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Abstract: Global warming and environmental pollution have created a unique combination of
abiotic and biotic stresses to zooplankton. However, little information is available on the effects of
antipsychotic drugs commonly used to treat psychosis, such as chlorpromazine (CPZ), on non-target
aquatic organisms in light of global warming. This study investigated how dopamine concentrations
(DAC), acute toxicity and chronic toxicity of Brachionus calyciflorus changed in response to CPZ and
gradually increasing temperatures. The results showed that the concentration range of rotifer DAC
was 1.06~2.51 ng/g. At 18, 25 and 32 ◦C, the 24 h LC50 was 1.795, 1.242 and 0.833 mg/L, respectively.
Compared to the control, exposure to CPZ significantly decreased life expectancy at hatching, the
net reproduction rate, generation time, population growth rate and dopamine concentration of B.
calyciflorus in all three temperatures (p < 0.05). The toxicity of CPZ to rotifers was increased by high
temperature. These findings indicated that CPZ is highly toxic to rotifers, displaying high ecological
risks to aquatic ecosystems.

Keywords: psychoactive substances; global warming; zooplankton; dopamine

1. Introduction

Psychoactive substances (PSs) can alter mental functions such as thinking, emotion,
and volitional action after being absorbed into the human body. With the increasing num-
ber of those suffering from mental illness and the global illicit drug trade, the demand
for and use of PSs has risen rapidly in the last decade, and PS misuse has progressively
become a global issue [1]. The unmetabolized PS products and inactive prodrugs enter
municipal pipes with household wastewater after daily use [2]; however, these substances
are not completely removed in the wastewater treatment plant (WWTPs), as some PSs and
their metabolites are still released into natural water bodies, where they are deposited in
sediments and accumulated in aquatic organisms, negatively influencing their behavior
and the stability of aquatic ecosystems [3,4]. Currently, PSs have emerged as novel environ-
mental pollutants with ecotoxic effects that have been discovered in a variety of aquatic
environments, attracting significant attention [5].

Chlorpromazine (CPZ) is a low-cost phenothiazine psychoactive substance. As a
first-generation antipsychotic, CPZ is commonly used to treat psychotic disorders such
as delusions, hallucinations, mania, schizophrenia, and thinking disorders in humans [6].
CPZ reduces brain dopamine (DA) by inhibiting postsynaptic dopamine receptors (DARs)
in the cerebral cortex and limbic regions, which would reduce psychotic symptoms such
as delusions and hallucinations [7]. In addition, to its antipsychotic effects, CPZ has been
considered among the most promising agents for inhibiting coronaviruses in humans (e.g.,
MERS-CoV and SARS-CoV-1) [8,9]. Based on the above findings, the hypothesis that CPZ
could reduce the unfavorable evolution of COVID-19 and the infectivity of SARS-CoV-2
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will be tested by a French team. It seems that inhibition of clathrin-mediated endocytosis
is a critical factor in antiviral activity [10]. After 70 years of use and more than 25 years
of research on residual drugs and their derivatives in the environment, CPZ is safe for
everyday human use, but toxicological effects on aquatic organisms have also been reported
for several non-target organisms, such as aquatic invertebrates [11,12], macrophytes [13],
and fish [14]. Additionally, CPZ has been reported in various water bodies at concentrations
ranging from 1 to 364 ng/L [15,16]. Even at trace levels, the unintentional presence of CPZ
in aquatic ecosystems can cause devastating damage to organisms [17].

In the past decade, scholars have emphasized that climate change poses a direct
or indirect threat to mental health [18,19]. Short-term extreme weather, long-term tem-
perature rise and other climate changes caused by human activities are related to the
deterioration of mental health, which inevitably increases the use of antipsychotics [20–22].
Generally, temperature affects the distribution and toxicity of environmental chemicals
in water [23]. Convincing evidence shows that the increase in temperature due to global
warming may cause irreversible damage to wildlife exposed to pollutants [24]. The rising
water temperature may change the biological transformation of pollutants to more bioactive
metabolites and impair homeostasis. Some researchers found that the toxicity of endosulfan
to Oncorhynchus mykiss depends on temperature [25]. It was previously reported that the
toxicity of chemicals all increased with higher temperature, such as pentachlorobenzene,
parathion and chlorpyrifos to Chironomus tentans [26], fungicide chlorothalonil and insecti-
cide Scourge® to the estuarine grass shrimp Palaemonetes pugio [27]. However, the effects of
increased temperature in light of global warming on the toxicity of antipsychotic drugs on
zooplankton remain a daunting challenge.

