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Abstract: Springs offer insight into the sources and mechanisms of groundwater recharge and can be
used to characterize fluid migration during earthquakes. However, few reports provide sufficient
annual hydrochemical and isotopic data to compare the variation characteristics and mechanisms with
both atmospheric temperature and seismic effects. In this study, we used continuous δ2H, δ18O, and
major ion data from four springs over 1 year to understand the groundwater origin, recharge sources,
circulation characteristics, and coupling relationships with atmospheric temperature and earthquakes.
We found that (1) atmospheric temperatures above and below 0 ◦C can cause significant changes in
ion concentrations and water circulation depth, resulting in the mixing of fresh and old water in the
aquifer, but it cannot cause changes in δ2H and δ18O. (2) Earthquakes of magnitude ≥ 4.8 within a
66 km epicentral distance can alter fault zone characteristics (e.g., permeability) and aggravate water–
rock reactions, resulting in significant changes in δ2H, δ18O, and hydrochemical ion concentrations.
(3) Hydrogen and oxygen isotopes are the most sensitive precursory seismic indicators. The results of
this study offer a reference for the establishment of long-term hydrochemical and isotopic monitoring,
with the potential for use in earthquake forecasting.

Keywords: hydrogen and oxygen isotopes; hydrogeochemical; water cycle; earthquakes; springs

1. Introduction

Springs offer abundant information related to deep fluids, groundwater circulation,
and tectonic activity [1–4]. They may result from upwelling magmatic fluids or from
deep-circulating meteoric water migrating along faults [5–7]. Generally, groundwater
experiences continuous physical and chemical interactions during circulation; however, in
relatively stable aquifers, it can maintain its specific hydrogeochemical characteristics and
isotopic composition [8,9]. Earthquakes can change the crustal structure at local or regional
scales, leading to the alteration of pore pressure within rock bodies and the mixing of
aquifers. This process can alter the hydrogeochemistry and isotopes of spring water [10,11].
Therefore, the hydrogeochemical and isotopic characteristics of springs may reveal the
origin, properties, migration path, and vertical deep circulation characteristics of the water
body, including the dynamic processes of groundwater during tectonic activity [3,12–21].

Studies on spring hydrogeochemistry and isotopic composition have been reported
for over 50 years. Some have focused on their changing characteristics in relation to at-
mospheric temperature, while others have focused on the impact of earthquakes [22–27].
However, few reports provide sufficient annual hydrogeochemical and isotopic composi-
tion data to correlate the variation characteristics with both atmospheric temperature and
seismic effects. To distinguish the impacts of these two factors, it is necessary to obtain
long-duration continuous observations that reveal geological structure, fluid origins, fluid
circulation characteristics, interaction processes between deep and shallow fluids, and the
geochemical background of the system [28,29].

In the Tianshan area with frequent earthquakes, four springs, which are located at
a close surface distance, sometimes show different hydrochemical characteristics before
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historical earthquakes. The studies of their genetic mechanisms, influence factors, and
coupled with earthquakes are quite necessary for proposing the typical indicators of
earthquake forecasting and achieving disaster reduction. In this study, based on 1 year of
continuous observations of hydrogeochemistry and δ2H–δ18O at four springs in Urumqi,
China, we aimed to 1© identify the origin and deep circulation processes of the spring
water, 2© reveal the influence of atmospheric temperature on groundwater circulation, and

3© establish the response relationship between geochemical changes and earthquakes. Our
results offer a reference for the establishment of long-term hydrochemical and isotopic
monitoring and offer new insight into precursory earthquake signals.

2. Geological and Hydrogeological Settings

Urumqi is located in the central North Tianshan Mountains of northwestern China.
It sits on the southern margin of the Junggar Basin and is bounded by Bogda Mountain
to the east and Turpan Basin to the southeast (Figure 1). The distance between Urumqi
and the sea is the greatest of any city in the world; the city lacks groundwater resources
and experiences huge annual temperature variations. The annual average temperature is
7.88 ◦C, while the monthly average temperatures in summer (July to August) and winter
(December to January) are 24 ◦C and −26.5 ◦C, respectively. This extreme temperature
difference can reach 69.2 ◦C [30].

