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Abstract: Urban crimes are a severe threat to livable and sustainable urban environments. Many stud-
ies have investigated the patterns, causes, and strategies for curbing the occurrence of urban crimes.
It is found that neighborhood socioeconomic status, physical environment, and ethnic composition all
might play a role in the occurrence of urban crimes. Inspired by the recent interest in exploring urban
crime patterns with spatial data analysis techniques and the development of Bayesian hierarchical
analytical approaches, we attempt to explore the inherently intricate relationships between urban
assaultive violent crimes and the neighborhood socioeconomic status, physical environment, and
ethnic composition in Paterson, NJ, using census data of the American Community Survey, alcohol
and tobacco sales outlet data, and abandoned property listing data from 2013. Analyses are set at
the census block group level. Urban crime data are obtained from the Paterson Police Department.
Instead of examining relationships at a global level with both non-spatial and spatial analyses, we
examine in depth the potential locally varying relationships at the local level through a Bayesian
hierarchical spatially varying coefficient model. At both the global and local analysis levels, it is
found that median household income is decisively negatively related to urban crime occurrence.
Percentage of African Americans and Hispanics, number of tobacco sales outlets, and number of
abandoned properties are all positively related with urban crimes. At the local level of analysis,
however, the different factors have varying influence on crime occurrence throughout the city of
Paterson, with median household income having the broadest influence across the city. The practice
of applying a Bayesian hierarchical spatial analysis framework to understand urban crime occurrence
and urban neighborhood characteristics enables urban planners, stakeholders, and public safety
officials to engage in more active and targeted crime-reduction strategies.

Keywords: urban crimes; census block groups; spatial data analysis; Bayesian hierarchical modeling;
varying coefficients model; Paterson

1. Introduction

Community safety is one of the primary indicators of a livable and sustainable
city [1–8]. Urban space, as the highest spatial structure of human habitation and con-
centration, harbors great potential for human development and prosperity, but it also
serves as a potential hot spot for the dark side of human nature [7,9–15]. Crime occurrence
was never a simple A causes B type of equation but rather involves complex and convoluted
socioeconomic [5,16], demographic [15], human psychological [17–19], governance [20],
and even physical building environmental factors [2,3,6,7,9,21].

Community safety scholars have long explored the relationship between the concentra-
tion of alcohol and tobacco sales outlets, ethnic compositions, and urban crime occurrence
at county [22–24], census tract [12,25–27], and census block group [2,28–30] levels in the US.
The conclusions are clear. Urban crimes tend to occur more often in neighborhoods with
more outlets selling harmful products (alcohol and tobacco) and often find their ways in
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neighborhoods with less than well-to-do socioeconomic status (higher poverty households
occupied by minority ethnic groups). This consensus prevails in community and urban
criminology literature [3,5,7,12,23,31–36] and is the foundation for urban planning, urban
crime deterrence, and other urban governance strategies in building better, more livable
and sustainable cities in the future.

Traditional analytical methods, while utilizing some of the geographic properties
of spatial data (mapping is among the most commonly used geographic properties) to
visualize the results, taking full advantage of the spatial effects [37] in data analysis did
not mature until very recently [2]. The recent advancement of data analysis technologies
thanks to the advanced computational power and innovative algorithms, especially in the
field of spatial data analysis, has created a boom in better understanding the underlying
mechanisms for many urban social and economic phenomena [2,38–44]. While many
studies capitalize on this newfound analytical prowess for in-depth research [3,4,12,27,35],
new approaches and methodological developments continue to push the boundaries for
better exploration, better understanding, and better policy support for urban governance,
urban crime fighting, and the improvement of urban quality of life and sustainability.

One such recent methodological advancement is the development of Bayesian hier-
archical strategy coupled with varying coefficients models [45–47]. Bayesian analytical
strategies have a long history. The core idea of Bayesian analysis is attractive because the
Bayes theorem enables scholars to combine the information carried by the data (observa-
tion, the likelihood) and information that was derived from prior experiences, empirical
studies, scholarly experiences, or even common sense (the prior) to create a full posterior
distribution of the unknown parameters. If no prior experience or empirical studies are
available, Bayesian analysis will then rely exclusively on the likelihood, which is equivalent
to classical statistical analysis [47–50]. From the pure theoretical perspective, Bayesian
analytical approaches prove to be steady and robust against both data issues and prior
issues when carefully specified [47,50]. The primary hurdle to practical Bayesian analysis,
however, is that empirical Bayesian analysis relies heavily on the computer-generated
simulation of posterior distributions that are the product of likelihood density and prior
distribution since analytical solutions are often not attenable in many real-world applica-
tions [50]. Bayesian statistical analysis did not gain much attention until the early 2000s,
when the Markov Chain Monte Carlo sampling strategy with the Gibbs sampler was devel-
oped [51–53]. Drastically increased computing power facilitated the spread of Bayesian
analysis, especially considering the huge accumulation of prior research experiences on
many societal, economic, natural, and physical phenomena. Bayesian analytical approaches
are able to tap into this great treasure and potentially produce more versatile and reliable
analytical results [50,51].

