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Abstract: The global COVID-19 pandemic has taken a heavy toll on health, social, and economic 
costs since the end of 2019. Predicting the spread of a pandemic is essential to developing effective 
intervention policies. Since the beginning of this pandemic, many models have been developed to 
predict its pathways. However, the majority of these models assume homogeneous dynamics over 
the geographic space, while the pandemic exhibits substantial spatial heterogeneity. In addition, 
spatial interaction among territorial entities and variations in their magnitude impact the pandemic 
dynamics. In this study, we used a spatial extension of the SEIR-type epidemiological model to sim-
ulate and predict the 4-week number of COVID-19 cases in the Charlotte–Concord–Gastonia Met-
ropolitan Statistical Area (MSA), USA. We incorporated a variety of covariates, including mobility, 
pharmaceutical, and non-pharmaceutical interventions, demographics, and weather data to im-
prove the model’s predictive performance. We predicted the number of COVID-19 cases for up to 
four weeks in the 10 counties of the studied MSA simultaneously over the time period 29 March 
2020 to 13 March 2021, and compared the results with the reported number of cases using the root-
mean-squared error (RMSE) metric. Our results highlight the importance of spatial heterogeneity 
and spatial interactions among locations in COVID-19 pandemic modeling. 

Keywords: SEIR model; spatial SEIR model; approximate Bayesian computation; mobility; spatial 
dependence; temporal variability; epidemic model 
 

1. Introduction 
The contribution of spatio-temporal analysis to the understanding of COVID-19 in-

fections and deaths is by now well documented [1–4]. Not all regions have been impacted 
with the same rates of infections and deaths. Striking temporal variations were also rec-
orded at both national and regional levels. In early 2020, New York was the epicenter for 
COVID-19 infections in the US, and then that shifted gradually to Southern states around 
the July 4th weekend; as Fall approached, the intensity of the disease moved to the Dako-
tas, and lastly, in January 2022 the Northeast experienced the highest number of new cases 
of the entire pandemic [5]. The global spread of the disease is linked to international and 
transregional travel and to different variants of the virus. Local factors such as policies on 
non-pharmaceutical interventions (e.g., social distancing, mask mandates, school and 
business closures, etc.), population density and movement patterns, propensity to travel 
internationally, vaccine availability and uptake rates, and quality of the healthcare infra-
structure feature among the core factors of local variations in the spread of the disease 
and in its prevalence. It is because these local factors condition community transmission, 
risk of exposure, and community vulnerability to the virus that they are so important at 
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the local level, and are then amplified across the globe through complex patterns of hu-
man spatial interactions. 

Given the importance of localized scales, the objective of this study was to simulate 
and predict the spread of COVID-19 in a multi-county metropolitan region with an epi-
demic model that explicitly accounts for the spatial and temporal heterogeneities of dis-
ease spread. Predictions are made over a four-week forecasting horizon and compared 
with a series of other forecasting models. Four-week ahead predictions are a common 
practice in the literature on COVID-19 predictive analytics. For instance, the U.S. Centers 
for Disease Control and Prevention (CDC) report four-week ahead forecasts from a num-
ber of leading infectious disease teams around the world [6]. 

The spatio-temporal analysis of infectious diseases can be broadly classified into 
three main groups. In one approach, disease clusters and hotspots are assessed using eco-
logical modeling [2,3]; in the second approach, we study the mechanisms in which the 
hosts and their movement in space and time contribute to disease transmission; the third 
technique resorts to machine learning and deep learning methods to tease out the role of 
space and time in predicting the spread of the disease [7,8]. Ecological models are used 
often on aggregated data to understand the spatial and spatio-temporal variations in dis-
ease spread in terms of prevalence and incidence rates with respect to explanatory varia-
bles [9]. These models should not be used for causal inference. Mechanistic models have 
been extensively applied to characterize various epidemiological processes (e.g., trans-
mission, recovery, vaccination, disease-induced death, etc.), parameterize these critical 
processes, and provide projections of disease dynamics [10,11]. In particular, mechanistic 
compartmental models are usually expressed as an array of coupled ordinary differential 
equations (ODEs), Partial differential equations (PDEs), or stochastic differential equa-
tions (SDEs) of various processes [12]. The most commonly applied compartmental model 
is the susceptible–exposed–infectious–recovered (SEIR) model, with the four compart-
ments representing the host population’s transitioning epidemiological states. The sus-
ceptible population is the proportion of the entire population that is capable of contracting 
the pathogen. The exposed compartment is the population that has been exposed to the 
pathogen but is not yet infectious. Infectious populations are those who have been ex-
posed to the pathogen and have the capability to further transmit the pathogen. Finally, 
recovered populations are those who are not infectious any more as a result of recovery 
with immunity or mortality [12]. Over the course of almost a century, SEIR-type compart-
mental models have been the paradigm of infectious disease modeling. Conducting a sys-
tematic review of 72 publications on COVID-19 predictive models, Shankar et al. [13] 
found that over 70% of models were in the SEIR group. In another review paper, Rahimi 
et al. [14] reported that SEIR models are in the top three most common COVID-19 out-
break modeling methods. SEIR-type models have been commonly applied in modeling 
COVID-19 epidemics and in capturing its complexities, incorporating external factors 
such as non-pharmaceutical interventions (NPIs) and vaccination [15]. The SEIR-type 
compartment model is relatively easy to understand, formulate, analyze, and extend to 
accommodate a wide range of disease-related processes. Important metrics such as the 
basic reproduction number (R0) and the effective reproduction number (Re) can be derived 
analytically or numerically from the compartment model to evaluate the severity of the 
pandemic and the effectiveness of interventions, and attempt to forecast the future behav-
ior of the disease. 