The research area covered four springs (Spring 04, Spring 09, Spring 10, and Spring 15)
located in the Permian fan delta shore shallow lake facies on the edge of Bogda Moun-
tain [31]. Spring 04 and 10 always have bubbles before earthquakes, which indicates that
they are closely related to the fault. The topography of this area is characterized by a
piedmont plain with high elevations to the south and low elevations to the north. Ground-
water flows from south to north, and mainly originates from Urumqi Glacier No. 1 in
the southwest of the study area [32]. However, according to the local hydrogeological
conditions of Spring 09 and Spring 10, groundwater also flows from mountains in the east
towards the piedmont plain in the west. Groundwater is mostly stored in bedrock fissures,
which is easily controlled by vertical climate zoning and geological structures [33].
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Figure 1. Topographical map of the study area. Red triangles show the locations of the springs
analyzed in this study; green triangles show sample points from previous studies [34,35]; and pink
circles show earthquakes. The inset map shows the wider regional setting with the red box delineating
the study area.
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Spring 04 (87.66◦ E, 43.83◦ N) and Spring 15 (87.66◦ E, 43.83◦ N) are ~0.8 km altitude
and located 300 m apart on the Shuimogou–Baiyangnangou fault. The lithology of the
Spring 04 aquifer is Permian oil shale and siliceous sandstone, and the hydrochemical
type is SO4–Na. The average annual water temperature is ~20 ◦C, and the pH is 9.29. The
aquifer of Spring 15 is Permian sandstone and thin limestone containing fissure phreatic
water; the hydrochemical type is SO4·Cl–Na·Ca or SO4–Na·Ca. The annual average water
temperature is ~10 ◦C, the flow is 1.5 L/s, and the pH is 7.6.

Spring 09 (87.62◦ E, 43.70◦ N) and Spring 10 (87.62◦ E, 43.70◦ N) are ~1 km altitude
and located 100 m apart in the Northwest Liushugou–Hongyanchi fault zone (Figure 1),
which mainly runs through Carboniferous and Permian strata with strong folds in the south,
thrusting northward onto Permian and Triassic strata. The lithology of the Spring 09 aquifer
is Permian sandstone and conglomerate; the bedrock fissure water has a hydrochemical
type of SO4·Cl–Na or SO4·HCO3–Na. The average annual water temperature is ~10.6 ◦C,
and the pH is 8.0. The aquifer of Spring 10 is Permian siliceous sandstone and conglomerate
along the crushed zone of the fault. The hydrochemical type is SO4·Cl–Na, the average
annual water temperature is ~11.2 ◦C, and the pH is 7.7.

3. Samples and Methods

We collected 200 samples from four springs (springs 04, 15, 09, and 10) over the course
of ~1 year. Samples were collected every 2 days during three sampling periods: 15 March
to 30 April 2020, 3 September to 3 October 2020, and 15 December 2020 to 11 January 2021.
Atmospheric temperature was >0 ◦C (T > 0 ◦C) from 15 March to 3 October 2020 and <0 ◦C
(T < 0 ◦C) from 15 December 2020 to 11 January 2021.Water samples were stored in 100
and 30 mL polyethylene bottles for major ion (Na+, K+, Ca2+, Mg2+, Cl−, SO4

2−, NO3
−,

HCO3
−, CO3

2−, F−) and isotope (δ2H and δ18O) analyses, respectively. All samples were
measured at the Institute of Surface-Earth System Science, Tianjin University.