Zooplankton occurs widely in freshwater ecosystems and is often used as a bioindica-
tor to evaluate the potential health risks of exposure to trace elements and toxic chemical
compounds [28,29]. Although Daphnia magna is among the most widely used zooplankton
species in ecotoxicology, little is known about the toxicity of CPZ to this model system. It
was found that the 48 h EC50 of CPZ was 1.805 mg/L in D. magna [30], and its testing in
toxicity assessment of another antipsychotic carbamazepine was reported [31]. Rotifers,
especially Brachionus calyciflorus, B. plicatilis and B. havanaensis, have been widely used
for toxicity assessment as model organisms because of their small size, ease of culture,
rapid reproduction rate, and sensitivity to toxicity [32,33]. Additionally, the rotifer B. ca-
lyciflorus has a parthenogenetic reproduction mode, which provides a basis for us to test
individuals with the same genetics [34]. Considering its higher sensitivity to drugs than
other invertebrates, B. calyciflorus has been widely utilized to assess the potential toxicity of
pharmaceuticals and their metabolites [35]; however, the toxic effects of CPZ remain poorly
understood in rotifers.

We looked at the effects of CPZ on the neurotransmitter DA of B. calyciflorus as well as
its life history and population growth parameters at high temperatures. The current study
aims to (1) test the acute toxicity of CPZ to rotifers at different temperatures; (2) further
understand the response of neurotransmitter DA in rotifers to CPZ toxicity at higher
temperature; (3) determine the chronic effects of sublethal CPZ concentrations on rotifer
development and reproduction at higher temperatures. The current investigation will
reveal the toxic effects of CPZ on freshwater invertebrates in a systematic manner, which
is critical for a comprehensive assessment of the environmental risk of antipsychotics to
aquatic ecosystems.

2. Materials and Methods
2.1. Experimental Animals

Monoclonal cultures of B. calyciflorus were hatched from a single resting egg col-
lected from the sediments of Lake Longwo (31◦15′ N; 118◦17′ E) in Wuhu city [36], and
were identified morphologically and molecularly using a barcode (mitochondria COI se-
quence) as a biomarker [37]. Rotifers were cultured in EPA medium [38] at 25 ◦C with a
16:8 h (L:D) photoperiod and 1300 lx light intensity. Rotifers were fed Tetradesmus obliquus
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(Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China) at a food density of
1.5 × 106 cells/mL. Algae were grown in semi-continuous culture using HB-4 medium [39].
Rotifers were acclimated to temperatures of 18, 25 and 32 ◦C for over a week prior to the
experiments to reduce interference from maternal effects [37].

2.2. Experimental Chemicals

Chlorpromazine hydrochloride (CAS: 69-09-0) was purchased from Sangon Biotech
(Shanghai, China) with 98% of purity. The degradation of CPZ in the dark at room tem-
perature was almost negligible: the half-life was estimated as 87.3 weeks. Meanwhile, the
half-life of CPZ in darkness at 70 ◦C has been calculated as 4.55 weeks [40]. A stock solution
of 5 mg/L was prepared by dissolving with distilled water to the desired concentration.
We prepared new test solutions every 24 h to avoid contamination and light. All of the
other reagents used were analytically pure.

2.3. Acute Toxicity Experiment

For acute toxicity assessment, seven concentrations (0 (control), 0.8, 1.2, 1.6, 2.0, 2.4, 2.8
and 3.2 mg/L) were included for each temperature (18, 25 and 32 ◦C). Ten rotifer juveniles
(<4 h old) were chosen at random and placed in a glass jar containing 5 mL of test solution.
Four replicates were performed for each treatment. Rotifers were cultured under darkness
with 1.5 × 106 cells/mL of T. obliquus. The number of dead rotifers was counted after 24 h,
and the LC50 was calculated using the Probit method [41].

