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Abstract: Climate changes have profound impacts on vegetation and further alter hydrological
processes through transpiration, interception, and evaporation. This study investigated vegetation’s
changing patterns and its sensitivity to climate variability across seven major watersheds in China
based on a hybrid regionalization approach and a novel, empirical index—Vegetation Sensitivity
Index (VSI). Vegetation showed linearly increasing trends in most of the seven watersheds, while
decreases in vegetation were mostly found in the source regions of the Yangtze River Basin (YZRB)
and Yellow River Basin (YRB), the forest and grassland areas of the Songhua River Basin (SHRB) and
Liao River Basin (LRB), the Yangtze River Delta, and the Pearl River Delta during the growing season.
The selected watersheds can be categorized into 11 sub-regions, and the regionalization result was
consistent with the topography and vegetation types; the characteristics of vegetation dynamics were
more homogeneous among sub-regions. Vegetation types such as forests and shrubland in the central
parts of the YZRB were relatively more vulnerable to climate variations than the grasslands and
alpine meadows and tundra (AMT) in the source regions of the YZRB and YRB and the Loess Plateau
of the YRB. In arid and semi-arid regions, precipitation had a profound impact on vegetation, while,
at low latitudes, solar radiation was the main controlling factor. Such comprehensive investigations
of the vegetation–climate relationship patterns across various watersheds are expected to provide a
foundation for the exploration of future climate change impacts on ecosystems at the watershed scale.

Keywords: vegetation variations; climate change; regionalization; Vegetation Sensitivity Index (VSI)

1. Introduction

Vegetation is an important regulator of terrestrial carbon cycles, energy exchange, and
water balance [1–3]. It alters hydrological processes through transpiration, interception,
and evaporation, resulting in fluctuations in the rainfall–runoff relationship and runoff
dynamics [4–8]. Duethmann and Blöschl [6] analyzed changes in evaporation estimated
for 156 catchments in Austria and suggested that 34 ± 14% of the observed increase in
catchment evaporation may be attributed to increased vegetation activity. Koch et al. [8]
found that vegetation shifts in the Arctic will deliver water back to the atmosphere and
to subsurface aquifers, and then substantially reduce discharge in headwater streams.
Hrachowitz et al. [9] demonstrated that deforestation will reduce the vegetation-accessible
water storage capacity, which affects catchment travel time distributions. Thus, understand-
ing vegetation dynamics at the watershed scale can benefit the planning, management, and
sustainable development of water resources.

The functioning of the Earth’s ecosystems is significantly impacted as a consequence
of atmospheric CO2 concentrations and other climatic drivers, changing under the un-
precedented climatic changes occurring in the 21st century [10,11]. With large-scale, high-
precision remote sensing datasets, the considerable response of vegetation to climate
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changes at regional and global scales has been thoroughly established. Firstly, plant phe-
nology and biome distributions have been altered by climate change [12]. Secondly, an
increase in greening and the productivity of vegetation was detected under the warming
climate [13,14]. In contrast, concomitant regional extreme heatwaves and drought events
can stifle vegetation growth [15]. Additionally, climate changes, combined with increasing
atmospheric CO2 enrichment and nitrogen (N) fertilization, can substantially enhance the
photosynthetic efficiency of vegetation and accelerate peak growth [14,16]. In general,
precipitation, temperature, and solar radiation have been considered as the three major
climatic drivers, which account for more than half of the terrestrial vegetation variabil-
ity [17]. In the middle–high latitudes of the Northern Hemisphere, temperature alters the
photosynthetic activity onset, termination, and performance [18,19]. Increasing precipita-
tion may benefit vegetation growth in arid and semi-arid areas with water deficits [20,21],
while excessive precipitation would limit vegetation growth by causing a reduction in
radiation and temperature in humid areas [17]. In tropical rainforests, vegetation is more
sensitive to radiation [17]. On the other hand, due to the biophysical reactions in plant
respiration, photosynthesis, and evapotranspiration, vegetation fluctuations also relate to
climate change [22–26]. Forzieri et al. [25] demonstrated that the control of vegetation on
global terrestrial energy fluxes increased during 1982–2016. Kafy et al. [24] used machine
learning algorithms to predict urban thermal conditions in Cumilla, and found that the
reduction in vegetation cover significantly increased the urban heat island effect. Rahaman
et al. [22] also claimed that forest cover loss in Penang city caused an increase in the average
temperature of 13 ◦C over 25 years. In general, the underlying mechanisms between climate
changes and vegetation dynamics are non-linear and complex [27,28].