The δ2H and δ18O were analyzed using a liquid water isotope analyzer (Picarro
L2140-I, Santa Clara, CA, USA) after filtration through a 0.22 µm cellulose-acetate filter
membrane [36]. Based on replicate measurements of standards and samples, the analytical
precisions for δ2H and δ18O were better than±0.46‰ and±0.05‰, respectively. The results
are reported relative to the Vienna Standard Mean Ocean Water (V-SMOW). Extremely
accurate measurements of isotopic ratios were achieved when three standard samples were
measured after every seven unknown samples.

Samples for major ion analysis were filtered through a 0.45 µm Millipore membrane.
Major cations (Na+, K+, Ca2+, and Mg2+) were measured by an inductively coupled plasma
emission spectrometer and major anions (Cl−, SO4

2−, F−, and NO3
−) were measured by

ion chromatography (Thermo Aquion) with analytical error of < 1 mg/L [37]. HCO3
− and

CO3
2− concentrations were measured using standard titration procedures with a ZDJ-100

potentiometric titrator (reproducibility within ± 2%). The normalized inorganic charge
balance varied within ± 5%, indicating the accuracy of the measured data.

4. Results
4.1. Hydrochemical Characteristics

Water samples from Spring 04 were very high in Na+ (1531–1848 mg/L) and SO4
2−

(1698–2899 mg/L); the hydrochemical type was SO4–Na (Figure 2). HCO3
− increased

significantly in winter and reached 1065–1308 mg/L; however, the hydrochemical type
did not change significantly, with only a small number of samples having a SO4·HCO3–
Na hydrochemical type. The δ2H and δ18O gradually decreased over time, interrupted
by stepwise increases coincident with the M4.8 Turpan earthquake on 8 August 2020,
after which values returned to a declining trend. However, stable isotopes showed no
relationship with atmospheric temperature (i.e., above or below 0 ◦C) or the M4.2 Urumqi
earthquake on 12 December 2020.
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Spring 15 samples contained Na+ of 210–268 mg/L, Ca2+ of 161–205 mg/L, SO4
2− of

574–730 mg/L, and Cl− of 199–315 mg/L (Figure 3). With winter atmospheric temperature,
HCO3

− (301–317 mg/L) increased and Cl− decreased. As a result, the hydrochemical type
was SO4·Cl-Na·Ca when the atmospheric temperature was >0 ◦C, and SO4–Na·Ca when
atmospheric temperature was <0 ◦C. Changes in δ2H and δ18O were similar to those of
Spring 04; that is, they decreased over time, interrupted by stepwise increases coincident
with the M4.8 earthquake. Again, the stable isotopes showed no clear relationship with
atmospheric temperature (i.e., above or below 0 ◦C) or the M4.2 Urumqi earthquake on
12 December 2020.
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The main hydrochemical ions of Spring 09 were Na+ (210–423 mg/L), SO4
2+

(334–730 mg/L), and Cl− (115–425 mg/L) (Figure 4). For samples collected at T < 0 ◦C,
the concentrations of HCO3

− (309–348 mg/L) and Ca2+ (59–70 mg/L) increased, while
Cl− and SO4

2− decreased. As a result, when the atmospheric temperature was >0 ◦C, the
hydrochemical type was SO4·Cl–Na, but when the atmospheric temperature was <0 ◦C,
the hydrochemical type was SO4·HCO3–Na. As with the other springs, δ2H and δ18O de-
creased over time, interrupted by stepwise increases coincident with the M4.8 earthquake.
The stable isotopes showed no clear relationship with atmospheric temperature (i.e., above
or below 0 ◦C) or the M4.2 Urumqi earthquake on 12 December 2020.
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Spring 10 was similar to Spring 09; the main ions were Na+ (210–423 mg/L), SO4
2−

(508–730 mg/L), and Cl− (199–425 mg/L), and when atmospheric temperature was >0 ◦C,
the hydrochemical type was SO4·Cl–Na or Cl·SO4–Na (Figure 5). However, when the
atmospheric temperature was <0 ◦C, the concentrations of HCO3