2.4. Determination of DA Concentration

To explore the effects of CPZ on B. calyciflorus neurotransmitters in light of global
warming, we set up groups of 0, 0.125, 0.25 and 0.5 mg/L CPZ treatments based on 24 h
LC50, and measured changes in DA concentration (DAC). First, rotifers pre-cultured at 18,
25 and 32 ◦C were collected in three 2000 mL glass beakers according to temperature, and
then rotifers in each temperature group were equally distributed to twelve 50 mL glass
beakers. Each beaker held approximately 8000 rotifers and 50 mL of test solution. These
beakers were kept at temperatures of 18, 25 and 32 ◦C for 12 h, with no food provided
during this period. The rotifers were harvested by filtration through a 25 µm pore-sized
mesh in a cryovial (washed with EPA medium and made up to 5 mL), rapidly frozen with
liquid nitrogen and then stored at −80 ◦C for determination of DA levels. Each treatment
was carried out three times.

Rotifers were homogenized for 10 min at 4 ◦C using a Bullet Blender Tissue Homoge-
nizer (Next Advance, New York, NY, USA) at 2.0 m/s. The mixtures were then centrifuged
at 3000× g for 10 min at room temperature. The supernatant was collected and subjected to
assessment concentration using ELISA kits produced by Shanghai Elisa Biotech Co., Ltd.
(Shanghai, China), following the manufacturer’s specifications. In brief, the DA level was
determined using an enzyme-linked immunosorbent assay, and the absorbance at 450 nm
was measured with an RT-6100 enzyme-labeled instrument (Rayto, Shenzhen, China).

2.5. Life Table Experiment

For the life table experiments, four CPZ concentrations (0 (control), 0.125, 0.25 and
0.5 mg/L) and three temperatures (18, 25 and 32 ◦C) were tested based on the 24 h LC50.
Each treatment was replicated three times. In total, 36 glass jars (three temperatures × four
CPZ concentrations × three replicates) were used. The experiment was conducted in 8 mL
glass jars. For each glass jar, ten juveniles (<4 h old) were introduced to a 5 mL test solution
containing 1.5 × 106 cells/mL of T. obliquus. Every 24 h, 80% of the test solutions were
replaced with freshly prepared solutions containing designated concentrations of algae.
The cultured rotifers were checked every 12 h to record the numbers of neonates and dead
individuals which were removed until all the experimental animals died.

Based on the data collected, age-specific survival (lx) and age-specific fecundity (mx)
were calculated by using the conventional life table technique [42]. To drive the life table
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variables, including life expectancy (e0), generation time (T), net reproduction rate (R0) and
intrinsic rate of population increase (rm) were calculated according to Krebs [43].

2.6. Population Growth Experiment

The temperature and CPZ concentration settings are the same as in Section 2.5. The
experiments were carried out in 15 mL transparent test tubes, with 20 juveniles (<4 h old,
hatched from amictic eggs under precultured conditions) placed in each test tube containing
10 mL test solution with 1.5 × 106 cells/mL of T. obliquus. Each treatment was replicated
three times. During the experimental, the number of live individuals in each replicate (using
a whole sample count or 1~3 mL depending on population density) was counted daily
and transferred into a freshly prepared test solution. T. obliquus deposited at the bottom
of each test tube was resuspended with a micropipette every 12 h. The experiments were
terminated when the population density peaked and continued to decline for 2~3 days.

The population growth rate (r) of the rotifers was calculated as follows:

r = (ln Nt − ln N0)/t (1)

where t is the culture day in which the rotifer density was the highest, and N0 and Nt are
the initial and highest rotifer densities, respectively [44].

2.7. Statistical Analysis

All data were expressed as the mean values with standard errors (mean ± SEs). The
normality and homogeneity of data were tested using Kolmogorov–Smirnov’s tests and
Levene’s tests, respectively. The 24 h LC50 was derived using the Probit analysis. Two-way
ANOVA was used to analyze the differences in life table parameters among all of the groups.
Multiple comparisons were performed by the Student–Newman–Keuls q test (SNK-q test).
A statistically significant difference was set as p < 0.05. All data were statistically analyzed
using SPSS 22.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Acute Toxicity Test

After 30 min of exposure, the B. calyciflorus reacted to each treatment by slowing
down its swimming speed, forming clusters of two or three individuals, and weakening
its response to external stimuli. The CPZ concentration at which rotifers began to die
decreased from 1.2 to 0.4 mg/L as the temperature increased, and there was a significant
linear relationship between CPZ concentration and rotifer mortality, respectively (Table 1).
At 18, 25 and 32 ◦C, the 24 h LC50 of CPZ to B. calyciflorus was 1.795, 1.242 and 0.833 mg/L,
respectively. The 24 h LC50 decreased with increasing temperature (Table 1), indicating that
the toxicity of CPZ increased with temperature.