Modeling frameworks incorporating machine learning or deep learning method lev-
erage the flexibility of these analytical techniques to predict spatio-temporal dynamics. 
Istaiteh et al. [16] used four machine learning models, including convolutional neural net-
work (CNN), artificial neural network (ANN), long short-term memory (LSTM) and au-
toregressive integrated moving average (ARIMA) to forecast COVID-19 cases. This study 
provided forecast for cases over the next 7 days for all countries worldwide. Applying 
three machine learning methods of hidden Markov chain model (HMM), hierarchical 
Bayes model, and long short-term-memory model (LSTM), Tian et al. [17] predicted 
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COVID-19 cases in six countries and used the root-mean-square error (RMSE) to evaluate 
their prediction performance. Nikparvar et al. [18] used LSTM, a type of recurrent neural 
network, to predict the number of COVID-19 cases and deaths for 4 weeks and for the 
entire United States at the fine resolution of counties. Zeroual et al. [19] used five deep 
learning methods to predict COVID-19 new and recovered cases in six countries. They 
used recurrent neural networks (RNNs) including LSTM, bidirectional LSTM (BiLSTM), 
gated recurrent units (GRUs), and variational autoencoder (VAE). 

Since SEIR-type models are based on ODEs, they usually do not handle spatial pro-
cesses (e.g., host movement across space) and spatial heterogeneity (e.g., varying disease-
related parameters across space such as different transmission coefficients, rates of recov-
ery and death, etc.) well. Nevertheless, today’s human movement patterns are strikingly 
distinct and more prominent than a century ago when the SEIR model was originally de-
veloped. Failure to incorporate modern movement patterns based on spatial heterogene-
ities may result in unrealistic predictions [20]. Therefore, new methodologies, such as spa-
tial SEIR models, have been developed to address and accommodate the critical spatial 
component in infectious disease dynamics explicitly. Several new SEIR-based models 
have recently been advanced that alleviate the limitations of earlier generations of SEIR 
models to be more in tune with the patent realities of highly mobile and heterogenous 
contemporary societies. This is the approach we followed in this study. 

Spatial SEIR models generally incorporate two or more spatially connected and in-
teracting populations, each having their own parameters related to disease processes (e.g., 
within-population transmission rate, recovery rate, death rate in the specific population, 
etc.). Within each population, the disease dynamics can be characterized by the traditional 
SEIR model as if the population is isolated (e.g., no interactions among populations). More 
importantly, these populations have interactions (inflow and outflow via commuting) that 
lead to new transmissions. Intensity or rate of interactions will influence potential trans-
mission, thus changing the overall disease transmission dynamics within and among pop-
ulations. 

In this study, we used a spatial SEIR model to simulate the number of COVID-19 
cases and forecast their four-week ahead values in ten counties of the Charlotte–Concord–
Gastonia Metropolitan Statistical Area (MSA). In this model, the number of cases was 
forecasted for all locations in one model, simultaneously. The spatial interactions between 
different locations were incorporated into the model to enhance the model’s accuracy of 
simulations and predictions. In addition, due to the impacts of external factors on COVID-
19 transition dynamics, a set of covariates were included in this model, including the so-
ciodemographic factors, mobility, county-level political leaning, COVID-19 vaccination 
coverage, and intervention policies. The model’s predictive performance is evaluated by 
computing the root-mean-square error (RMSE) between model predictions and reported 
values. 

2. Materials and Methods 
2.1. Study Area 

We studied the spatio-temporal dynamics of COVID-19 in the Charlotte–Concord–
Gastonia Metropolitan Statistical Area (MSA). This region is one of the largest MSAs in 
the Southeastern U.S. It comprises a total of 10 counties (7 in North Carolina and 3 in South 
Carolina) with an estimated total population over 2.6 million in 2021 [21] (Figure 1). Its 
population has grown by 16% from 2010 to 2021; during this period, population growth 
reached 22% in Mecklenburg County, North Carolina’s second most populous county 
[22]. As the most important commuting destination in the MSA, Mecklenburg County has 
experienced 32% of growth in employment in 10 years (from 697,231 in 2010 to 923,259 in 
2020) [23]. It constitutes the employment center of the MSA as about 60% of commuting 
trips end in this county [24]. Other counties trail Mecklenburg County both in population 
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and employment, and operationally have a residential function within the MSA interlaced 
with a few outlying business centers. 