Nowadays, vegetation dynamics and strong associations between vegetation and
climate change have been reported in various watersheds of the world [29–35]. Oli-
vares et al. [34] reviewed the impact of climate change on lowland rainforests in the
Amazon basin, and concluded that warming will limit plant species survival by decreasing
vegetation productivity. Alhumaima and Abdullaev [33] found that March/April veg-
etation was strongly correlated with October–March precipitation and January–March
temperatures in the lower Tigris basin. Morgan et al. [30] discovered that climate variability
is a short-term driver of vegetation changes, and human influence had a long-term effect,
in the Lake Victoria Basin. Furthermore, vegetation changes and its response to climate
changes at the watershed scale have also received a great deal of attention in China [3,36,37].
For example, in the Yellow River Basin and Yangtze River Basin, vegetation variations
were found to be spatially heterogeneous, and climate changes had a great influence on
vegetation, especially in the central area [38]. The temperature made a determining contri-
bution to vegetation greening in the Yangtze River Basin, while solar radiation was a strong,
negative determining factor, and the correlation between precipitation and vegetation was
low due to the abundant water [38–40]. For river basins in the Tibetan Plateau, such as the
Yarlung Zangbo River Basin and the Three-River Headwaters region, precipitation was
identified as the critical climatic factor in vegetation variations, but the relationship between
vegetation and temperature varied with aridity [3,41,42]. The effect of precipitation on
vegetation in arid mountain–oasis river basins in Northwest China was strong and varied
spatially with the precipitation pattern [36], while the relationships between vegetation and
climatic variations differed by vegetation type in the Amur-Heilongjiang River Basin [43].
According to previous studies, vegetation changes and their responses to climatic change
can be expected to have spatial heterogeneity due to the complex spatial patterns in climatic
zones, ecosystem types, biotopes, and plant species [44].

However, these studies still have several gaps. First, the results from previous studies
on vegetation changes are mostly based on pixel scales or regional averaging, without
considering spatial patterns. In this case, the spatial heterogeneity in vegetation trends and
corresponding driving factors at watershed scales need a deeper understanding. Second,
previous assessments on vegetation ecosystems that respond to climate change mostly
focused on investigating the mean climate state, ignoring the variability in climate [45],
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which will limit the characterization of their relationship. To tackle the research gaps
mentioned above, this paper used a hybrid regionalization approach to analyze the spatial
heterogeneity of vegetation changes across watersheds in China and reveal the distribution
of vegetation sensitivity to climate variability by a novel, empirical method, the Vegetation
Sensitivity Index (VSI). Three steps were taken: (1) explore the vegetation dynamics of seven
major watersheds in China during the growing season from 1982 to 2015; (2) distinguish
homogenous regions of vegetation change in seven major watersheds across China through
a hybrid regionalization approach; (3) quantify the sensitivity of vegetation to climate
variability using the VSI on pixel and regional scales. Overall, this study provides new
perspectives on vegetation changes and the triggering mechanism of climate change,
which is valuable for the prediction of future vegetation dynamics and for the sustainable
development of water resources.

2. Materials and Methods
2.1. Study Area

Spanning different climatic conditions, seven major watersheds were chosen to inves-
tigate the changing patterns of vegetation and its sensitivity to climate variability across
watersheds in China, including the Songhua River Basin (SHRB), Liao River Basin (LRB),
Hai River Basin (HaiRB), Yellow River Basin (YRB), Yangtze River Basin (YZRB), Huai
River Basin (HuaiRB), and Pearl River Basin (PRB). The total basin area of the seven major
watersheds is 451.19 × 104 km2, covering 47% of China’s total land area, and the total
population of the seven major watersheds constitutes more than 80% of China’s total popu-
lation [46]. A map of the vegetation types and locations, and detailed information about
the selected watersheds, is given in Figure 1 and Table 1, respectively.
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Table 1. Detailed information on seven major watersheds in China.