Table 1. The 24 h LC50 of chlorpromazine as well as the relationships between chlorpromazine
concentration (x, mg/L) and mortality rate of B. calyciflorus at three temperatures. Shown are the
mean ± standard error based on three replicates.

Temperature (◦C) 24 h LC50 (mg/L) 95% Confidence Limits Regressive Equations Significant Tests

18 1.795 1.669~1.918 y = 0.375x − 0.178 R2 = 0.907, p < 0.001
25 1.242 0.795~1.644 y = 0.390x − 0.054 R2 = 0.847, p < 0.001
32 0.833 0.728~0.933 y = 0.3412x + 0.142 R2 = 0.795, p < 0.001

3.2. Changes in DAC

DAC in the rotifers of each treatment was calculated using the standard curve (Figure S1).
At 25 ◦C, DAC in rotifers was highest (2.51 ng/g) in the control group, and lowest
(1.06 ng/g) in the 0.5 mg/L CPZ treatments at 18 ◦C. DAC in rotifers decreased significantly
with increasing CPZ concentration at all three temperatures (one-way ANOVA, all p < 0.05)
when compared to controls. Temperature was significantly correlated with DAC in rotifers
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exposed to 0.125 mg/L CPZ treatments and controls, with DAC being highest at 25 ◦C
(one-way ANOVA, p < 0.05, Figure 1).
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Figure 1. Dopamine concentration of rotifers at different chlorpromazine concentrations and temper-
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CPZ concentration and temperature had a significant effect on rotifer DAC (two-way
ANOVA, p < 0.01), but the CPZ × temperature interaction had no effect (two-way ANOVA,
p > 0.05, Table S1). There were significant nominal concentration–response relationships
between CPZ concentration and DAC of B. calyciflorus at three different temperatures
(Table 2).

Table 2. The relationships between chlorpromazine concentration (x, mg/L) and life expectancy at
hatching (e0), generation time (T), net reproductive rate (R0), intrinsic rate of population increase (rm)
and dopamine concentration (DAC) of B. calyciflorus at three temperatures.

Temperature (◦C) Parameters Regressive Equations Significant Tests

18 e0 y = 67.491x2 − 71.156x + 105.629 R2 = 0.744, p < 0.01
R0 y = 8.000x2 − 16.120x + 9.837 R2 = 0.953, p < 0.001
T y = −34.764x2 + 5.332x + 68.094 R2 = 0.696, p < 0.01
rm y = 0.00034x2 − 0.027x + 0.036 R2 = 0.903, p < 0.001
DAC y = 14.749x2 − 16.110x + 8.564 R2 = 0.831, p < 0.001

25 e0 y = 59.927x2 − 71.811x + 101.793 R2 = 0.786, p < 0.001
R0 y = 5.479x2 − 15.752x + 16.005 R2 = 0.686, p < 0.01
T y = −17.745x2 − 2.422x + 55.252 R2 = 0.621, p < 0.05
rm y = −0.005x2 − 0.014x + 0.059 R2 = 0.657, p < 0.01
DAC y = 9.202x2 − 15.940x + 10.134 R2 = 0.926, p < 0.001

32 e0 y = 45.964x2 − 65.585x + 78.076 R2 = 0.925, p < 0.001
R0 y = −1.552x2 − 15.059x + 15.538 R2 = 0.909, p < 0.001
T y = 6.012x2 − 18.352x + 49.255 R2 = 0.618, p < 0.05
rm y = −0.039x2 − 0.011x + 0.072 R2 = 0.905, p < 0.001
DAC y = 16.931x2 − 18.730x + 9.652 R2 = 0.893, p < 0.001
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3.3. Life Table Experiment