 
Figure 1. Map of the Charlotte–Concord–Gastonia MSA. 

In addition to fast population and economic growth, the Charlotte area has been ex-
periencing transformative urban development and growth in two major forms relevant to 
the spread of COVID-19 pandemic: (1) high-intensity suburban developments in the outer 
parts of the city; and (2) high density and mixed developments in the inner parts of the 
city. Compact urban developments in the inner parts include the vertical developments 
in the central areas, infilling in the older neighborhoods around the central city and 
transit-oriented developments along the transit corridors [25]. Land use transportation 
plans have been developed to integrate the land developments with a rapid transit system 
along transit corridors. In addition to the extensive highway system, the LYNX light rail 
service has enhanced connectivity between different parts of the county and beyond [26]. 

The county’s large population size, rapid growth with high socio-economic disparity, 
fluid human movement, and its dominance of the entire MSA make this region vulnerable 
to large epidemics such as the current COVID-19. 

2.2. Data Retrieval and Preprocessing 
Data for the cumulative counts of COVID-19 cases and deaths in a daily temporal 

resolution were sourced from the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University [27]. Data were collected from 29 March 2020 to 13 March 2021 
for each of the 10 counties in our study area, and then cleaned and preprocessed for fitting 
the spatial SEIR prediction model (Section 2.3). Data for the following four weeks were 
used for prediction purposes based on the fitted model. We restricted our analysis to this 
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study period mainly for three reasons: (1) We wanted to study one type of variant of 
COVID-19, Delta variant (B.1.617.2) started interfering around 20 May 2021, and later be-
came the dominant variant. Thus, we restricted our study prior to arrival of Delta variant; 
(2) Data monitoring in the regions under study gradually declined as severity of the cases 
declined and vaccines became more widely available; (3) Finally, beyond 31 March 2021, 
all nonpharmaceutical restrictions in the region were lifted. During data preprocessing, it 
was found that some cumulative cases and deaths had smaller values than on the previous 
day. This issue is resolved by replacing the incorrect value by the value of the previous 
day, thus ensuring monotonically increasing cumulative cases and deaths. Daily incident 
cases and new deaths were obtained from the cleaned daily cumulative data through dif-
ferencing values between two consecutive days. Then, 7-day moving averages of new 
daily incident cases and new deaths were calculated using a centered moving average 
method. Finally, daily moving averages of incident cases and new deaths were aggregated 
to weekly counts. Weekly aggregates were consistent with the Morbidity and Mortality 
Weekly Report (MMWR) weeks [28]. 

In addition to the COVID-19 case and death data, covariates critical to COVID-19 
dynamics were collected and incorporated in the prediction model: sociodemographic 
factors such as population density, age and race, mobility, county-level political leaning, 
COVID-19 vaccination coverage, and intervention policies. These covariates were struc-
tured in two groups of time-variant and time-invariant variables, respectively. Time-in-
variant data were used to capture spatial heterogeneity in this study (i.e., differences be-
tween spatial entities, counties), while time-variant variables were used to capture spatio-
temporal heterogeneity. In addition, time-variant variables were modeled with a 2-week 
lag to account for the COVID-19 incubation period [29]. 

Sociodemographic factors of race, population density, and age distribution were 
sourced from the SimplyAnalytics database [30], drawing primary data from the US Cen-
sus Bureau American Community Survey. Mobility patterns are one of the most im-
portant covariates of the COVID-19 pandemic [18,31,32]. In order to capture the impact of 
the interactions between populations in different counties, mobility data were collected 
from different sources and incorporated in the prediction model. The daily time spent at 
different places such as home, work, public transit, grocery stores, and parks was obtained 
from Google COVID-19 Community Mobility Reports [33]. Missing data were imputed 
by values of the previous day. Daily values were aggregated to weekly values based on 
the same epidemiological calendar of MMWR. We also used Apple Mobility [34] data, 
which include the percentage change in mobility on a daily basis, as a reference to cross-
validate other mobility data sources. Apple Mobility daily values were aggregated to 
weekly values for counties following the same approach mentioned earlier. In addition, 
we collected the total number of individuals’ visits to points of interest (POIs) from the 
SafeGraph’s Monthly Patterns dataset [35]. SafeGraph collects mobility data from a vari-
ety of resources such as mobile phone GPS and provides these data through the SafeGraph 
COVID-19 Data Consortium [36]. In this dataset, the total tally of daily visits to POIs is 
available by Census Block Group. In this study, Census Block Group level data were ag-
gregated to counties, and daily visits were aggregated to weekly visits for each county 
based on the epidemiological calendar. 