SHRB LRB HaiRB YRB YZRB HuaiRB PRB

Longitude
range (◦E) 119.9–132.5 116.5–125.8 112–120 95.8–119.1 90.6–122.4 111.9–121.4 102.2–115.9

Latitude
range (◦N) 41.7–51.6 38.7–45 35–43 32.1–41.8 24.5–35.8 30.8–36.6 21.5–26.8

Watershed
area (km2) 557,200 219,000 318,200 752,400 1,800,000 269,000 453,600

Climate
characteristic

Temperate
humid and
semi-humid

monsoon
climate

Temperate
semi-humid

and
semi-arid
monsoon
climate

Temperate
semi-humid

and
semi-arid
monsoon
climate

Temperate
humid,

semi-humid,
and

semi-arid
continental
monsoon
climate

Subtropical
humid,

semi-humid,
and

semi-arid
monsoon
climate

Subtropical
and

temperate
semi-humid

monsoon
climate

Subtropical
humid

monsoon
climate

2.2. Datasets and Processing

The normalized difference vegetation index (NDVI), acquired from a biweekly NDVI
dataset developed by the Global Inventory Monitoring and Modeling Studies (GIMMS)
group with a spatial resolution of 1/12◦ from 1981 to 2015 (http://ecocast.arc.nasa.gov/
data/pub/gimms (accessed on 12 February 2020)), has been commonly used to describe
vegetation changes at regional or global scales [40,47]. To lessen the impact of clouds
and aerosols, the maximum value composite technique was used to produce monthly
NDVI observations from biweekly data [43,48]. Moreover, our study was limited to the
growing season (April to October for the whole study area) to eliminate the impact of
winter snow [42,47]. However, it should be noted that the actual growing season may differ
among watersheds. After this, pixels with an annual growing season NDVI (GS-NDVI) less
than 0.1 were designated as bare ground and removed.

Monthly gridded climate data (mean monthly air temperature, precipitation, and solar
radiation), with a spatial resolution of 0.1◦ × 0.1◦, were derived from the China Meteorologi-
cal Forcing Dataset (CMFD, https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-96
5612652c49 (accessed on 20 February 2020)) [49,50]. This gridded reanalysis climate dataset
has a high level of precision and has been employed to conduct climate-change-related
research across China [45,51]. The growing season’s climate data were used and further
resampled to 1/12◦ to match the resolution of NDVI through the bilinear interpolation
method. In addition, the spatial distribution of vegetation types was acquired from the Re-
source and Environment Science and Data Center in China (RESDC, https://www.resdc.cn
(accessed on 8 March 2020)) at a scale of 1:1,000,000, with nine vegetation types (broadleaf
forest (BF), broadleaf and needleleaf mixed forest (MF), needleleaf forest (NF), shrubland,
grassland, alpine meadows and tundra (AMT), cropland, swamp, and desert).

2.3. Methods
2.3.1. Trend Analysis

The linear least-square regression [52] method was used to detect trends of vegetation
and climatic drivers at both pixel scale and regional scale during the growing season from
1982 to 2015. The Theil–Sen median analysis combined with the Mann–Kendall test was
used to evaluate the statistical significance [28]. According to previous studies [38,53]
and the real condition of the NDVI in the YZRB, statistically significant results were
categorized into five groups: significantly improved (SNDVI ≥ 0.0005, Z ≥ 1.96), slightly im-
proved (SNDVI ≥ 0.0005, −1.96 ≤ Z ≤ 1.96), stable (−0.0005 ≤ SNDVI ≤ 0.0005), slightly de-
graded (SNDVI ≤−0.0005, −1.96 ≤ Z ≤ 1.96), and significantly degraded (SNDVI ≤ −0.0005,
Z ≤ −1.96).

http://ecocast.arc.nasa.gov/data/pub/gimms
http://ecocast.arc.nasa.gov/data/pub/gimms
https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49
https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49
https://www.resdc.cn
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2.3.2. Hybrid Regionalization Approach

A hybrid regionalization approach [54,55] was used to identify homogenous regions
of vegetation change in seven major watersheds. During the regionalization procedure, the
number of clusters and the initial clustering centers with the maximum values of rotated
loading vector (RLVs) were initially determined by Varimax Rotated Empirical Orthogonal
Functions (REOF). Then, depending on the cluster groups and centroids produced from
REOF, K-means clustering analysis was used to identify homogeneous regions. After this,
the final sub-regions were obtained by merging and splitting the clusters according to the
geographical locations of pixels. The detailed steps of spatial regionalization are listed in
Wu et al. [55].

2.3.3. Vegetation Sensitivity Index

The Vegetation Sensitivity Index (VSI), developed by Seddon et al. [56], was used in
this study to assess vegetation sensitivity to climate variability in seven major watersheds
in China. To evaluate the vulnerability of terrestrial ecosystems to climate variability, the
VSI was calculated based on the monthly mean–variance relationship and relative weights
of vegetation and climate variables [57,58], as follows:

VSI = ∑(TEMwei × TEMsen + PREwei × PREsen + RADwei × RADsen) (1)

where TEMwei, PREwei, and RADwei are the relative importance of climate variables to
vegetation change (climate weights), respectively. TEMsen, PREsen, and RADsen are the
sensitivity of vegetation to climate variables. Detailed methods are provided in Sed-
don et al. [56].