Using standard life table methods, we compared the lx and mx of rotifers exposed
to different concentrations of CPZ at different temperatures. When compared to controls,
the lx in all treatments tended to decrease earlier, and there was a trend toward a shorter
time to death for all treatments for all individuals; treatments with CPZ at 0~0.5 mg/L
significantly reduced the peak value of mx of 18 ◦C (one-way ANOVA, p < 0.05), but
treatments with CPZ at 0.25 and 0~0.5 mg/L did not significantly affect the peak values
of mx at 25 and 32 ◦C (one-way ANOVA, all p > 0.05, Figure 2a–f). Table 3 shows the
results of selected life table variables of B. calyciflorus (18, 25 and 32 ◦C) exposed to different
concentrations of CPZ. At 18, 25 and 32 ◦C, CPZ concentration had a significant effect on e0,
T, R0 and rm (one-way ANOVA, all p < 0.05). Treatments with CPZ at 0.25~0.5, 0.25~0.5 and
0.125~0.5 mg/L significantly decreased the e0 at 18, 25 and 32 ◦C, respectively; treatments
with CPZ at 0.5 mg/L significantly shortened T at 18, 25 and 32 ◦C, respectively; treatments
with CPZ at 0.25~0.5 mg/L significantly decreased the rm values at 18 and 32 ◦C, and
treatments with CPZ at 0.125 and 0.5 mg/L significantly decreased the rm values at 25 ◦C
(one-way ANOVA, all p < 0.05). Except for treatments with CPZ at 0.125 mg/L at 32 ◦C and
0.25 mg/L at 25 ◦C, which were not significantly different from controls (one-way ANOVA,
p > 0.05), CPZ significantly inhibited R0 in all treatments (one-way ANOVA, all p < 0.05).
At 0~0.5 mg/L CPZ concentration, temperature had a significant effect on e0, T, R0 and rm
(one-way ANOVA, all p < 0.05). Compared to controls, and at 18 ◦C, CPZ treatments of 0.5
and 0~0.5 mg/L significantly increased the e0 and T of rotifers, respectively, and the R0 and
rm were significantly decreased in CPZ treatments of 0~0.5 mg/L (one-way ANOVA, all
p < 0.05); similarly, at 32 ◦C, CPZ treatments of 0~0.5, 0~0.5 and 0.25~0.5 mg/L significantly
decreased the e0, T and R0 of rotifers, respectively, and the R0 and rm were significantly
increased in CPZ treatments of 0.25 and 0~0.5 mg/L (one-way ANOVA, all p < 0.05).

Table 3. Effects of temperatures and chlorpromazine on the life history demographic parameters of B.
calyciflorus. Shown are the mean ± standard error based on three replicates.

Parameters
CPZ Concen.
(mg/L)

Temperature (◦C)

18 25 32

Life expectancyat
hatching (h)

0 106.0 ± 4.2 Aa 102.0 ± 4.8 Aa 78.0 ± 2.1 Ab

0.125 96.8 ± 2.8 ABa 93.2 ± 1.7 ABa 70.8 ± 0.7 Bb

0.25 92.8 ± 2.6 BCa 88.0 ± 0.8 BCa 64.4 ± 2.2 Cb

0.5 86.8 ± 0.4 Ca 80.8 ± 2.2 Cb 56.8 ± 0.4 Dc

Generationtime (h)

0 68.8 ± 1.0 Aa 55.1 ± 1.6 Ab 49.0 ± 2.3 Ac

0.125 66.3 ± 0.4 Aa 55.2 ± 0.4 Ab 47.7 ±0.9 Ac

0.25 68.7 ± 0.9 Aa 53.2 ± 1.2 ABb 44.6 ± 1.8 ABc

0.5 61.9 ± 0.8 Ba 49.7 ± 1.2 Bb 41.7 ± 0.3 Bc

Net reproductiverate

0 9.9 ± 0.2 Ab 16.5 ± 1.6 Aa 15.2 ± 0.7 Aa

0.125 7.9 ± 0.3 Bc 12.8 ± 0.5 Bb 14.5 ± 0.3 Aa

0.25 6.4 ± 0.4 Cc 13.4 ± 0.9 ABa 11.0 ± 0.2 Bb

0.5 3.8 ± 0.3 Db 9.4 ± 0.6 Ca 7.7 ± 0.6 Ca

Intrinsic rate of
population increase (h)