− (299–332 mg/L), Ca2+

(77–95 mg/L), and K+ (2–5 mg/L) increased, while Cl− decreased. Therefore, when the
atmospheric temperature was <0 ◦C, the hydrochemical type was SO4·Cl-Na. As with
the other springs, δ2H and δ18O decreased over time, interrupted by stepwise increases
coincident with the M4.8 earthquake. The stable isotopes showed no clear relationship
with atmospheric temperature (i.e., above or below 0 ◦C) or the M4.2 Urumqi earthquake
on 12 December 2020.
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2−,

HCO3
−, F−, and NO3

−), stable isotopes (δ2H, δ18O), and atmospheric temperature. Red-dashed
lines mark the occurrence of potentially significant earthquakes within the study area.

In summary, although the major ion concentrations of the four springs differed, all
had elevated Na+, SO4

2−, and Cl−. Moreover, when the atmospheric temperature fell
below 0 ◦C in winter, the concentrations of HCO3

−, Ca2+, and K+ increased, while Cl− and
Na+ decreased; changes in summer were not synchronous. In contrast, isotopes were not
affected by atmospheric temperature but did show obvious stepwise increases associated
with the M4.8 Turpan earthquake in 2020.

Piper diagram analysis confirmed the changes in water hydrogeochemistry between
winter and summer (Figure 6, Table 1). It also showed that all the samples from springs 04
and 09, and most from springs 10 and 15, were water from a confined aquifer. However,
when the atmospheric temperature was <0 ◦C, samples from springs 10 and 15 fell within
the boundary zone of confined and unconfined aquifers (Figure 6a).
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Table 1. Estimated aquifer characteristics.

Hydrochemical Type Average Altitude of
Recharge Water (km)

Temperature (Na-K-Ca
Geothermometer; ◦C)

Average Circulation
Depth (km)

Spring 04 (T > 0 ◦C) SO4–Na 3.99 103.4 4.71

Spring 04 (T < 0 ◦C) SO4–Na
SO4·HCO3–Na 4.00 112.4 5.21

Spring 15 (T > 0 ◦C) SO4·Cl–Na·Ca
SO4·Cl–Ca·Na 3.70 38.04 1.12

Spring 15 (T < 0 ◦C) SO4–Na·Ca 3.71 40.43 1.25

Spring 09 (T > 0 ◦C) SO4·Cl–Na 4.52 33.67 0.88

Spring 09 (T < 0 ◦C) SO4·HCO3–Na 4.55 36.83 1.05

Spring 10 (T > 0 ◦C) SO4·Cl–Na
Cl·SO4–Na 4.55 39.06 1.18

Spring 10 (T < 0 ◦C) SO4·Cl–Na 4.57 52.93 1.94

Based on the Na–K–Mg ternary diagram (Figure 6b), water from Spring 04 was
classified as deep geothermal water partially equilibrated with the host rock; samples from
the other springs were classified as shallow geothermal water non-equilibrated with the
host rock. A Schoeller diagram (Figure 6c) showed no hydraulic connection between the
four springs, but also confirmed different aquifer characteristics depending on atmospheric
temperature (above or below 0 ◦C).



Int. J. Environ. Res. Public Health 2022, 19, 12004 9 of 16

4.2. Geothermometry and Circulation Depth

We applied the Na–K–Ca geothermometer according to the following empirical for-
mula [38]:

TNa-K-Ca =
1647

lg(Na/K)+0.25 × β
[
lg(
√

Ca/Na + 2.06)
]
+2.47

− 273.15 (1)

where β = 0.75 (T < 100 ◦C) and β = 0.25 (T > 100◦C).
The groundwater circulation depth was calculated as [39]:

H = (T z − T0)/G + H0 (2)

where H is the circulation depth (m), TZ the estimated reservoir equilibrium temperature
(◦C), T0 is the local annual temperature (◦C), G is the thermal gradient (◦C/km), and H0
is the thickness of the constant temperature zone (m). The constant temperature zone is
defined as the subsurface depth at which changes in atmospheric temperature have no
effect on the temperature of the zone [40]. From previous studies, we chose values of
H0 = 20 m, T0 = 18 ◦C, and G = 18.2 ◦C/km [39,41]. Circulation depths were estimated for
both summer and winter (atmospheric temperatures of > and < 0 ◦C, respectively; Table 1).