3. Results
3.1. Characteristics of Vegetation Variations

To illustrate the general spatial variations of vegetation in the seven major water-
sheds, the average values, linear trends, and change degrees of GS-NDVI were analyzed
(Figure 2a–c) from 1982 to 2015. The mean annual GS-NDVI in the seven major watersheds
during 1982–2015 ranged from 0.01 to 0.88, increasing from the northwest to the south and
southeast. As shown in Figure 2a, the mountainous and hilly regions, which are primarily
composed of forests, grassland, and shrubland, in the central part of the YZRB and the
entire PRB, showed relatively higher NDVI values than other areas. Meanwhile, lower
NDVI values were revealed in the source regions of the YZRB and YRB (dominated by
AMT), the Loess Plateau of the YRB (dominated by grassland), and the western parts of
the SHRB and LRB (dominated by grassland and cropland). The changes in GS-NDVI
revealed growing linear trends in most areas of the seven major watersheds, and the trends
of some areas in HaiRB, HuaiRB, the northeast of the Loess Plateau, and the central parts
of the YZRB and PRB had an increasing speed of over 3 × 10−3/yr. However, decreasing
trends of vegetation were mostly identified in the source regions of the YZRB and YRB, the
forest and grassland areas of the SHRB and LRB, the Yangtze River Delta, and the Pearl
River Delta (Figure 2b). The spatial distribution of changing groups (Figure 2c) in the seven
major watersheds during 1982–2015 confirmed the spatial patterns of the GS-NDVI trends
displayed in Figure 2b. Pixels with significantly improved vegetation accounted for more
than 50%, with 20% being stable, while only a few pixels showed degraded vegetation.
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Figure 2. The spatial distribution of (a) mean annual growing season NDVI (GS-NDVI), (b) trends
of GS-NDVI, (c) change degrees of GS-NDVI in seven major watersheds during 1982–2015, and
the percentage distribution of (d) mean annual GS-NDVI, (e) trends, and (f) change degrees in
each watershed.

Moreover, to investigate the vegetation variations within each watershed, the inter-
annual variation in the GS-NDVI (Figure 3), and the percentages of GS-NDVI averaged
values, trends, and change degrees (Figure 2d−f) for each watershed were illustrated.
The GS-NDVI in all watersheds presented positive linear trends, with most trends being
significant (p < 0.05), except that of the SHRB. For the SHRB, the majority of GS-NDVI
values in this basin ranged from 0.5 to 0.7, accounting for 63% of the total pixels. Around
85% of the pixels showed decreasing trends, of which 12% were significant. For the LRB, the
linear trend of GS-NDVI was 0.73 × 10−3/yr, being smaller than that of other watersheds,
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except for the SHRB. In addition, around 80% of the pixels in the LRB had a mean annual
GS-NDVI between 0.3 and 0.6, and 59% of them showed decreasing trends, with 12% being
significant. For HaiRB, the growing trend of GS-NDVI showed a speed of 1.89 × 10−3/yr,
being the largest trend among all watersheds. The mean annual GS-NDVI in HaiRB was
evenly distributed between 0.3 and 0.7. The percentage of pixels with increasing trends
was 93%, of which 75% were significant. As for the YRB, an increasing trend with the
rate of 1.59 × 10−3/yr was identified, with 94% of pixels showing increasing trends and
70% being significantly improved, whereas most of the pixels had a mean annual GS-
NDVI lower than 0.5, accounting for 64%. For the YZRB, we observed a rising trend of
1.02 × 10−3/yr in GS-NDVI, with 66% of pixels having a mean annual GS-NDVI greater
than 0.6. The percentage of pixels with decreasing trends was 20%, while only 4% of them
were significant. For HuaiRB, the trend of GS-NDVI was 1.73 × 10−3/yr. Almost 91% of
pixels had a mean annual GS-NDVI between 0.5 and 0.6, and also 91% of pixels showed
increasing trends, with 70% being significant. For the PRB, we observed a rising trend at
the rate of 1.27 × 10−3/yr, with 87% pixels having mean annual GS-NDVI values greater
than 0.6, and the percentage of increasing trends and significantly improved change types
was 91% and 68%, respectively.
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PRB from 1982 to 2015.