This premise was especially true in the field of spatial (and later spatiotemporal) data
analysis [54–57]. This is because the Bayesian modeling strategy allows a more flexible
research design and scheme that do not have to impose simplified structures that are often
elusive in spatial and spatiotemporal data analyses. In addition, spatial/spatiotemporal
data analysis has long recognized the spatial effects as inherent characteristics of data
collected over geographic spaces [58,59]. The development of spatial data analysis in the
decades since the early 1970s [60,61] has attempted to structuralize, model, incorporate,
or filter the spatial effects that was the result of the coincidence of locational similarity
and attribute similarity [58,62–64]. While recognizing that spatial effects have profound
impacts on data analysis, especially in regression analysis [37,65–67], spatial effects are
structuralized with a neighborhood linkage matrix that often has either binary (1 and 0)
elements or inversed distance elements. While the structure certainly brings revolutionary
understanding of data analysis with geographical properties, it might still be on the simpler
side of the spectrum to characterize the full scope and flexibility of the spatial processes
that generate the data. Bayesian approach, on the other hand, while taking advantage
of the prior knowledge that observations of spatial neighbors are somehow correlated,
the correlation structure can be flexibly assumed with hyperparameters and reasonable
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distributions such as the Gaussian Markov random field [68] that can be effectively used to
describe spatial observations that follow certain neighborhood structure.

Bayesian spatial/spatiotemporal analysis thus provides a renewed opportunity for
geographers, urban criminologists, spatial epidemiologists, and many other spatial social
scientists to hopefully unravel more in-depth understanding of previous problems and gen-
erate new knowledge regarding how certain socioeconomic processes operate to produce
the data that we observe.

After this brief introduction, we will present our data and detail the Bayesian hierar-
chical spatial varying coefficients process model. Analytical results are presented in the
Section 3, and discussion follows in the Section 4. We conclude our study with a summary
and future research foci.

2. Materials and Methods
2.1. Paterson, New Jersey

The City of Paterson, the county seat of Passaic County, New Jersey, is located in
northern New Jersey (Figure 1) approximately 20 miles to the west of New York City.
According to the 2020 Census, with a population of 159,732, it is the third most populous
city in the state of New Jersey. It has a land area of 8.71 square kilometers according to the
US Census Bureau, which makes it the fourth most densely populated city in the US.
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Paterson initially served as the cradle of the American industrial revolution in the
early 19th century. The nearby Great Fall provide ample hydraulic power to encourage
the development of industrial mills and factories. The booming of Paterson’s industries
made the city an ideal location for new immigrants. In the latter half of the 19th century,
Paterson’s silk production dominated the local economy and earned the city the nickname
“Silk City.” Since then, it has become a major destination for Hispanic immigrants as well
as immigrants from Turkey, the Middle East, and South Asia. In the 2020 census, it was
estimated that there are anywhere between 75 to 100 different languages spoken in the city.
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In the early half of the 20th century, Paterson developed into a booming industrial center
and urban area.

The declination of urban area and ensuing suburbanization after the end of the second
world war gradually brought decline to the city of Paterson. Beginning in the 1960s, the
unemployment rate in Paterson started to climb, and many residents had to move out
of the city to find jobs. While new immigrants continued to come to the city, especially
Hispanic immigrants, the post-industrialization economic mode that emphasized the
knowledge economy and information technology, as well as continuous suburbanization
and exurbanization [69–71], brought further decline to the city of Paterson that continues
today. While aging residents of the city often remember the glorious days the city once
enjoyed, with mounting unemployment rate and uncertain economic cycles, the city has
suffered much more than simple economic downturn. As a side product, the crime rate
within the city has picked up its pace. Establishments such as alcohol and tobacco sales
outlets that were often associated with shadowy operations started to gain ground within
the city. In addition, because residents were moving out of the city, many properties were
also abandoned, creating a gloomy landscape that is more than dotted eyesores (Figure 1).
Of the six wards in Paterson, Wards 1, 4, and 5 are particularly infested with violent crimes
from the available 2012 crime data we gathered.