Differences in reservoir temperature estimates reached 2.4–9 ◦C between winter and
summer (Table 1), reflecting significant seasonal differences in circulation depth. The
circulation depth of Spring 04 was the deepest (4710–5210 m); those of Spring 09, Spring 10,
and Spring 15 were within 880–1940 m (Table 1).

4.3. δ2H and δ18O Characteristics

The δ2H and δ18O values of each individual spring were relatively concentrated
(Figure 7) and had no significant relationship with atmospheric temperature of > or
<0 ◦C. Samples from Spring 15 plotted on the Xinjiang local meteoric water line (LMWL,
δ2H = 7.23δ18O + 3.60); samples of springs 04, 09, and 10 fell below the LMWL, possibly
indicating water–rock isotope exchange resulting in “oxygen drift”.
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Figure 7. Bivariant δ2H–δ18O plot for samples from Spring 04 (blue circles), Spring 15 (red circles),
Spring 09 (pink circles), and Spring 10 (green circles). The global meteoric water line (GMWL of
Craig [42]) is shown by the black line and indicates meteoric water affected by water–rock interaction.
The local meteoric water line (LMWL of Feng et al. [43]) is shown by the blue line.
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Hydrogen and oxygen isotopes in atmospheric precipitation are affected by altitude;
therefore, isotopes can be used to estimate the altitude of meteoric water involved in
groundwater recharge. In western China, recharge altitude can be calculated as:

δ2H = −0.026H − 30.2 (3)

where H is the recharge altitude of the springs (m). The results show that the average
recharge altitudes of the four springs were not significantly different in summer and winter
(Table 1).

4.4. Coupling between Hydrochemistry and Earthquakes

The Dobrovolsky et al. [44] formula was used to identify earthquakes with the potential
to cause precursory signals at the four springs:

R = 100.43 M (4)

where R is the radius of the effective precursory manifestation area depending on earth-
quake magnitude. We identified two earthquakes—the Turpan M4.8 earthquake (87.67◦ E,
43.23◦ N) on 8 August 2020 and Urumqi M4.2 earthquake (87.37◦ E, 43.65◦ N) on 12 Decem-
ber 2020—with the potential to affect continuous hydrochemical observations at the four
springs (http://data.earthquake.cn; Figure 1). The Turpan M4.8 earthquake was caused
by strike-slip fault motion within the eastern segment of the Tianshan earthquake zone;
the epicenter was ~52–66 km from the springs. The Urumqi M4.2 earthquake was caused
by reverse fault motion within the central section of the Tianshan earthquake zone; the
epicenter was ~20–31 km from the springs. Of the two earthquakes, only one, the M4.8
Turpan earthquake of 8 August 2020, had a clear temporal correlation with sudden changes
in isotope signatures, suggesting a coupling between hydrochemical changes and these
earthquakes.

5. Discussion
5.1. Groundwater Origin, Recharge Sources, and Circulation Characteristics

Hydrogen and oxygen isotopes are affected by meteorological processes; as such, the
values and distribution characteristics of δ2H and δ18O provide a basis for the investigation
of groundwater recharge sources [4]. Samples from the four springs are all consistent with
either the GMWL or LMWL, indicating the strong influence of meteoric water (Figure 7).