3.2. Regionalization of GS-NDVI Variations

The hybrid regionalization approach was performed on the monthly GS-NDVI to
further explore the spatial anomalies and clustering of GS-NDVI over the seven major
watersheds. Table 2 summarizes the variance contribution of the retained EOFs before
rotation, and the first nine EOFs of GS-NDVI were retained, with a cumulative explained
variance of over 85.1%. Meanwhile, according to North’s Rule of Thumb, all EOFs were
statistically significant. The positions with the largest absolute values of RLV after the
Varimax rotation were chosen as the initial clustering centers.

With the K-means clustering algorithm, all pixels in the seven major watersheds were
clustered into nine groups using pre-defined cluster numbers and centroids. However, as
the spatial feature was not taken into account during cluster analysis, the pixels in each
cluster were non-contiguous. Finally, based on the cluster groups and change patterns
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of GS-NDVI, the homogenous regions were identified as 11 groups (Figure 4). At the
same time, the percentages of the main vegetation types in each sub-region are listed in
Table 3. It should be particularly pointed out that the division of sub-regions was mainly
based on the topography and vegetation types. Region I was predominately located in
the Greater Khingan Mountains, Lesser Khingan Mountains, and Changbai Mountains,
and mainly consisted of BF, cropland, and NF. This region was characterized by higher
values and stronger variations in GS-NDVI. Regions II, III, and IV covered the Northeast
China Plain, Taihang Mountains, and Loess plateau. The main vegetation types in these
three sub-regions were cropland and grassland, with the proportion of cropland gradually
decreasing, and the proportion of grassland gradually increasing. The North China Plain
and the plains in the middle and lower reaches of the YZRB were categorized as Region
V, with 70% being cropland. The southeastern hilly area in China was the main part of
Region VI, which mainly consisted of NF, shrubland, and cropland. Moreover, Region VIII
represented the cropland-based Sichuan Basin, whereas mountainous areas with forests
and shrubland were considered as Region IX. In addition, the source regions of the YZRB
and YRB were divided into three sub-regions (Regions VII, X, XI), consisting of the central
Tibetan Plateau, the Hengduan Mountains, and the Yunnan-Guizhou Plateau. The main
vegetation types of these three sub-regions were NF and shrubland, shrubland and AMT,
and grassland and AMT, respectively.

Table 2. Variance contribution (%) of the retained EOFs before rotation, and the difference between
the spacing of adjacent eigenvalues (∆s) and the sampling error (∆λ), for the retained EOFs tested by
North’s Rule of Thumb.

EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 EOF7 EOF8 EOF9

% of variance 58.2 9.3 5.7 4.4 2.8 1.7 1.3 1.0 0.7
Cumulative % 58.2 67.5 73.1 77.5 80.3 82.0 83.3 84.4 85.1

∆s − ∆λ 3600.8 262.5 89.2 116.1 77.3 23.7 22.8 21.1 9.9
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Based on the results of the 11 homogenous sub-regions, the inter-annual variations,
average values, linear trends, and change degrees of GS-NDVI were analyzed from 1982 to
2015 for each sub-region (Figures 5 and 6). Compared with the heterogeneity of vegetation
dynamics at the watershed scale, the characteristics of vegetation change among the 11 sub-
regions were more homogeneous. The regionally averaged GS-NDVI for 1982–2015 showed
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significant positive trends for most of the sub-regions at a confidence level of 95%, except
Region I and VII. Among these regions, the increasing trends in Region IV and VIII showed
great speeds, with slopes of approximately 1.82 × 10−3/yr and 1.75 × 10−3/yr, respectively.
As shown in Figure 6, the mean annual GS-NDVI values in most of the pixels in Regions
I, VI, VIII, and IX were greater than 0.6, while most values for Regions III, IV, and XI fell
between 0.1 and 0.4. Overall, significantly improved vegetation was the main change type
in most sub-regions, while, for Regions I, VII, X, and XI, the majority of changes were of
the stable type. Furthermore, there was still a certain percentage of pixels with significantly
degraded vegetation in Regions I, II, VII, and X, which accounted for 14%, 11%, 8%, and
6%, respectively.

Table 3. Percentages of main vegetation types (broadleaf forest (BF), mixed forest (MF), needleleaf
forest (NF), shrubland, grassland, alpine meadows and tundra (AMT), cropland, swamp) in each
sub-region.