Mapping the distribution of violent crime enables policy makers and city officials
to have a clear picture of the crime landscape. For better governance and for creating
and maintaining a vibrant and livable, sustainable city, understanding, investigating, and
exploring the fundamental urban elements that might be associated with crime occurrence
are critical.

2.2. Violent Crimes, Harmful Products, Urban Prosperity, and Ethnic Landscape

The declination of a city is not something that happens overnight; there are funda-
mental causes that are rooted in the society, the physical environments, the economy,
and even the ethnic landscape [2,27,72]. The occurrence of urban crimes almost cer-
tainly ensues from the declination of cities; the abandonment of properties; and the loss
of family-building, community-bonding, and future-promising employment opportuni-
ties [4,7,10,14,15,25,28,34,73–77]. The increased crime occurrence will in turn facilitate
further declination of the city, entering the city into a vicious cycle. Without clear under-
standing of where to break this cycle, the city and its residents could suffer from countless
negative consequences such as degraded infrastructure, loss of business, loss of property
value, higher unemployment rate, loss of population, and ill-maintained cityscape and
building environments, among many others. In addition, while not explicitly stated or
even consciously aware, outlets that sell harmful products, such as tobacco and alcohol,
tend to increase their presence in declining neighborhoods [12,78–80]. All these factors
combined cause a city to lose its vibrancy and decrease its livability in the long run.

This study collected various assaultive violent crime occurrences in the City of Pater-
son from the Paterson Police Department, which includes both aggravated assaults and
robbery, from the year 2013. Actual locations where the violence occurred were geocoded
and then integrated (via spatial join in a GIS) to the census block groups to produce the
count information within each block group; then, a heat map was produced to show the
distribution of crime in the city (Figure 1). Sociodemographic factors, which include the
total population, percentage of Hispanic population, percentage of African American pop-
ulation, and median household income within the census block group, were obtained from
the New Jersey Department of Labor, and the US Census Bureau. Tobacco (355) and alcohol
(197) sales outlets information were obtained from the Paterson Alcohol Beverage Control
Board (2013). The actual addresses of those outlets were geocoded and integrated (via
spatial join in a GIS) to the census block group as well. Abandoned property information for
2013 was acquired from Paterson’s Housing Authority (1557), and a similar GIS operation
was conducted to integrate the count to the census block group level. The map of tobacco
and alcohol sales outlets and abandoned properties and the heat map of violent crimes
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are presented in Figure 1. A visual inspection shows clear spatial associations between
urban crime/livability and the numbers of tobacco and alcohol sales outlets and abandoned
properties. Still, a formal analysis is required to provide confirmation of the relationships
among these factors.

2.3. Bayesian Hierarchical Modeling Approach

In many previous works, investigating the relationships between crime and socioeco-
nomic and sociodemographic characteristics, urban infrastructure, and harmful product
sales outlets is usually carried out with either ordinary least squares regression [12,27,81] or
simultaneous spatial autoregressive models [2,82,83], or, often in the case of investigating
spatially varying relationships, geographically weighted regression or eigenfunction-based
spatial filtering [79,82]. Among these approaches, the spatial approaches (either spa-
tial autoregression or spatially varying regression) are often preferred since the data are
collected over geographic space that is governed by the First Law of Geography [84]
and the spatial effects of both autocorrelation and heterogeneity tend to dominate the
data-generating process.

In addition to these commonly applied spatial data analysis and modeling techniques,
the recent development of Bayesian statistics has lent power to spatial data analysis. Ap-
proaches that are based on the Bayes theorem provide viable alternatives for looking at the
relationships among variables. The Bayesian analytical framework proceeds as follows.
First, through the observed data Y (violent urban crime counts per census block group),
we can establish a likelihood function that specifies the distribution of the data under the
model determined parameters (θ):

L(θ) = p(Y = y|θ)

Since the violent urban crimes per census block group are count data, a Poisson family
distribution is well suited for establishing the likelihood. Further experiments with the
data suggest that a negative binomial distribution represents the data’s distribution well
and is adopted as the likelihood distribution.