Springs 04 and 15 are only 300 m apart within the same structural setting. The samples
show some similarities; for example, both have higher δ2H and δ18O values than those from
springs 09 and 10, reflecting greater rainfall recharge [45]. However, Spring 04 samples plot
on the GMWL, to the right of the LMWL, indicating water–rock interaction. In contrast,
Spring 15 plots to the left of the LMWL, which can be explained by degassing or by a large
deuterium excess related to the climate regime at the time of precipitation [26]. Moreover,
the data for Spring 15 suggest relatively shallower groundwater circulation and with more
rapid circulation speeds than that of Spring 04 (Figure 7). As with Spring 04, Springs 09
and 10 plot on the GMWL, to the right of the LMWL, indicating water–rock interaction.
Compared with Spring 09, positive shifts in δ18O for Spring 10 reflect a strong water–rock
interaction related to high temperature.

In addition, the average altitude of recharge water is much higher than the actual
altitude, which should be long-distance runoff recharge (Table 1). Therefore, the water at
all four springs is mainly supplied by atmospheric precipitation and snowmelt from sur-
rounding mountains [26,46]. However, during circulation, this water undergoes water–rock
interactions, during which it takes on soluble ions from the aquifer rocks [34]. Differences
in the geochemical and structural conditions of the aquifers (e.g., lithology, weathering,
structural fissures) lead to differences in the leaching, erosion, and infiltration processes,
resulting in variation among the springs.

http://data.earthquake.cn
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Groundwater in the Urumqi region flows from south to north, and mainly originates
from Urumqi Glacier No.1 in the southwest [32]. River and precipitation samples from
the region (i.e., samples with no hydraulic connection to the springs in this study) have
high Ca2+ and HCO3

− concentrations, with both being the major ions in the hydrochemical
types [47]. In general, all four springs are fed by confined aquifers (Figure 6). However,
some samples of Spring 15 (T > 0 ◦C) have a hydraulic connection with unconfined aquifer
sample TK15 (89.77◦ E, 42.62◦ N) from the Turpan Basin, while others (T < 0 ◦C) are
hydraulically related to springs S1 (88.21◦ E, 43.12◦ N) and S2 (88.21◦ E, 43.11◦ N) in the
Turpan Basin [35] (Figure 8). This suggests long-distance runoff recharge from the Turpan
Basin, which is also consistent with the high Cl− concentrations, which result from rock salt
dissolution and long runoff. In addition, groundwater flow also occurs from mountains in
the east towards the piedmont plain in the west, as evidenced by the local hydrogeological
conditions of Spring 09 and Spring 10. The water origin of the Turpan Basin is directly
related to Bogda Mountain. Furthermore, the average altitude of Bogda Mountain is ~4 km,
which is consistent with the calculated result in Table 1. In summary, the origin of water
in the four springs is most likely rainfall and the deep circulation of meteoric water from
Bogda Mountain in the east.
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was (Table 1). Both Spring 04 and Spring 09 had increased circulation depth and increased 
cation exchange during winter. However, the circulation depths of springs 10 and 15 in-
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Figure 8. Schoeller diagrams of samples from Spring 15 and springs in the Turpan Basin [35].
(a) Spring 15 samples collected at T > 0 ◦C and the TK15 sample from Turpan Basin; (b) Spring 15
samples collected at T < 0 ◦C and samples from springs S1 and S2 in the Turpan Basin.

Regardless of atmospheric temperature (> or <0 ◦C), γ(Na+ + K+)/γ(Cl−) was >1 for
all samples from all four springs, indicating that Na+ in the water comes from weathering
dissolution or cation exchange of silicate minerals (Figure 9a). In terms of γ(Na+ − Cl−)/
[γ(Ca2+ + Mg2+)-γ(HCO3