Another important societal factor that is able to influence perception of the risk of 
COVID-19 and behavioral responses (e.g., whether or not one is willing to comply with 
various interventions) is the political leaning of the places [37]. For this purpose, we cap-
tured the differences between counties in the voting results of the 2020 presidential elec-
tions. Data were collected from the North Carolina State Board of Elections [38] for North 
Carolina counties, and from the South Carolina Election Commissions [39] for South Car-
olina counties. Then, the ratio of votes for the Democratic candidate over the Republican 
candidate was calculated and incorporated into the prediction model. 

Given the importance of COVID-19 vaccination, especially its impact on the third and 
largest wave in COVID-19 cases in 2021, county-level vaccination coverage with at least 
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one dose was obtained for North Carolina counties from the North Carolina Department 
of Health and Human Services [40]. Historical vaccination data are available for North 
Carolina counties; however, for South Carolina, only the cumulative data are available. 
As a result, the weekly counts of vaccinated people with at least one dose for SC counties 
were estimated on the population-weighted vaccination counts in NC counties. Then, the 
weekly counts were aggregated to cumulative values to account for the continuous impact 
of vaccinations over time. 

In addition, several other policy-related variables were used; for example, the man-
dates on face covering starting in June 2020 [41], school shutdowns starting in August 
2020. Wintery atmospheric temperature between October 2020 and February 2021 is used 
as an environmental factor. Descriptive statistics of important variables are summarized 
in Table 1. 

Table 1. Descriptive statistics of variables used in the final exposure model. 

Variable Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max 
Google mobility (change in time spent 

at workplaces (%)) 
−28.835 8.118 −53.714 −33.893 −22.714 −10.429 

Population vaccinated with at least one 
dose 

1028.341 2375.554 0 0 306.25 13162 

Apple mobility (average requests for 
changing directions) 

130.352 24.699 53.999 119.248 148.376 180.517 

Voting ratio (democrats/republicans) 0.756 0.468 0.361 0.508 0.8 2.094 
Population density (per mi2) 515.209 551.934 55.335 273.888 579.502 2097.705 

Wintery temperature  0.63 0.48 0 0 1 1 
School shutdowns 0.39 0.49 0 0 1 1 

Face mask intervention policy 0.28 0.45 0 0 1 1 

The preprocessed COVID-19 cases were used to construct the data model and the 
mentioned covariates are used to build the exposure model component of the overall spa-
tial SEIR model in this study (detailed in Section 2.3). Another important component of 
this spatial model is the distance model (also known as the spatial process model), which 
specifies exposure probabilities as a linear combination of so-called ‘spatial weight matri-
ces’. These matrices capture the spatial structure of the units of observation; specifically, 
they measure the geographic proximity (or conversely, their geographic separation of dis-
tance) on a pairwise basis. In this study, they were based on the length of the shared 
boundary between counties and on the inverse of the pairwise distance between the cen-
troids of all 10 counties, using the Cartographic Boundary Files-Shapefile [42]. The pre-
liminary analysis led to the conclusion that such a combination of spatial structures pro-
vided a more comprehensive characterization of spatial interaction effects and a more ef-
fective handling of disease diffusion across the geographic space than either of these two 
matrices alone. The two spatial weight matrices were unweighted in the distance model. 

2.3. Modeling Framework and Model Structure 
Brown et al. [43] developed a stochastic spatial SEIR model fitted to data using the 

approximate Bayesian computational algorithm [44]. It models the dynamics of the epi-
demic over time at multiple spatial locations. Equation (1) shows the mathematical for-
mulation of the model with four compartments (S, E, I, R), and transitions into new com-
partments (S*, E*, I* and R*). New transitions indicated by an asterisk occur over discrete 
times (i) and discrete locations (j). πij(RS), πij(SE), πj(EI) and πj(IR) show the probabilities of 
transitions between R and S, S and E, E and I, and I and R, respectively. 
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Si+1 = Si − E*i + S*i   S*ij ~ binom(Rij, πij(RS))  

(1)

Ei+1 = Ei − I*i + E*i   E*ij ~ binom(Sij, πij(SE)) 

Ii+1 = Ii − R*i + I*i   I*ij ~ binom(Eij, πj(EI)) 

Ri+1 = Ri − S*i − R*i   R*ij ~ binom(Iij, πj(IR)) 

where the exposure probabilities {πij(SE)} are modeled using exposure-related covariates 
(such as mobility, vaccinations, population demographics, non-pharmaceutical interven-
tions (NPIs) and weather) and spatial weight structures. The spatial structure of the pop-
ulation is incorporated into the exposure probability as shown in Equation 2. In this equa-
tion, Dz denotes n-by-n spatial weight matrices, and Ῥ denotes the associated autocorre-
lation parameters. 

πij(SE) = 1 − exp ({−ηi −∑  ௭ୀଵ Ῥz(Dz ηi)}jhi) (2)

πij(SE) in Equation (2) indicates the probability of transitioning a susceptible individual 
in location sj at time ti into the exposed population. 