Second, in our current study, we are interested in the relationships between the inputs,
namely, socioeconomic and demographic characteristics, harmful product sales outlets,
and physical built environments, and the output, violent urban crimes. These relationships
are conveniently modeled through a regression analysis and presented as the coefficients
of the inputs. Since the data are collected over space, we could separate the regression
residual into an unstructured residual and a spatially structured residual [55]. In this
case, the coefficients are assumed to stay constant over space. We have accumulated an
extensive amount of prior knowledge on spatial structure-determined random effects
such as identified by Besag and colleagues [56,85]. The details are extensively discussed
in [54,55,57,85] and will not be repeated here.

If, however, we assume that the unknown parameters do not necessarily stay constant
over space, as seen in many local analyses (such as GWR and other spatially varying
coefficient models), then instead of separating the residuals, a hierarchical structure with
each observation within a geographical unit as the first level (individual observation level)
and the geographical location as the second level (group level) can be specified. In this
hierarchical structure, although each group (the geographic location) contains only one
observation, we can assume that each observation is sampled from a different population
that is specific to the geographic location (group). While it is possible to perform a stratified
analysis within the Bayesian analytical framework by fully specifying a probability distri-
bution as the prior (for instance, a non-informative prior such as θj ∼ Normal (0, 10000)
can be specified), since we only have one sample in each group (geographic location), the
estimation for θ is going to be highly variable and unstable. In addition, this assumption
violates the First Law of Geography because the First Law dictates that at the group level
(geographic location level), θjs are somehow dependent on one another based on their geo-
graphic locations (closer things are more related than distant ones). This prior knowledge
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(First Law of Geography) allows us to take full advantage of the hierarchical structure of
the data because θjs are no longer considered independent; instead, they are assumed to
come from one single distribution p(θj

∣∣ψ) characterized by the same hyperparameter ψ,
and we have accumulated sufficient prior knowledge of this hyperparameter ψ because of
the First Law of Geography.

We are replacing the spatial structure with a hierarchical structure. The advantage of
doing so is that each group (geographic location j) will now have its own unique parameter
(θj) because the observation in each location is assumed to be sampled from different
populations. This unique parameter, however, is similar to other observations’ parameters
because the hierarchical structure is spatial in nature and can be characterized based on the
accumulated knowledge of spatial dependence with hyperparameters [54,55] as p(θ|ψ) ,
where ψ is the hyperparameter. This modeling structure is the so-called varying coefficient
model under the Bayesian framework [47]. This model assumes a hierarchical structure for
each parameter as a unique spatial modifier to create a spatially varying coefficient process
model (local model) [55]. The model is specified as:

yi = f (ηi) =
P

∑
p=1

(
βp + βpi

)
xpi

where yi is the outcome variable (violent crime occurrence) at census block group i. f (ηi) is
the link function, which follows a negative binomial specification for count data. p is the
number of predictors, including the intercept. xpi is the pth covariate (the socioeconomic,
demographic, and physical built environment characteristics) at location i. βp is the average
coefficient of the pth covariate. βpi is the space effect modifier for the pth covariate at
location i (i = 1, . . . , n). The coefficients and spatial modifiers are the parameters (θ) we are
interested in estimating.

To estimate the parameters, we need to specify their priors so that using the data
generated likelihood distribution, we will be able to produce the posterior distributions.
The average coefficients are called fixed effects and are typically normally distributed,
centered on 0 with large variances [55]. For the spatial effect modifier, if the variation is
considered discrete, as in our current study in which the data are collected over areal units
(census block groups), it is considered a Gaussian Markov random field (GMRF) [68] and
can be modeled with an intrinsic conditionally autoregressive (ICAR) model [47,85].

A GMRF is a very intuitive graphic representation of the First Law of Geography that
is also based on a predefined neighborhood structure. In a GMRF, let the spatial modifier
(βp1, . . . , βpn)

T have a normal distribution with mean µ and covariance matrix Σ. Define
the labelled graph G = (V, E), where V = {1, . . . , n} is the set of vertices (geographic
areas) and E is a set of edges such that there is no edge between vertices i and j if these
two vertices are not considered neighbors (predefined neighborhood structure). Then we
say that the spatial modifier (βp1, . . . , βpn)

T is a GMRF with regard to G. It turns out that
the labelled graph, G, determines the matrix structure of the precision matrix, Q, which is
the inverse of the covariance matrix. In the precision matrix, the elements Qij is non-zero
only when spatial units i and j are considered neighbors. In our study, we use the sphere
of influence (SOI) rule to determine the neighborhood structure and generate the labelled
graph G. For a sphere of influence (SOI) for the ith unit, let ri be the distance from i to
its nearest neighbor and Ci the circle centered on i with the radius of ri; i and j are SOI
neighbors when Ci and Cj intersect. With this definition, the spatial effect modifier can
then be considered a GMRF with regard to G that is generated based on the SOI rule of the
census block groups of Paterson.