Vegetation I II III IV V VI VII VIII IX X XI

BF 45% 10% 10% 5% 7% 5% 22% 3%
MF 3%
NF 12% 2% 6% 25% 26% 9% 12% 6%

Shrubland 3% 9% 8% 3% 5% 27% 26% 2% 27% 21%
Grassland 8% 20% 35% 58% 6% 12% 13% 4% 8% 11% 31%

AMT 13% 49% 68%
Cropland 21% 57% 46% 37% 77% 28% 16% 85% 29% 11%
Swamp 6% 3%
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3.3. Vegetation Sensitivity to Climate Variables

Figure 7 illustrates the spatiotemporal variations in climate variables in the growing
season during 1982–2015. The mean annual GS-TEM across the seven major watersheds
was between −5.6 and 27.7 ◦C, and the distribution of GS-TEM was substantially consistent
with the altitude. The GS-PRE showed an increasing gradient from the northwest to the
south and southeast, which was similar to that of the GS-NDVI. The higher values of mean
annual GS-TEM and GS-PRE both occurred in the coastal areas of the PRB (Figure 7a,b).
However, the GS-RAD had the opposite spatial distribution to GS-TEM and GS-PRE, with
the maximum and minimum values occurring at the source regions of the YZRB and
YRB and the Sichuan Basin in the central part of the YZRB, respectively (Figure 7c). The
changing trends of these variables (Figure 7d–f), however, did not show obvious spatial
characteristics similar to those of the mean values during 1982–2015. The increasing GS-
TEM was detected in most pixels of the seven major watersheds, and the relatively high
variability of GS-TEM appeared in the northeast of HaiRB, the source regions of the YZRB
and YRB, and the central part of the YZRB. For GS-PRE, both increasing and decreasing
trends were revealed in the seven major watersheds, and more than 70% of the pixels
ranged from −2.5 to 2.5 mm/yr. The most dramatic decreasing trends of GS-PRE mainly
appeared in the central and lower parts of the YZRB, while obvious increasing tendencies
were found in the source regions of the YZRB, parts of the YRB and HuaiRB, and parts
of the YZRB and PRB. The change trends in GS-RAD ranged from −0.98 to 0.96 W/m2yr,
with decreasing trends most often located in the northeastern areas of the seven major
watersheds, except the Greater Khingan Mountains. Furthermore, there was no consistency
between the spatial distribution of GS-NDVI trends and the trends of climate variables
(Figure 7d–f), indicating that vegetation change was not controlled by an individual climate
variable, but was more likely influenced by a comprehensive effect of these variables.
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Figure 7. The spatial distribution of climate variables in seven major watersheds during 1982–2015:
(a) mean annual GS-TEM, (b) mean annual GS-PRE, (c) mean annual GS-RAD, and their change
trends (d–f).

To identify the comprehensive effect of climate variables, the VSI was used to quantify
the sensitivity of terrestrial ecosystems to climate. The VSI distribution revealed prominent
spatial discrepancies (Figure 8). The central parts of the YZRB showed high VSI values,
with vegetation types dominated by forests, shrubland, and cropland, which indicated high
sensitivity to climate variables in this area. Correspondingly, lower VSI values emerged
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predominantly in the source regions of the YZRB and YRB, the Loess Plateau of the YRB,
and the western part of the LRB, corresponding to the distribution of alpine meadows and
tundra (AMT) and grassland. The relative contributions of each climate variable to the VSI
are displayed in Figure 9. Overall, in most of the study areas, temperature contributed less
than 40% to the VSI and there were only a few areas where the VSI appeared primarily
controlled by the temperature. Precipitation contributed more than 30% in most areas, and,
in some pixels, the contributions were higher than 50%. In total, more than 45% of the pixels
of the VSI were controlled by precipitation, mostly located in the central parts of the SHRB
and LRB, the Loess Plateau of the YRB, and the lower part of the YZRB. The contributions
of solar radiation to the VSI were relatively higher at low latitudes than at high latitudes,
as it was revealed as the dominant factor in the central parts of the YZRB and PRB. As an
exception, in the northwest of the SHRB, solar radiation was still a dominant factor in the
VSI, despite the high altitude.

