, As(III)-O, and As(III)-S can also be observed in the XPS spectra of
the treated TT in Figure 5. During the process from CM1 to CM5, As(III)-S decreased from
32.5% to 21.0% and As(V)-O increased from 6.1% to 15.1%, which indicates that As2S3
underwent dissolution and finally converted to As(V), and the oxidation process was very
slow [9]. The percentage of As(III)-O was also changing, indicating that oxidation of As2S3
first formed As(III)-O and then further converted to As(V)-O. Although the solubility of
As2S3 in water is small, the equation for the hydrolysis is as follows:
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Both HAsO2 and H2S react with alkali, and the reaction equations are as follows:

HAsO2+OH− → AsO2
−+H2O (14)

H2S + 2OH− → S2−+2H2O (15)

In the presence of O2, the oxidation Equation (14) of arsenite is as follows:

2AsO2
−+O2+4OH− → 2AsO4

3−+2H2O (16)

The XPS spectra show that the As species are dominated by As(III)-O. In addition to
As2S3, other As sulfides and As2O3 in the tailings can be converted to arsenite during the
synthesis process [49].

3.5. SEM-EDS Analysis

The presence of many white irregular amorphous C-S-H gels in Figure 6b is consid-
ered to be the main product of cement hydration; it is capable of S/S of As by physical
adsorption, interlayer symbiosis, and ion exchange [50]. In addition, some needle-like
crystal organization is typical for the shape of ettringite; it has a strong heavy metal immo-
bilization ability, and anionic groups such as arsenate ions are able to ion exchange with
SO4

2− in ettringite for stabilization [31]. EDS in Figure 6c results show the presence of O,
As, Ca, Si, Al, and Fe elements, indicating that As combines with Ca and Fe to produce the
corresponding precipitates. Element S was found in Figure 6d, indicating that a portion of
arsenic sulfide was still present and was not involved in the reaction, which is consistent
with the results in Figure 5.
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3.6. Environmental Durability Assessment

The environmental durability assessment is to study the influence of external factors
on the performance of S/S of As. This experiment mainly simulated the influence of two
important factors, pH and temperature of acidic conditions, and to study their effects on
the leaching behavior of As.

3.6.1. Effect of pH on the Leaching Behavior of As

The cured samples were dipped into the acid solution at a ratio of 1:10 (g/mL), the
different solutions of pH 0–5 adjusted with HNO3, and the leaching concentration of As
was tested after 7 days. The results are shown in Figure 7a, the leaching concentration of
As gradually decreased with the increase of pH, the concentration of As decreased from
1056.67 µg/L to 32.76 µg/L when the pH was between 0 and 1, and then the concentration
of As showed a slow downward trend and finally dropped to 9.65 µg/L. The study showed
that the release of As from the tailings was favorable under acidic environment. Especially
in the strong acidic environment with pH = 0, the stability of As-S, Fe-As, and Ca-As species
in the TT will substantially reduce [26,51]. Moreover, the structure of C-S-H and ettringite
will be destroyed, leading to an increase of As leaching.
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Due to the presence of many alkaline substances in the encapsulator, mainly Ca(OH)2
released OH− to the solution, leading to an increase of pH in Figure 7b. In a solution with
an initial pH of 0, the OH− released by the encapsulator cannot completely consume the
H+ in the solution, resulting in the solution remaining acidic (pH = 4.29). It was shown
that the stability of Fe-As species was favored under weakly acidic conditions [52], but
Ca-As species dominated the whole encapsulator and Ca-As species were poorly stable
under acidic conditions [53]. As a result, the concentration of As in the solution decreased
dramatically. The change of As concentration at different pH can be divided into two stages:
the first stage in the range of pH from 0 to 1, the As concentration decreases sharply and
the final solution is weakly acidic, and the second stage in the range of pH from 1 to 5,
the As concentration decreased slowly and the change gradually stabilized and the final
solution is alkaline (pH = 10.07~12.19). Therefore, this sequester still has good results in
S/S of As at pH > 1.

3.6.2. Effect of Temperature on the Leaching Behavior of As

The pH value was adjusted to 3 with HNO3, and the ratio of sample to leachate and
leaching time were kept constant. The results are shown in Figure 8a, with the increase
of temperature, the leaching concentration of As increased from 1.91 µg/L to 24.99 µg/L,
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and the trend of change was stable. The influence of leaching temperature on As leaching
concentration is mainly reflected in the change of diffusion coefficient [25], the change of
pores and structure of the encapsulator, and the formation and development of hydration
products [54]. Leaching is the process by which substances in the solid phase are released
into the liquid phase through the surface. The higher the temperature, the faster the
diffusion rate of As, which leads to an increase in the concentration of As in the liquid
phase. We also found that the amount of change in As concentration per unit temperature
decreases as the temperature increases. It was shown that C-S-H and ettringite dissolve
at high temperatures [55]. The change in temperature is also reflected in the effect on
the pH of the solution; Figure 8b shows the pH value gradually decrease with increasing
temperature, which is mainly due to the decrease in the solubility of the hydration product
Ca(OH)2 with increasing temperature [56]. The decrease in alkalinity of the solution also
affects the stability of the Ca-As species, leading to the release of As from the precipitation.
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change of pH after leaching.