0 0.0357 ± 0.0005 Ac 0.0598 ± 0.0014 Ab 0.0714 ± 0.0016 Aa

0.125 0.0330 ± 0.0010 Ac 0.0549 ± 0.0014 Bb 0.0705 ± 0.0003 Aa

0.25 0.0288 ± 0.0011 Bc 0.0568 ± 0.0007 ABb 0.0660 ± 0.0010 Ba

0.5 0.0225 ± 0.0017 Cc 0.0504 ± 0.0011 Cb 0.0566 ± 0.0017 Ca

Different capital letters indicate a significant difference in each column and different lowercase letters indicate a
significant difference in each row for each parameter (p < 0.05).

Table S1 displays the results of the two-way ANOVA performed on all the parameters
of the rotifers subjected to CPZ concentration and temperature. Both CPZ concentration
and temperature significantly affected e0, R0, and T of the rotifers (two-way ANOVA, all
p < 0.001), but the CPZ × temperature interaction did not (two-way ANOVA, p > 0.05), and
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rm of the rotifers were significantly affected by CPZ concentration, temperature and their
interaction (two-way ANOVA, all p < 0.05). At three temperatures of B. calyciflorus, signifi-
cant nominal concentration–response relationships existed between CPZ concentration and
e0, T, R0 and rm (Table 2).
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based on three replicates for: (a) 18 ◦C—survivorship; (b) 18 ◦C—fecundity; (c) 25 ◦C—survivorship;
(d) 25 ◦C—fecundity; (e) 32 ◦C—survivorship; (f) 32 ◦C—fecundity.
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3.4. Population Growth Experiment

The population growth curves of B. calyciflorus for each treatment are shown in Figure 3.
The treatments with 0.5 mg/L CPZ at all temperatures demonstrated extremely unstable
population dynamics, resulting in a low population density, and the treatments were
terminated on day 6 when no live rotifers were discovered. This data set was only for
display and not for analysis. At 18 ◦C, the growth rates of B. calyciflorus control and
0.125 mg/L CPZ treatments increased rapidly from day 3 and peaked on day 7 (78.63 ± 3.39
and 74.30 ± 2.66 ind./mL), whereas the population of 0.25 mg/L CPZ treatments grew
slowly and peaked on day 11 (68.67 ± 1.76 ind./mL). Similarly, the r of rotifers decreased
significantly as CPZ concentration increased (one-way ANOVA, all p < 0.05). When the
temperature was increased to 25 ◦C, all treatments reached their highest peaks on days
11, 12 and 10, respectively (151.57 ± 4.79, 121.93 ± 4.30 and 131.13 ± 1.68 ind./mL), but
the r of rotifers significantly decreased in comparison to the control (one-way ANOVA,
all p < 0.01). At 32 ◦C, both treatments with CPZ at 0.125 mg/L and the control reached
the peak on day 12 (103.33 ± 5.29 and 116.20 ± 4.39 ind./mL), and treatments with CPZ
at 0.25 mg/L reached a peak on day 13 (91.17 ± 2.60 ind./mL), the r of rotifers exposed
to 0.25 mg/L CPZ was significantly lower than the controls (one-way ANOVA, p < 0.05,
Table 4). The maximum population density was significantly decreased at 18 and 32 ◦C
(one-way ANOVA, all p < 0.05); the r was significantly lower at 18 ◦C only in the 0.25 mg/L
CPZ treatments, with no significant differences between the other treatments compared to
the controls.
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Table 4. Population parameters of B. calyciflorus to three concentrations of chlorpromazine at different
temperatures. Shown are the mean ± standard error based on three replicates.