Moreover, to quantify the sensitivity of climate variables on GS-NDVI in homogenous
regions, the trends of climate variables, the VSI, and the contributions of each climate
variable for each sub-region were determined, and results are given in Table 4. Significant
positive trends in GS-TEM were found in all sub-regions, while the trends of GS-PRE
were significantly negative. The smallest changing slopes for GS-TEM and GS-PRE were
revealed in Region VI, with a speed of 0.02 ◦C/yr and −6.97 mm/yr, respectively. As for
GS-RAD, significant negative trends were identified in Regions II, III, V, and XI, while in
other sub-regions, only weak decreasing trends or even slightly increasing trends were
found. The higher VSIs occurred in Regions VI, VII, VIII, and IX, covered mainly by
BF, NF, shrubland, and cropland, while Regions II, III, V, and XI, covered by grassland,
ATM, and cropland, had relatively lower VSIs. The relative contributions of three climate
variables (TEM, PRE, RAD) to vegetation sensitivity varied among sub-regions: vegetation
in Regions II, III, IV, V, X, and XI was more sensitive to precipitation variability, whereas
vegetation in Regions I, VI, VII, VIII, and IX was primarily influenced by solar radiation.
Notably, although temperature was not the most important factor for vegetation sensitivity
in any sub-region, it was still non-negligible as it accounted for certain contributions.
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Table 4. Trends of climate variables, Vegetation Sensitivity Index, and climate variable contributions
in each sub-region during 1982–2015.

Trends Vegetation Sensitivity Index

TEM(◦C/yr) PRE(mm/yr) RAD(W/m2·yr) VSI TEM (%) PRE (%) RAD (%)

Region I 0.035 * −3.60 * −0.012 32.7 29% 34% 38%
Region II 0.032 * −3.07 * −0.230 * 28.7 29% 38% 33%
Region III 0.043 * −2.48 * −0.242 * 26.9 28% 42% 31%
Region IV 0.046 * −1.84 * −0.061 23.6 26% 43% 31%
Region V 0.037 * −4.55 * −0.314 * 31.3 29% 39% 33%
Region VI 0.027 * −6.97 * −0.126 38.5 27% 35% 38%
Region VII 0.039 * −4.89 * −0.048 42.7 32% 33% 35%
Region VIII 0.044 * −5.93 * 0.096 40.6 32% 33% 35%
Region IX 0.042 * −5.46 * 0.179 41.6 29% 35% 37%
Region X 0.053 * −3.02 * −0.116 31.8 30% 38% 32%
Region XI 0.052 * −1.73 * −0.339 * 26.9 31% 40% 29%

Note: * indicates significant trends at the confidence level of 95%.
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4. Discussion

This is the first comprehensive study to explore vegetation–climate relationship pat-
terns across watersheds in China. Our results are valuable for understanding the evolu-
tionary mechanisms of hydrological processes, which provide the foundation for water
resource planning and management [3,36]. This study provides detailed information on
vegetation changes in China, with several outcomes.

First, differing from previous studies that mostly focused on individual basins [38,40],
this study analyzed the characteristics of seven major watersheds to understand the overall
situation of watersheds in China. It can be seen that the increasing trends of GS-NDVI in
HaiRB and HuaiRB were more rapid than in other watersheds (Figure 1). By contrast, the
linear trends of GS-NDVI in the SHRB and LRB were positive but slight, with the largest
proportion of vegetation being significantly degraded (Figure 2). However, there are still
some studies that are inconsistent with the results presented in this paper. For example, it is
clear from Figure 2f that 70% of the vegetation in the YRB was significantly improved and
vegetation in a few pixels was degraded, whereas Jiang et al. [53] found that 32.8% of areas
in the YRB with vegetation significantly improved, while 27.7% were significantly degraded.
The discrepancy is mainly because the NDVI used in these two studies was derived from the
GIMMS NDVI3g dataset and MOD13A2 NDVI product data, and the spatial and temporal
revolutions of the two datasets were not identical. Tian et al. [59] assessed vegetation
greening trends, generated from different NDVI datasets, in the YRB and concluded that
the GIMMS dataset is commonly applied to explore large-scale vegetation change because
its time series is long and continuous [14,60]; correspondingly, MODIS data are frequently
employed in monitoring dynamic vegetation at regional scales [61].