The ICAR model for all the p covariates at location i indicates the prior of the spatial
effect modifier can be expressed as:

βi|β−i ∼ N

(
1
ni

∑
j:i∼j

β j, (niτ)
−1

)
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where β−i is the coefficient on locations other than i; ni is the number of neighbors of
location i; and i ∼ j denotes locations i and j are neighbors as identified in the graph G. τ
is a precision parameter (the hyperparameter) [47].

In addition, to avoid potential overfitting problems, we also adopt the penalized com-
plexity priors for all the hyperparameters (the precisions of the varying coefficients) [47,86].
When specifying the penalized complexity priors for the hyperparameters, we found that
the ICAR model can be seen as a random walk of order one model with rank equals to n–1
(n being the number of spatial units). Based on the discussion by Simpson, Rue, Riebler,
Martins, and Sørbye [86], we assumed a relatively small standard deviation (0.3) as an
upper bound for the spatial random effects (the varying effects) to reflect our expectation
that the neighborhood conditions have relatively similar effects on crime occurrence. To
test the sensibility of the models to this hyperparameter, we used an even smaller standard
deviation (0.1) and a relatively large standard deviation (0.5) to calibrate the model. The
results do not change much, suggesting that the model is robust against the hyperparameter.
With the prior specified, our model is complete. The model is calibrated with the recently
proposed integrated nested Laplace approximations (INLA) algorithm in R platform [55,87],
which is comparable with but much faster than the commonly employed MCMC algorithm
for Bayesian statistics simulation.

3. Results

Under the Bayesian framework, we first establish a generalized linear model between
the violent crime counts and the demographic factors (total population, Pop, percentage
of Hispanics, pcthisp, percentage of African Americans, pctaa), socioeconomic (median
household income, MHI), and physical built environment (tobacco, tbc and alcohol, alc
sales outlets and abandoned properties, abdp) using the negative binomial distribution [2].
Three models are estimated under the Bayesian framework using R-INLA. The first model
is a regular negative binomial regression without specifying any spatial effects as the
random effects. The second model specifies the spatial effects as structured random effects
and adopts a penalized complexity prior based on the Besag specification for the spatial
structure [85]. The third model adopts penalized complexity priors for all the coefficients
under the varying coefficient process modeling framework.

All three models are calibrated in R [88] with the spdep package [89] and R-INLA
package [48]. The spedp package was used to create the sphere of influence (SOI) neigh-
borhood structure. The R-INLA package converted the neighborhood structure to a graph
to build the Gaussian Markov random field for the spatial structure and incorporate the
spatial structure in the spatial and spatially varying coefficient models. For both models,
the penalized complexity priors for the spatial structures are adopted to avoid potential
model overfitting. The saturated deviance information criteria (saturated DIC) are reported
in R-INLA and are used for model comparison, with smaller values suggesting a preferred
model [48,55].

The results for Models 1 and 2 are reported in Tables 1 and 2. Table 3 reports the
summary of the estimated varying coefficients and corresponding varying t-values.

Table 1. Nonspatial negative binomial regression results.

Variables Mean sd 0.025 Quant 0.5 Quant 0.975 Quant

(Intercept) 0.602 0.435 −0.255 0.604 1.453
Pop 0.220 0.098 0.030 0.218 0.416
MHI −0.021 0.004 −0.028 −0.021 −0.014
pcthisp 1.590 0.480 0.649 1.589 2.534
pctaa 1.995 0.415 1.183 1.994 2.813
alc 0.052 0.037 −0.020 0.052 0.125
tbc 0.103 0.021 0.062 0.103 0.144
abdp 0.005 0.002 0.000 0.005 0.010

Saturated DIC: 911.0929.
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Table 2. Spatial negative binomial regression results (using the Besag structure with penalized
complexity prior).