Temperature
(°C)

CPZ Concen.
(mg/L)

Parameters

Day of Maximum Density Maximum Rotifer Density
(ind./mL)

Population
Growth RATE

18 0 7 74.30 ± 2.66 0.40 ± 0.02
0.125 7 78.63 ± 3.39 0.29 ± 0.02 **
0.25 12 68.67 ± 1.76 *** 0.23 ± 0.01 ***
0.5 4 3.30 ± 0.49 0.12 ± 0.04

25 0 10 131.13 ± 1.68 0.57 ± 0.03
0.125 11 151.57 ± 4.79 ** 0.42 ± 0.04 **
0.25 12 121.93 ± 4.30 0.38 ± 0.01 **
0.5 4 16.17 ± 1.13 0.20 ± 0.01

32 0 12 116.20 ± 4.39 0.67 ± 0.08
0.125 12 103.33 ± 5.29 0.48 ± 0.07
0.25 13 91.17 ± 2.60 ** 0.41 ± 0.01 *
0.5 3 17.77 ± 0.62 0.35 ± 0.02

* Significant difference from the control. * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Discussion

The first clinical application of chlorpromazine in France in 1952 was considered to be
the beginning of psychopharmacology [45]. Since its birth 70 years ago, the use of antipsy-
chotic drugs has continued to increase, and the scope of use has expanded to companion
animals. Although antipsychotic drugs pose an important threat to the environment to
varying degrees [46], people have only begun to pay attention to antipsychotic drugs in the
environment in recent decades [47]. This has led to the lack of appropriate environmental
risk assessments for most antipsychotic drugs. Here, we take B. calyciflorus as the test
organism to study the survival, population growth and dopamine concentration of rotifers
under CPZ and temperature stress, in an attempt to provide a basis for environmental risk
assessment of CPZ.

Acute toxicity of CPZ to aquatic organisms has been documented. The acute 24 h LC50
obtained for CPZ (0.833–1.795 mg/L) with B. calyciflorus is higher than those obtained for
aquatic organisms such as the protozoan Spirostomum ambiguum (24 h EC50 of 0.35 mg/L),
the freshwater goldfish Carassius auratus (48 h EC50 of 0.43 mg/L) and the crustaceans
Thamnocephalus platyurus (24 h LC50 of 0.62 mg/L), similar to the D. magna (48 h EC50 of
1.805 mg/L) [14,30,48]. Other studies on CPZ ecotoxicity are difficult to compare with
our findings because the experimental endpoints differ greatly [49–51]. In conclusion, the
sensitivity of B. calyciflorus to CPZ is comparable to that of D. magna, but more sensitive
than that of fish and protozoa. Some researchers investigated the approximate lethal doses
of 58 compounds at different temperatures in rats and discovered that the majority of
the compounds were 2–17 times more toxic at 36 ◦C than at 26 or 8 ◦C [52]. Interestingly,
CPZ, promazine and strychnine are more toxic at 8 and 36 ◦C, but much less toxic at room
temperature. Our findings support the majority of compounds, with CPZ being more toxic
to B. calyciflorus at 32 ◦C than at 25 or 18 ◦C.

The DA system was prevalent in both vertebrates and invertebrates and performs
more of a neurotransmitter function. In vertebrates, DA was involved in many functions,
including locomotion [53–55], cognition [56–58] and development [59,60]. In each tempera-
ture group of this experiment, the DAC of rotifers decreased significantly with the increase
in CPZ concentration, and there was a concentration–response relationship between CPZ
concentration and DAC. While there were no appreciable variations in DAC at the three
temperatures in the higher concentration treatments, there was a tendency for DAC in the
lower CPZ treatments for all samples to decline sequentially at 25, 32, and 18 ◦C. Increasing
CPZ concentrations had a clear negative effect on rotifer DAC at all temperatures; however,
the relationship between rotifer DAC and rotifer life history and population growth has not
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been reported. In conclusion, the DA system may be important in regulating life history
and population growth in response to exogenous stress. Chemically induced changes in DA
levels may alter rotifer life history responses, but the precise effects must be investigated.