Another outcome of this study was the use of the hybrid regionalization approach to
identify the homogenous regions in seven major watersheds across China. Compared with
administration and geography boundaries [62,63], homogeneous sub-regions obtained by
clustering algorithms can capture more spatial information. An example is the fact that
the Loess Plateau was identified as an independent sub-region (Region IV) with a low
mean annual GS-NDVI and high variability. This is in accordance with previous studies
suggesting that the Loess Plateau is a unique area, where several afforestation programs
have been launched by the Chinese government over the past few decades [64]. Further-
more, the results of regionalization demonstrated that the vegetation type and topography
are important factors associated with the spatial patterns of vegetation variations [65].
On one hand, different vegetation types have different vegetation–climate relationships,
resulting in different changing patterns in vegetation [66], which makes it reasonable to
evaluate vegetation changes and their link with climate within different ecosystems [47].
On the other hand, topographic attributes, including elevation, slope, and aspect, introduce
heterogeneity into the effects of water availability, radiation, and temperature on vegetation
greenness [44,67,68]. It can be seen in Figure 4 that the source regions of the YZRB and
YRB were divided into three sub-regions (Regions VII, X, XI) by elevation. This finding has
also been confirmed by previous studies [45,69] stating that vegetation responses to climate
conditions in the Qinghai–Tibet Plateau are elevation-dependent.

Third, this study provided an interpretation of vegetation sensitivity by vegetation
type. Our results showed that the VSIs in the central parts of the YZRB, covered by forests,
shrubland, and cropland, were higher than those in the source regions of the YZRB and
YRB, the Loess Plateau of the YRB, and the western parts of the SHRB and LRB, covered
by AMT and grassland (Figure 8). This suggests that vegetation types such as forests
and shrubland are relatively more vulnerable to climate variations than grassland and
AMT. Other studies have also documented that vegetation dominated by trees and tall
shrubs is more responsive to climate change than dwarf shrub vegetation [70,71], and
temperature-induced drought stress has a greater inhibitory effect on tree activity than
shrubs [71]. As illustrated in Figure 9, vegetation in arid and semi-arid regions showed
strong responses to precipitation, including the central part of the SHRB and LRB and the
Loess Plateau of the YRB; meanwhile, vegetation activities in the central part of the YZRB
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and PRB were more sensitive to solar radiation variations. These findings are generally
consistent with those of Ge et al. [27], Papagiannopoulou et al. [72], and Seddon et al. [56],
taking into consideration the diverse research periods and the differences in methodology
and data. Meanwhile, the weaker association between vegetation and temperature has
also been confirmed by Piao et al. [73], where the intensity of the link between vegetation
and temperature decreased significantly in the Northern Hemisphere. Nevertheless, there
are still other regional-scale studies indicating that temperature has a greater impact on
vegetation than precipitation [74], likely because these studies only focused on the response
of vegetation to temperature and precipitation in the mean climate state, ignoring how
complex vegetation responds to the changing climate and the importance of solar radiation.

Overall, this study combined a hybrid regionalization approach and the VSI to better
understand the changing patterns of vegetation and its sensitivity to climate variability
across watersheds in China, providing new perspectives on vegetation changes and the
triggering mechanism of climate change. However, some limitations and uncertainties
cannot be neglected. First, the time lag and cumulative effects of climate on vegetation
should not be ignored [3,75,76]. Second, the vulnerability of vegetation to climate variability,
as evaluated by the VSI, was investigated using linear models, while neglecting the fact
that actual vegetation–climate connections may be complex and nonlinear [72,77]. Lastly,
other driving factors, such as CO2 and human activities, which are also considered essential
factors in vegetation growth [63,78] were not included in this study. Thus, future studies
will address the questions above and explore further vegetation variations.

5. Conclusions

Understanding vegetation dynamics at the watershed scale can benefit the planning,
management, and sustainable development of water resources. In this study, the changing
patterns of vegetation and its sensitivity to climate variability across watersheds in China
were investigated based on a hybrid regionalization approach and the VSI. The GS-NDVI
was significantly improved in more than 50% of the seven major watersheds, while only
a few areas showed degradation. The GS-NDVI in all watersheds presented a positive
linear trend, with most trends being significant, except that of the SHRB. The entire study
area was categorized into 11 sub-regions, and the regionalization results were in good
agreement with the distributions of topography and vegetation types. Compared with
the heterogeneity of vegetation dynamics at the watershed scale, the characteristics of
vegetation change among the 11 sub-regions were more homogeneous. With the exception
of Regions I, VII, X, and XI, significantly improved vegetation was the main change type in
most sub-regions. The central parts of the YZRB showed higher VSIs, while lower VSIs
emerged predominantly in the source regions of the YZRB and YRB, the Loess Plateau of
the YRB, and the western part of the LRB. The VSI was highest in Regions VII, VIII, and IX,
and lowest in Region IV. Moreover, the relative contributions of three climate variables to
vegetation sensitivity varied among sub-regions.
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