Variables Mean sd 0.025 Quant 0.5 Quant 0.975 Quant

(Intercept) 0.584 0.447 −0.301 0.586 1.457
Pop 0.219 0.098 0.031 0.218 0.414
MHI −0.021 0.004 −0.028 −0.021 −0.014
pcthisp 1.602 0.493 0.635 1.601 2.574
pctaa 2.018 0.438 1.163 2.016 2.886
alc 0.053 0.037 −0.020 0.053 0.126
tbc 0.101 0.021 0.061 0.101 0.143
abdp 0.005 0.002 0.000 0.005 0.010

Saturated DIC: 910.4023.

Table 3. Summary of the spatially varying estimated coefficients and t-values (with the Besag spatial
structure for each variable and penalized complexity prior).

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Pop.b * 105 0.256 0.023 0.198 0.244 0.274 0.293
Pop.t ** 105 1.912 0.252 1.243 1.793 2.09 2.324
MHI.b 105 −0.019 0.004 −0.033 −0.021 −0.017 −0.01
MHI.t 105 −2.427 0.446 −3.331 −2.776 −2.123 −1.28
pcthisp.b 105 1.121 0.02 1.081 1.104 1.136 1.161
pcthisp.t 105 1.601 0.029 1.527 1.585 1.625 1.652
pctaa.b 105 1.531 0.014 1.498 1.519 1.542 1.552
pctaa.t 105 2.252 0.029 2.187 2.231 2.271 2.317
tbc.b 105 0.083 0.009 0.059 0.078 0.09 0.105
tbc.t 105 1.973 0.405 1.048 1.68 2.214 2.993
alc.b 105 0.066 0.014 0.029 0.057 0.076 0.107
alc.t 105 1.079 0.248 0.359 0.916 1.235 1.649
abdp.b 105 0.007 0.001 0.004 0.006 0.007 0.008
abdp.t 105 1.129 0.24 0.643 0.969 1.242 2.045

*: b represents the estimated coefficients. **: t represents the calculated t-values for the estimated coefficients.
Saturated DIC: 896.7343.

In addition, based on the varying t-values, we are also able to identify for the spatially
varying coefficients model, total population, median household income, number of tobacco
sales outlets, percentage of African Americans, and number of abandoned properties show
some significant spatially varying patterns. These patterns are mapped in Figure 2 to
demonstrate the spatial variations in the relationships between violent crime occurrence
and demographic, socioeconomic, and physical built environment characteristics at the
census block group level.
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4. Discussion

Reading the tables and figures, we have some interesting results to share with the
urban livability and sustainability community. First, from looking at the three tables, an
immediate impression emerges. The spatial model with penalized complexity prior and
the non-spatial model report similar results. The saturated DICs of both models are also
very similar (911.0929 for the nonspatial model and 910.4023 for the spatial model). This
observation is contrary to previous findings [2,80,83] with similar model structures and
calibrations. In general, classical spatial data analysis techniques that are heavily dependent
on the spatial autocorrelation structure of the regression residuals tend to suggest that the
existence of spatial autocorrelation in the regression residuals will violate the regression
assumptions and that thus, maximum likelihood estimators will produce viable alternatives,
and often it turns out the alternatives perform better than ordinary least squares estimation.
While this is interesting at first glance, the comparison is not fair to start with. This is
because estimation with ordinary least squares with spatially autocorrelated residuals is
not valid, and given this, comparison between a valid estimator (the maximum likelihood
estimator) and an invalid estimator (the ordinary least squares estimator) might not tell
the full story. Under the Bayesian analytical framework, however, since the estimation
does not depend on the minimization of the squared residuals (instead, spatial structure is
introduced as a random effect in the model structure, and a penalized complexity prior for
the random effect is utilized), we argue that the comparison might be more reasonable.

From the comparison of the spatial and nonspatial models under the Bayesian analyti-
cal framework, we contend that at the census block group level, the spatial structure of the
census block groups does not have a significant impact on the modeling results when added
as a separate random effect. This result suggests that when conducting spatial analysis, we
need to take caution before we claim that spatial effects always cause discernible differences
from their non-spatial counterparts, as is often reported in spatial autoregressive analysis.
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Both models suggest that violent crimes tend to occur more often in more populated block
groups with lower median household incomes, higher concentrations of ethnic minorities,
harmful product sales outlets, and dilapidated neighborhood environments. This result is
not different from many of the previous studies’ findings [2,7,14,15,24,35,90–92]. The result
is also one of the cornerstones for municipal governance and policing practices.