The probabilities of transitioning from E to I, and from I to R, are explained in Equa-
tion (3), in which γ denotes the transition ratio parameter and hi denotes a temporal offset 
allowing for irregularly spaced time points. More detailed descriptions of the model can 
be found in Brown et al. [43]. 

πi(EI) = 1 − exp(− hiγ(EI)) 

(3)πi(IR) = 1 − exp(− hiγ(IR)) 

The ABSEIR R package [43] was used to simulate the SEIR model. As a stochastic 
spatial SEIR model, the overall model is composed of several modules: data model, expo-
sure model, reinfection model, distance model, transition priors, initial value container, 
and sampling control. After each individual module has been developed, all modules are 
fed into the spatial SEIR model to simulate the number of reported case series. The data 
model component describes the input data and their relationship with the SEIR model. A 
matrix of COVID-19 cases with rows denoting the temporal dimension and columns de-
noting different locations is fed into the data model. In addition, other parameters such as 
the matrix type (“identity”, “overdispersion”, or “fractional”), and compartment (I* or 
R*), were included in the data model. In the data model, it needs to be specified whether 
the input data (number of cases) are in cumulative format or indicate new cases in each 
time point. The exposure model component describes the actual epidemic process includ-
ing various covariates. The reinfection model component indicates whether transitions 
from recovered (R) to susceptible (S) compartments are allowed in the model or not. The 
transition priors component specifies the prior transition probabilities from E to I, and 
from I to R compartments. These two transition priors capture the latency period and in-
fectious period of the dynamics. The distance model describes the spatial network struc-
ture of the population as it conditions the interactions among counties in the MSA. The 
distance model is composed of a list of square, symmetric spatial weight matrices. Each 
square matrix indicates the pairwise relationships between studied locations. The pair-
wise relationship can be defined in different ways. For example, it can show the straight-
line distance between location centroids, or whether two locations are neighbors or not. 
The initial value container is constructed based on the total population, number of cases 
and deaths, and COVID-19 tests at the beginning of the study period, in each county. 
Lastly, sampling control specifies the approximate Bayesian computation (ABC) algo-
rithm and other sampling properties. Details of the model can be found in the ABSEIR 
GitHub repository (https://github.com/grantbrown/ABSEIR, accessed on 15 November 
2020) by Brown et al. [43]. 
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Once the complete model is constructed and fitted, COVID-19 cases are predicted for 
up to four weeks ahead for dates between 20 March 2021 to 10 April 2021. Then, model 
performance (goodness of fit) is evaluated by computing the root-mean-square error 
(RMSE) between model predictions and reported values. Note that each of the 10 counties 
in this study will have its own, county-specific model parameters and RMSEs. We devel-
oped different versions of the model by including different specifications of covariates 
(i.e., inclusion of certain combinations of covariates), and optimal models are identified 
by comparing RMSEs of competing models at each county. The stability of our models’ 
performance is tested by running the same models on another 4-week period from 17 
April 2021 to 8 May 2021. The results of this 4-week period were also compared with the 
ensemble model as a benchmark. 

In order to assess the enhancement made by the inclusion of the spatial interactions’ 
characteristics in the SEIR model, we also developed comparable models without the spa-
tial interactions. These nonspatial models simultaneously estimate COVID-19 cases for all 
counties without taking into account their geographic connections. In these models, coun-
ties were assumed to be isolated from each other (spatial weight matrices were null). 

In addition, we further evaluated the performance of our fitted spatial SEIR models 
by comparison with models developed in the extant literature. Specifically, we compared 
our model outputs with an ensemble prediction model implemented by Reich Lab’s 
COVID-19 Forecast Hub in collaboration with CDC [45]. This ensemble model takes the 
predicted values of COVID-19 cases and deaths from over 50 international research 
groups on a weekly basis, and calculates the arithmetic mean and median to construct the 
ensemble. The COVID-19 Forecast Hub’s ensemble model is a good benchmark to evalu-
ate the performance of our model. The predictive performance of our model on the alter-
nate period from 17 April 2021 to 8 May 2021 was also compared with the ensemble model 
as a benchmark. 

3. Results 
Multiple spatial SEIR models were constructed based on different specifications for 

the exposure model component, i.e., with different combinations of covariates/factors. 
Only the prediction results of three models with best goodness-of-fit measures are re-
ported here. The covariates in each of these models are listed in Table 2. 

Table 2. Three retained spatial SEIR models: specification and approximate Bayes factors. 