3.6.3. SEM Analysis

Figure 9 shows the effect of different pH and temperature on the surface morphology
of the encapsulator. These amorphous white substances are mainly C-S-H gels and cementi-
tious materials, and compared to pH = 5 (Figure 9b), at pH = 1 (Figure 9a) it can be observed
that the surface is smoother and less dense, and the C-S-H gels and cementitious materials
gathered on the surface undergo dissolution, leading to the re-release of the internal As [57].
The dissolution of these materials releases OH− and raises the pH of the solution, which
is consistent with the results in Figure 7. The effect of temperature on the encapsulator
is also mainly reflected in the change of C-S-H gel and cementitious materials, compared
with 20 ◦C (Figure 9c), a decrease of C-S-H and cementitious materials aggregated on the
surface is clearly observed at 60 ◦C (Figure 9d). The temperature has a catalytic effect on
the chemical reaction, and accelerates the erosive effect of H+ on C-S-H and cementitious
materials [58]. Furthermore, we can observe the appearance of cracks and an increase of
surface porosity, where excess heat at higher temperatures can cause thermal damage to the
encapsulant. We can observe that cracks appear and the surface pore increase, the excess
heat is generated at higher temperatures, thermal damage to the encapsulator can occur.
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3.7. Mechanism of S/S Arsenic

TT is a hazardous solid waste containing As, and if not treated, the internal As will
be released into the surrounding environment under the action of natural weathering.
The As species in TT are complex, mainly As(III)-S, Fe-As(V), and amorphous As(III)-O
species. The As in TT undergoes oxidation reaction, and the As-containing phases As2S3
and Fe(H2AsO4)3·H2O can be observed in the Figure 2. The reaction conversion mechanism
of As is shown in Figure 10. The hydration process of OPC releases OH−, which results
in the whole system being alkaline, and the AsO4

3− released by the Fe(H2AsO4)3·H2O
reaction combines with Ca2+ and OH− to form Ca5(AsO4)3(OH) and Ca3(AsO4)2. A small
fraction of Fe3+ present in the system can generate FeAsO4 precipitate with AsO4

3−, and
also generate Fe(OH)3 colloid with OH−, but in this system, mainly Ca-As species are still
dominant. The solubility of As2S3 in water is small, but the hydrolysis products HAsO2
and H2S can easily react with OH−, therefore promoting the hydrolysis of As2S3. The As2S3
and amorphous As(V)-O species provide As(III) and Ca2+ to form Ca-As(III) precipitates.
Furthermore, the hydration products C-S-H and ettringite also have excellent ability for
S/S of As, C-S-H by physical adsorption, ion exchange, and interlayer symbiosis, and
ettringite mainly through ion exchange of arsenate group and SO4

2− in the structure. FTIR
curves of Si-O, AS-O, and H-O-H indicate that C-S-H and ettringite have ion exchange with
As underwent ion exchange in 0. Amorphous C-S-H and needle-tipped ettringite can be
clearly observed in 0 and elemental As was also detected by EDS.
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The assessment of S/S of As ability should consider the influence of external conditions
on the encapsulator. Lowering pH and increasing temperature contribute to the release of
As, mainly by promoting the dissolution of As immobilized phase and As immobilized
materials, as shown in Figure 9, and pH has a greater effect on As immobilization than
temperature. The effects of pH and temperature on the long-term performance of the
encapsulator and the effects of other factors on S/S of As need further research. Therefore,
it is necessary to employ a systematic and comprehensive assessment of the long-term
performance of the encapsulator under various factors in the future to ensure the safety
and long-term application of the S/S technology.

4. Conclusions

In this study, S/S treatment of arsenic in TT was performed using OPC and the
leaching concentration of arsenic after 28 days was 0.01 mg/L, and it was reduced to a
safe range. The leaching concentration of arsenic was reduced to a safe range. During the
S/S treatment, OH− produced by OPC hydration promoted the dissolution of As(III)-S
species and Fe-As(V) species and combined with Ca2+ to form Ca-As(V) precipitates, and
amorphous As(III)-O-containing species also formed Ca-As(III) precipitates with Ca2+, and
the dissolved As(III) underwent oxidation reactions, leading to an increase in As(V). The
C-S-H gel generated by OPC hydration and ettringite with arsenate group also underwent
adsorption and ion exchange to achieve S/S of As effect. In addition, the encapsulator
showed good durability in a wide range of acidic environments and temperatures.
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