Second, while adding the spatial structure as an additional random effect to the
regression model does not yield significant differences from the regular regression analysis
within the Bayesian analytical framework, adding spatial structures separately to each
of the explanatory variables yields a better model fit (the saturated DIC is 896.7343) and
suggests more interesting relationships between the factors and urban crime occurrence at
the individual census block group level (instead of the collective census block group level
as in the previous model). This result is interesting not only because it agrees with a widely
observed result that local models often fit the data better even after the added complexity
compared with global models [82,93–95] but also because it suggests that spatial structure
might very well be more of an individual structure that is inherently embedded with
individual explanatory variables over space than a collective one. By ignoring the spatial
structure of individual explanatory variables but attempting to capture the spatial structure
via an added random effect, even with the same Gaussian Markov random field, and
penalized complexity priors for the hyperparameters, spatial effects at the collective level
might still fail to present or exert significant impact on modeling performance or results.
While practitioners of varying coefficient modeling, especially the popular geographically
weighted regression analysis, often focus on the varying coefficients and the model’s added
flexibility and detail-explaining power [80,94,95], scholars often do not explain why local
spatial models account for the spatial effects better than global spatial ones. The current
exploration with the urban crime analysis offers a possible alternative explanation that
spatial structure and spatial effects are likely more of an individual structure that is unique
to each individual explanatory variable instead of a global effect that can be modeled
collectively, or at least sufficiently modeled collectively. This finding is critical in that it
provides solid theoretical guidance for analyzing data collected over geographic space.
While considering spatial structure and spatial effects first as a collective structure that
can be modeled as a random effect, it is imperative to model individual structure and
effects to produce a holistic understanding of the relationships presented within the model.
This is especially critical for analyzing urban crimes and what factors affect urban crimes
at detailed municipal levels because we will be using the results as policy guidance for
urban governance, crime fighting, policing practices, and building a livable and sustainable
urban future. More reasonable and hence more reliable modeling results will provide solid
support for effective policies and actions to fight urban crime and create a smart, more
livable, and sustainable urban future.

Third, with the above modeling understanding, our focus now turns to the results
presented by the varying coefficients model that are mapped in Figure 2. Not surprisingly,
crime occurrence is generally high in places where there are more people. This pattern,
however, is more salient in Wards 1, 4, and 5, where crime occurrence is more concentrated.
In the other three wards, the numbers of people in the census block groups do not have sig-
nificant impacts on local crime. This can be explained by the “pockets of crime” theory [96].
Wards 1, 4, and 5 of Paterson are infested with violent crimes, which suggests these wards
possess certain characteristics that might offer advantages to violent crimes. More dense
populations only exacerbate these advantages and lead to more violent crimes. In the
other wards where such advantageous characteristics for violent crimes do not prevail,
population concentration does not seem to be related to the occurrence of violent crimes.
Our Bayesian hierarchical spatial modeling results can verify that the pockets of crime
theory clearly manifests here in Paterson, NJ.

Two advantageous characteristics for violent crime occurrence in these wards are the
concentration of tobacco and alcohol sales outlets and the number of abandoned properties
(Figure 1). As a matter of fact, while in the local model, the numbers of alcohol sales outlets
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and abandoned properties at the census block group levels do not present widespread
significant associations with the occurrence of violent crime (Table 3), the number of tobacco
sales outlets shows a rather consistent pattern over Wards 1, 4, and 5. While the lack of
significant local relationships between alcohol sales outlets and abandoned properties
seems to be contradictory to previous findings [2,27,82] and also to the global model’s
results (Tables 1 and 2), we are not particularly surprised. At the global modeling level,
tobacco and alcohol sales outlets and abandoned properties at the census block group level
in Paterson do not show significant multicollinearity (none of the VIFs exceeds 4), a careful
examination of Figure 1 shows a clear spatial overlapping pattern of these three urban
landscape elements. While under the Bayesian analytical framework in the current study,
we do not examine the local multicollinearity among the explanatory variables, we suspect
that at the local level, tobacco and alcohol sales outlets and abandoned properties have high
levels of spatial overlapping, which leads to the lack of significant relationships between
violent crime occurrences and the other two landscape elements.

The lack of significant relationships with the concentrations of Hispanic population as
suggested by the global model, is likely for the same as above. The City of Paterson has a
dominant Hispanic population. According to the US Census Bureau population estimates
as of 1 July 2021, 61.4% of Paterson’s residents are Hispanic or Latino. The prevalence
of Hispanic population might very well create a local multicollinearity situation between
percentage of Hispanic residents and total population. A quick re-run of the varying
coefficient model without the total population as one of the explanatory variables produces
the t-value for percentage of Hispanic residents ranging from 1.863 to 1.995 with a mean of
1.936 instead of the reported range in Table 3 (1.527–1.652 with a mean of 1.601).