 Model Specification 
Approximate Bayes Factor 

Model 1 Model 2 Model 3 

Model 1 

Face mask intervention policy 
School shutdowns 

Wintery temperature 
Population density 

Vaccinated population with at least 
one dose 

1.0 0.2 3.1 

Model 2 

Face mask intervention policy 
School shutdowns 

Wintery temperature 
Presidential election voting ratio 

Vaccinated population with at least 
one dose 

Percentage change in mobility (Apple 
Mobility dataset) 

5.6 1.0 17.3 

Model 3 
Face mask intervention policy 

School shutdowns 0.3 0.1 1.0 
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Wintery temperature 
Presidential election voting ratio 

Vaccinated population with at least 
one dose 

Change in time spent at work (Google 
mobility reports dataset) 

The three models are reported as each of them performed better than the others in 
some of the counties. In the other words, no single model performs consistently well 
across all 10 counties in this study. The spatial variability in model performance indicates 
that particular spatial and/or spatio-temporal covariates impact COVID-19 dynamics dif-
ferently in different locations. 

Bayes factor, the ratio of the acceptance between two models, is used to compare the 
overall performance of the three optimal models [46]. As reported in Table 2, all values of 
the Bayes factor are greater than 3 in model 2, indicating moderate to strong evidence for 
model 2′s overall better performance than the other two models. On the other hand, none 
of the factors exceeds 3 in model 3, and only one exceeds 3 in model 1. Taken together, 
these results suggest that model 2 outperforms the other models. Figure 2 shows fitting 
and prediction results of model 2 as the overall best model. 
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Figure 2. Reported historical (blue dots) COVID-19 cases and cases simulated with model 2 (black 
line) in 10 counties of the study area, including the last 4 weeks not used for model fitting. The 5% 
confidence interval is shown with dashed lines. The last 4 weeks to the right of the gray vertical 
lines show the forecasted number of cases. 

Table 3 shows the 4-week ahead prediction of COVID-19 cases with each model be-
tween 20 March 2021 to 10 April 2021, as well as the reported cases for benchmarking 
purposes. With this information, the RMSE values can be calculated for our spatial SEIR 
model and similarly for the ensemble model from CDC [45]. These are reported in Table 
4. Using the ensemble model as a benchmark, we find that our spatial SEIR model per-
forms better than the benchmark model in 8 of the 10 counties (Cabarrus, Gaston, Iredell, 
Mecklenburg, Union, Rowan, Lancaster and York), weaker in just one county (Lincoln), 
and on par in Chester County. To compare the overall predictive performance of each 
model in all counties with the overall performance of the benchmark ensemble model, one 
overall weighted RMSE value is calculated for each model across all counties and 
weighted by the county population size (Table 5). We also calculated an overall un-
weighted RMSE. All of the spatial SEIR models developed in this study perform drasti-
cally better in predicting 4-week ahead cases than the benchmark ensemble across all 
counties. 

Table 3. Four-week predicted cases (PC) and reported cases (RC) across 10 counties in the MSA. 
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W1 284 251 226 64 1677 265 299 72 207 454 
W2 256 227 204 58 1515 240 270 65 188 410 
W3 232 205 184 53 1372 217 244 59 170 370 
W4 210 186 167 47 1241 196 221 53 153 336 

PC
 M

od
el

 2
 

W1 364 337 261 85 1665 338 328 84 209 472 
W2 326 301 234 76 1492 303 294 75 188 423 
W3 292 270 210 68 1340 271 263 67 168 379 
W4 262 243 188 61 1203 243 236 60 151 340 

PC
 M

od
el

 3
 

W1 181 170 132 36 1661 160 174 41 113 269 
W2 162 151 118 32 1484 143 156 37 101 240 
W3 144 135 105 29 1328 127 139 33 90 214 
W4 130 121 94 26 1189 114 125 29 81 192 

RC
 

W1 277 233 236 104 1328 184 383 77 120 503 
W2 289 245 244 93 1436 166 424 50 100 419 
W3 343 270 213 112 1532 190 346 33 123 420 
W4 396 268 183 101 1724 196 313 32 106 440 
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Table 4. Four-week ahead prediction RMSE values of the three variants of the spatial SEIR model 
and of the ensemble model for each county. 
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Spatial SEIR—Model 1 110 54 26 48 311 56 111 18 70 63 
Spatial SEIR—Model 2 86 60 14 32 326 113 90 26 70 56 
Spatial SEIR—Model 3 184 115 108 72 332 54 220 19 21 218 

Ensemble 174 92 102 23 882 86 148 18 22 139 

Table 5. RMSE values of prediction models over 4 weeks and all counties. 