− + SO4
2−)], most samples from Spring 04 were above the y = −x

line, indicating enhanced cation exchange, especially at T < 0 ◦C with increased circulation
depth (Figure 9b). Spring 09 samples for T > 0 ◦C fell below the y = −x line, indicating
that they are less affected by cation exchange, while samples for T > 0 ◦C fell on the y = −x
line, indicating that cation exchange is significant. In contrast, almost all samples from
springs 10 and 15 fell below the y = −x line, indicating that they are less affected by cation
exchange and more impacted by silicate dissolution, regardless of atmospheric temperature
(i.e., > or <0 ◦C). The altitude of spring rainfall was not season-dependent, but circulation
depth was (Table 1). Both Spring 04 and Spring 09 had increased circulation depth and
increased cation exchange during winter. However, the circulation depths of springs 10
and 15 increased without significant cation exchange, and the water source was still the
original aquifer.
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The high Na+, Cl−, and SO4
2− concentrations of all four springs also reflect the long

runoff and deep circulation characteristics. Under the action of gravity, circulation depths
reached ~0.88–5.21 km (Table 1). After being heated by high-temperature rocks, the water
mixed with fluids from the deep crust and then moved upwards along faults and fractures.
Spring 04 and Spring 15 are 300 m apart on the surface, but exhibit significant differences
in circulation depth. The circulation path of Spring 04 is more closely related to the fault
zone, resulting in deeper circulation. The surface distance between Spring 09 and Spring 10
is just 100 m, but the depths of deep circulation, especially for samples collected at T > and
<0 ◦C, differ, reflecting differences in fractures, porosity, and permeability. In summary,
Spring 04 and Spring 10 are more influenced by deep circulation compared with Spring 09
and Spring 15.

The Schoeller diagram shows that the four springs have different recharge sources at
T < 0 ◦C and T > 0 ◦C (Figure 6), indicating the complexity of the geological structure in the
study area. In this region, sedimentary strata are underlain by granite [48]; during deep
winter circulation, this granite releases Na+, Ca2+, and HCO3

− ions. However, temporal
variations in hydrogen and oxygen isotopes show that the water recharge source did not
change significantly. The δ2H–δ18O plots of springs 04, 09, and 10 are all located on the
right side of the LMWL (Figure 7), indicating the mixing of fresh and old water in the
aquifer [46]. Water–rock interaction occurs by the precipitation and/or dissolution of miner-
als [49]; provided this occurs stoichiometrically, species ratios are fixed by the stoichiometry
of the ongoing precipitation/dissolution reactions [26]. As such, ion concentration ratios
can distinguish groundwater sources from water–rock interactions. However, if ion con-
centration ratios represent nonstoichiometric precipitation and/or dissolution of minerals,
it suggests that atmospheric temperature caused mixing rather than water–rock reactions.

In summary, the groundwater origin of the four springs is mainly geothermally-
heated, deep circulated atmospheric precipitation, and snowmelt; however, there is also a
contribution from long-distance basin recharge sources, which cause increases in dissolved
solids. Water–rock reactions are dominated by the dissolution of silicate minerals. Seasonal
atmospheric temperature changes have a great impact on the circulation depth of the four
springs, and the δ2H–δ18O data show that changes in ion concentrations are the result of
mixing rather than water–rock reactions. Meanwhile, samples collected at T < 0 ◦C reflect
the mixing of fresh and old water in the aquifer.

5.2. Hydrochemical Changes Coupled to Earthquakes

The M4.8 Turpan earthquake (8 August 2020), which occurred during a period of stable
atmospheric temperature, had a significant impact on isotope signals and ion concentrations.
In contrast, the M4.2 Urumqi earthquake (12 December 2020) occurred at the same time
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as a large change in atmospheric temperature (from ~10 to −16 ◦C) and was related to a
stepwise change in ion concentrations but little change in the isotope signal.