Life table experiments on rotifers are common in environmental risk assessment,
ecological and aquaculture research [61]. At all temperatures, there was no significant
difference in T at 0.125 mg/L CPZ treatments compared to the control in the current
study. Previous research had shown that low toxicant exposure improved performance,
a phenomenon known as hormesis [62]. The e0, R0 and rm were significantly reduced in
treatments with 0.25 mg/L CPZ at 18 and 32 ◦C. Consistently, the e0, R0, T and rm were
significantly lower in treatments with 0.5 mg/L CPZ than in the control at all temperatures.
Higher concentrations of CPZ had more toxic effects on e0, R0, T and rm were obvious in
all three temperatures, which was consistent with previous studies [63,64]. With increas-
ing temperatures, the T shortened significantly and the rm increased significantly in all
treatments. In our experiments, we discovered that rotifers became significantly smaller
as the temperature rose, so we hypothesized that rotifers were allocating more energy
to reproduction rather than growth and development, which was also consistent with
previous research [65]. Two-way ANOVA revealed significant interactive effects between
temperature and CPZ concentration on rm of rotifers, implying that temperature may affect
CPZ toxicity. More specifically, when compared to the control, e0 in 0.125 mg/L CPZ
treatments with did not change at 18 ◦C but significantly decreased at 32 ◦C. Similarly,
R0 in 0.125 mg/L CPZ treatments did not change at 25 ◦C but significantly decreased at
32 ◦C when compared to the control. These findings suggested that high temperatures may
increase CPZ toxicity to rotifers. Similarly, the toxicity of nTiO2 and imidacloprid to B. caly-
ciflorus with increasing temperature [66,67], as well as the toxicity of terbufos, trichlorfon,
and imidacloprid to Palaemonetes spp., Cyprinodon variegatus and Isonychia bicolor [68,69],
and the toxicity of an ethoprop- malathion mixture to Oncorhynchus kisutch [70]. In line
with our findings, the toxicity of CPZ to zooplankton is increasing with global warming.

So far, adverse effects on population demographic factors such as r have been widely
used as reliable indicators to demonstrate reliable various environmental stressors such as
chlordecone, fipronil, chloramphenicol and oxytetracycline in the genus Brachionus (e.g., B.
plicatilis and B. calyciflorus) [71–73]. When organisms are subjected to external stresses, the
majority of their energy is directed toward mitigating the effects of the stressor, sacrificing
energy for growth and reproduction [74]. For zooplankton, population density and r are
critical at the trophic level [71]. In this experiment, 0.125 mg/L CPZ significantly increased
maximum population density at 25 ◦C, while 0.25 mg/L CPZ significantly decreased maxi-
mum population density at 18 and 32 ◦C. We discovered more rotifer corpses during the
count, indicating that the rotifer population was in a collapsed stage at the time of the
count, and the maximum population density was affected by the experimental container
and the experimental volume [75]. CPZ had a negative effect on the r at all temperatures.
On the sixth day, population growth was slowed and extinction was particularly observed
in B. calyciflorus exposed to 0.5 mg/L CPZ. The effects of high CPZ concentrations on rotifer
population dynamics could be explained by the following factors. To begin, the swimming
speed of the rotifer determines its water filtration rate and feeding rate [76], and rotifers
move significantly slower in highly concentrated CPZ solutions, where food deprivation
may be among the main factors influencing population growth. Secondly, the activities of
several enzymes, including lipase, amylase and acetylcholinesterase, as well as the expres-
sion of cytochrome P450s genes, have been linked to changes in rotifer populations [67],
but the effect of CPZ on rotifer survival and reproduction has yet to be determined. Finally,
as a classic antipsychotic, CPZ inhibits DAR in organism cell membranes, interfering with
the neuroendocrine system and affecting survival and population growth. Overall, changes
in rotifer life history and population growth parameters may be attributed to altered rotifer
DAC in this study.
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5. Conclusions

According to the findings of this study, CPZ was highly toxic to B. calyciflorus, and
the toxicity increased with increasing temperature within a certain range. Dopamine con-
centrations in rotifers decreased significantly as CPZ concentrations increased at different
temperatures. The life expectancy, net reproduction rate, generation time, intrinsic growth
rate and population growth rate of B. calyciflorus were all significantly affected by different
temperatures and CPZ concentrations. Overall, CPZ pollution may not be acutely toxic to
rotifers, but it may still have an impact on rotifers in light of global warming, which may
then influence community structure in natural waters.
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//www.mdpi.com/article/10.3390/ijerph192316167/s1, Figure S1: Standard curve for dopamine
ELISA kit. Table S1: Results of the variance (two-way ANOVA) performed on the selected life history
variables and dopamine concentration of B. calyciflorus in relation to chlorpromazine concentrations
in three temperatures. SS = sum of squares, df = degrees of freedom, MS = mean squares, and
F = F-ratio.
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