 Model 1 Model 2 Model 3 Ensemble 
RMSE- average weighted by county population 172 177 224 440 

RMSE- unweighted average 87 87 134 169 

The three spatial models are also compared with their nonspatial counterparts to es-
tablish the specific contribution of the spatial dimension on the modeling of the spread of 
COVID-19. Integrating the spatial and spatio-temporal dynamics across counties has sub-
stantially improved the predictive performances of all specifications of the SEIR model. 
Specifically, we find that the average 4-week RMSE across all 10 counties has improved 
by 47%, 31% and 80% in models 1, 2 and 3, respectively, compared with the nonspatial 
counterparts. There is latent spatial heterogeneity in the spread of COVID-19, which tran-
spires through the predictive performance of the instances of spatial SEIR model as no 
specification performs better than the others in all 10 counties. Model 1 performs better 
than other models in three counties; model 2 better than other models in five counties, 
and model 3 better than other models in two counties. Hence, the overall RMSE values 
(Table 5) largely hide these differences. However, we note that the weighted RMSE iden-
tifies model 1 as the best performer due to the overwhelming population size of Mecklen-
burg County over other counties, while the unweighted RMSE value puts models 1 and 2 
on an equal footing. 

Finally, we test the stability of the predictive performance of models over time. For 
this purpose, we run the same model specifications for another 4 weeks (from 17 April 
2021 to 8 May 2021). We have found that our fitted models perform consistently well 
across prediction periods compared with the benchmark ensemble model. 

4. Discussion 
We have developed a spatial SEIR model to fit the COVID-19 epidemic dynamics and 

implemented it to predict the number of 4-week ahead cases. SEIR models have been one 
of the most commonly used methods for studying epidemic dynamics. However, original 
SEIR models have no explicit spatial component, and cannot adequately capture potential 
spatial processes and variability across different locations. Spatial SEIR, on the other hand, 
takes into account the heterogeneity of epidemics across different locations. It also cap-
tures the spatial interactions (e.g., mixing via movement and mobility) among these loca-
tions. 

The spread of COVID-19 is simulated and predicted for future weeks in the 10 coun-
ties of the Charlotte–Concord–Gastonia MSA. The relative positions of Mecklenburg 
County and of the surrounding counties in the MSA, and their respective social determi-
nants of health (e.g., employment rates) and landscape structure in this broader geo-
graphic context, are generative of meaningful spatial heterogeneities and lead to strong 
interactions between these counties including commuting trips, non-work trips, and mo-
bility of goods and services. 
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Metropolitan areas have been particularly impacted during the COVID-19 pandemic 
because of spatial interactions and heterogeneity within and between locations in the met-
ropolitan areas. According to the results of this study, the spatial SEIR model proves ef-
fective at accounting for these complicated spatial interactions and variations to forecast 
the future COVID-19 epidemic dynamics. Our model outperforms similarly specified 
SEIR models by a large margin because it explicitly accounts for spatial context and spatial 
heterogeneity and for the existence of heterogeneous interactions between constituting 
spatial parts of the study region. Extensive research in spatial analysis of urban and re-
gional systems [47] has considerably advanced the state-of-the-art in this area. The present 
study points that this is also the case with population health and with the spread of infec-
tious diseases such as the COVID-19 pandemic. The epidemic dynamics in different coun-
ties are highly influenced by the spatio-temporal heterogeneity of external covariates. 
Model performance varies across counties, which indicates the important role of external 
covariates and of their spatio-temporal heterogeneity in the spread of COVID-19 in a 
large, heterogeneous metropolitan region. In our research, when the structure of spatial 
interactions operationalized by two spatial weight matrices was controlled for during the 
model fitting process (in effect, assuming that counties are compartmentalized and that 
there are no interactions between them), it was determined that the goodness-of-fit and 
predictive power of the SEIR model were significantly downgraded. Hence, the structure 
of the spatial environment matters as far the spatio-temporal pattern of the incidence of 
COVID-19 is concerned. 