Significant but varying relationships between the violent crime occurrence and median
household income and percentage of African American residents at the census block group
level are well established in the literature [2,73,97–99]. Neighborhoods with disadvan-
tageous socioeconomic status are often called hotbeds for crime [36,100]. In general, in
American society, African Americans often have disadvantageous societal and economic
status compared with other ethnic groups and are often taken advantage of by harmful
product sales outlets [83,101–103]. As a result, concentrations of African Americans at
the census block group level are universally positively related with higher occurrences of
violent crimes. This relationship prevails in all six wards in Paterson, with slightly stronger
relationships in Wards 1, 2, 4, and 5. The spatial varying pattern of the median household
income at the census block group level, however, demonstrates an almost supplementary
pattern to that of the total population. In Wards 1, 4, and 5, the median household income
and violent crime occurrence show weak or even no significant relationships, while in the
other wards, higher median household income often suggested lower violent crime occur-
rence (Figure 2). This pattern can also be explained by the ”pockets of crime” theory [96].
In the violent crime-laden Wards 1, 4, and 5 (the pockets of crime), the disadvantageous
characteristics such as high concentrations of harmful product sales outlets and abandoned
properties (Figure 1) dominate the occurrence of violent crime. Within these pockets, vari-
ations in income are no longer sufficient to bring variations in the occurrence of violent
crimes. In other wards, however, income level suggests the socioeconomic landscape,
which again demonstrates the relevant relationship between income and violent crime
occurrence: higher incomes are associated with less crime.

5. Conclusions

The current study reexamined the relationship between violent crime occurrence
and demographic, socioeconomic, and physical built environment factors in Paterson,
New Jersey, at the census block group level. We performed the analysis with Bayesian
hierarchical spatial models. While the global level of analysis produces similar results
to those often discussed in the literature, the local level analysis suggests two important
take-home messages. First, spatial structure is important when analyzing urban crime
occurrence and its potential contributing factors. The varying coefficient model under
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the Bayesian hierarchical modeling scheme, however, suggests that spatial structure is
better modeled with individual explanatory variables instead of as a collective whole,
especially considering that the priors for the hyperparameters that characterize the spatial
structures are penalized based on their complexity. Not only will the varying coefficient
model provide a more detailed picture of the investigated relationships, the model is also
more realistic when integrating spatial effects in data analysis.

Second, while the occurrence of crime is never an easy phenomenon that can be tackled
by finding the causes and stopping them, analyzing the data, especially with a holistic
investigation as introduced in the current study, does provide solid urban governance and
crime fighting supports. For instance, while many might argue that improving incomes
might prevent more violent crimes, our study suggests that changing income levels might
not work as well if the fundamental physical built environment of the neighborhood is not
changed first. Similarly, while the model indicates that concentrations of African Americans
residents might be inconveniently related with higher occurrence of violent crimes, it is
not the concentration of any particular ethnic group but again, the fundamental and
structural socioeconomic disparity that leads to this relationship landscape. Still, the
patterns presented in the current study also serve as urban policing guidance for strategic
planning and responding to possible future crimes.

Third, the successful application of the Bayesian hierarchical spatial model framework
in this study provides a fresh methodological approach to urban studies that involve data
collected over geographic units. When any geographic unit is treated as its own hierarchy
but connected under the dominance of the First Law of Geography, an informed prior that
takes advantage of this knowledge (spatial autocorrelation) for the hyperparameter of the
coefficient could produce more reasonable and potentially more reliable estimates. Future
studies that consider relationships among variables collected over geographic space can
take advantage of the proposed approach.

Urban crime is no doubt one of the biggest threats to a smart, livable, vibrant, and
sustainable city. Fighting crime, however, requires not only effective and efficient policing
but more importantly, understanding the root of the problem and being able to deal with
the problem from the fundamental level. Our reexamination of the crime occurrence and
demographic, socioeconomic, and physical built environment factors in Paterson, New
Jersey, clearly suggests that urban crime is the surface manifestation of the deeper problem
of social injustice. While policing and urban renovation projects could mitigate the problem
to certain degrees, a smart, livable, vibrant, and sustainable city needs to address the
fundamental roots of social and economic injustice. Only then will cities and city dwellers
be able to enjoy the city life and landscapes all together.
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