In general, groundwater moves slowly through the aquifer system under hydrological
and geological processes; as such, hydrogeochemical changes tend to be gradual. However,
as seismic activity can cause sudden changes to aquifers and the surrounding rock (e.g.,
changes in permeability or water mixing), the resulting hydrogeochemical changes can
occur rapidly. We calculated the time series of the δ2H–δ18O deuterium excess (where
d = δ2H − 8 × δ18O) and compared it with that of the GMWL (Figure 10). The δ2H–δ18O
deviated significantly at the time of the M4.8 Turpan earthquake, reflecting a change in
water source coupled with the occurrence of an earthquake. In contrast, δ2H–δ18O did not
change significantly at the time of the M4.2 Urumqi earthquake; that is, the water source
continued to be controlled by meteoric water. The changes in ion concentrations reflected
the change in atmospheric temperature, and were not related to the earthquake.
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(GMWL). Black dashed lines denote earthquakes.

A seismic observation well (X10; 87.62◦ E, 43.70◦ N) near Spring 10 experienced a
coseismic step change of water level during the M4.8 Turpan earthquake (52 km from the
epicenter) [33]. This confirms that coseismic static strains in this region were sufficiently
strong to alter pore fluid pressures and permeability. In contrast, the M4.2 Urumqi earth-
quake, with an epicenter just 13 km from X10, did not cause a coseismic step change in
the water level of the well. This may indicate that the energy of the M4.2 earthquake was
insufficient to cause a change in permeability. These findings support our conclusions; that
is, the M4.8 Turpan earthquake affected both ion concentrations and δ2H–δ18O, but the
M4.2 Urumqi earthquake did not; changes coincident with the second event were related
to changes in atmospheric temperature.

According to the geological and hydrogeological setting, the four observation springs
are located in areas where stress is easy to concentrate, making them sensitive to seismic
activity. The ion concentrations increased slowly before the M4.8 Turpan earthquake, possi-
bly owing to large-scale loading of regional stress and changes in fractures within the fault
zone. This allowed a high concentration of fluid to enter the springs and change the ion con-
centrations; moreover, this increase in permeability would also have intensified water–rock
reactions within fractures. In general, owing to the pumping effect of earthquakes, shallow
groundwater can also diffuse to the deeper fault, and the circulation depth of groundwater
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can change before and after earthquakes [50]. However, the M4.8 Turpan earthquake did
not cause such changes in the springs, and mixing with shallow water can be ignored.
Changes in Cl− concentration related to earthquakes can reflect changes in runoff fractures.
The coupling relationship between Cl− concentration and the M4.8 Turpan earthquake is
consistent with the δ2H–δ18O response. This suggests a high concentration of fluid input
and a strong possibility of mixing with old water. On the whole, ion concentrations in the
springs increased before the earthquake while the δ2H–δ18O data drifted towards the right
of the plot, indicating that water–rock reactions intensified, solubility increased, and new
fracture surfaces appeared in the aquifer or fault zone.

6. Conclusions

In this study, the hydrogeochemistry (major ion concentrations and δ2H and δ18O
isotopes) of four springs in the Urumqi area was analyzed for a 1-year period. We conclude
that the four springs are likely recharged by deep circulation of meteoric water from Bogda
Mountain in the east, as well as long-distance runoff recharge from the Turpan Basin to the
south. The hydrochemical type and circulation depth of the springs are both affected by
atmospheric temperature (i.e., T> and <0 ◦C), although the source remains the same (i.e.,
meteoric water).

We conclude that seasonal changes in atmospheric temperature and M ≥ 4.8 earth-
quakes within 66 km can cause changes in the spring water ion concentrations, but only
earthquakes can cause changes in stable isotopes; this suggests that mixing rather than
water–rock reactions is coupled with atmospheric temperature (i.e., T> and <0 ◦C). Ion
concentrations and δ2H–δ18O are sensitive to earthquakes of M ≥ 4.8, which can alter fault
zone characteristics (e.g., permeability and fractures) and intensify water–rock reactions.

The results suggest that continuous spring hydrogeochemical observations, especially
stable isotopes, offer potential precursory information before earthquakes. Moreover, such
an approach offers the potential for a better understanding of the coupling between seismic
activity and geochemical variations.
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