Several studies have addressed the spatial patterns and heterogeneities of COVID-19 
in SEIR-type models. For example, Hou et al. [48] treated spatial heterogeneities in inter-
county modeling of COVID-19 in Wisconsin using business movement patterns, age, and 
race as covariates. Embedding a network-cluster-based approach in human mobility flow-
augmented stochastic SEIR models, they estimated a region-specific Re. They used an En-
semble Kalman Filter approach to fit their proposed models to the data obtained from the 
Wisconsin Department of Health Service. In another study, Lawson and Kim [49] used a 
Bayesian space–time SIR model for estimating and predicting county-level COVID-19 in-
fections and deaths in South Carolina. Region-specific model parameters were modeled 
using intrinsic conditional autoregressive (ICAR) priors. Chiang et al. [50] used the 
Hawkes process with spatio-temporal covariates based on county-level Google mobility 
data and demographics for estimating incidences, deaths, and basic reproduction num-
bers across the 48 contiguous US states via an expectation–maximization algorithm. Kin-
sey et al.’s [51] Bucky model used a stratified SEIR model based on age groups and geo-
graphic locations to estimate case rates, deaths, and healthcare burden. In a more recent 
study, emphasizing the geographic heterogeneity of pandemic dynamics, Macias et al. 
[52] proposed a Lagrangian-SEIR-based model to predict the COVID-19 epidemic in the 
Mexican state of Jalisco. Their approach incorporated a Lagrangian movement model that 
captures population movements within and among regions. Gopalakrishnan et al. [53] 
emphasized the impact of spatial granularity on COVID-19 forecasting results using dif-
ferent unit areas of state, county cluster and county; however, they did not take into ac-
count the spatial interactions between these areal units in their compartmental forecasting 
model. Liu and Li [54] proposed a multi-group SEIR model taking into account the spatial 
heterogeneity through incorporating spatial diffusion and heterogeneity in the model pa-
rameters. In addition, emphasizing on the importance of capturing the spatial interactions 
in SEIR models, Rajuladevi et al. [55], studied the impact of seeding or initializations in a 
network of different countries. They found that the effect varies over different countries. 
Our work expanded this literature by exemplifying the application of spatial SEIR on a 
metropolitan region and assessed the spatial variations in models’ predictive power. Our 
work opens avenues for future research on fitting various models with different covari-
ates in different regions under spatial SEIR set up with appropriate penalization [56] and 
variable selection [57,58] techniques. This study has several limitations. While spatial SEIR 
represents the future of epidemic modeling and forecasting, questions remain to be 
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investigated to realize the full potential of this sub-family of models. First, it remains to 
be determined what epidemics benefit to be modeled with an explicit representation of 
spatial heterogeneity and interactions (also known as spatial dependence). To what extent 
would different models of space (especially of the spatial weight matrix) for different 
types of viral infections enhance the performance of the models? Spatial analysis and spa-
tial econometrics have made great strides over the past decade in some respects with a 
number of modeling frameworks, but not with SEIR-type models to this day. 

Second, given the known behaviors of the COVID-19 epidemic, we see the need to 
develop models at a higher spatial resolution than the current county-level to explicitly 
represent community-level transmission, and even multi-level models with nested spatial 
representations that match the range of diffusion processes between place-based popula-
tions. Third, we envision that machine learning can greatly enhance the performance of 
spatial SEIR models by optimizing model parameters that fit the local geographic con-
texts. In addition, many diseases have concurrent variants/strains such as COVID-19 (e.g., 
transition period between Alpha and Delta, and Delta and Omicron variants in the U.S.), 
which substantially influence epidemic dynamics. With broader and more accurate ge-
nomic and serosurveillance, we will expand spatial SEIR models to explicitly incorporate 
multiple variants/strains and their composition in different regions. 

5. Conclusions 
In this study, we developed a spatial SEIR model capable of simulating and predict-

ing the number of 4-week ahead COVID-19 cases in the Charlotte–Concord–Gastonia 
MSA. The analysis concluded the spatial SEIR is effective at predicting the spatio-tem-
poral dynamics of the pandemic by explicitly accounting for spatial heterogeneity and 
spatial interaction between counties. 

In addition to pathogen biology, COVID-19 pandemic is influenced by various exter-
nal covariates such as host mobility, demographic factors, non-pharmaceutical interven-
tions such as school closures, and pharmaceutical interventions such as vaccinations. As 
a result, the epidemic dynamics vary across different locations based on variations in these 
factors. In this study, we developed different models incorporating a variety of external 
covariates and relevant datasets, such as face mask intervention policies, school closings, 
seasonal atmospheric temperature drops, population density, vaccinated population with 
at least one dose, presidential election voting ratio, percentage change in mobility from 
Apple Mobility dataset, and change in time spent at work from the Google mobility re-
ports dataset. We found that spatio-temporal heterogeneity of these external covariates is 
a strong predictor of the epidemic dynamics. We have identified both the time variant and 
time invariant covariates that are critical to local (county-specific) COVID-19 epidemic 
dynamics. Among all competing models that we have developed, three models perform 
better than others, based on RMSE values as the model evaluation metric. The variation 
in model performances across counties harks back to the influential impact of external 
covariates and their spatio-temporal heterogeneity in COVID-19 diffusion in a diverse 
metropolitan region. 

Our analysis has shown that the spatial SEIR model is effective at accounting for the 
complicated spatial interactions and variations within and between locations in the met-
ropolitan areas to forecast the future COVID-19 epidemic dynamics. Our models outper-
formed equivalent SEIR models that rule out spatial dependence and spatial interaction 
between counties. We also compared and evaluated our model with the CDC’s ensemble 
model. Our spatial SEIR models performed on a par with, or even better than, the bench-
mark ensemble model, showing the importance of incorporating high-resolution, loca-
tion-specific covariates to further enhance model predictability at the metropolitan scale. 

With regard to the tremendous socioeconomic costs of the COVID-19 outbreak, it is 
a high priority to be able to predict the epidemic dynamics beforehand. This information 
can be used to inform timely and effective policy such as pharmaceutical and non-phar-
maceutical interventions. Our spatial SEIR model developed for Charlotte–Concord–
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Gastonia MSA can be readily extended to other regions (especially metropolitan areas 
with high spatio-temporal heterogeneity) to effectively characterize and predict the 
COVID-19 epidemic dynamics. 
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