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Abstract: Air quality is assessed on the basis of air monitoring data. Monitoring data are often not
complete enough to carry out an air quality assessment. To fill the measurement gaps, predictive
models can be used, which enable the approximation of missing data. Prediction models use historical
data and relationships between measured variables, including air pollutant concentrations and
meteorological factors. The known predictive air quality models are not accurate, so it is important to
look for models that give a lower approximation error. The use of artificial neural networks reduces
the prediction error compared to classical regression methods. In previous studies, a single regression
model over the entire concentration range was used to approximate the concentrations of a selected
pollutant. In this study, it was assumed that not a single model, but a group of models, could be
used for the prediction. In this approach, each model from the group was dedicated to a different
sub-range of the concentration of the modeled pollutant. The aim of the analysis was to check whether
this approach would improve the quality of modeling. A long-term data set recorded at two air
monitoring stations in Poland was used in the examination. Hourly data of basic air pollutants and
meteorological parameters were used to create predictive regression models. The prediction errors
for the sub-range models were compared with the corresponding errors calculated for one full-range
regression model. It was found that the application of sub-range models reduced the modeling error
of basic air pollutants.

Keywords: air quality; air monitoring; air pollutants; regression; prediction; prediction error; artificial
neural networks

1. Introduction

Air pollution is considered one of the main factors affecting the human population
and the environment. The World Health Organization estimates that many millions of
people die prematurely due to poor air quality [1]. Once pollutants are emitted into the
air, it is impossible to stop them. If pollutants get into the atmosphere, they contribute to
the deterioration of air quality in the vicinity of the emission, but by spreading they can
have negative effects hundreds and thousands of kilometers from the point of emission.
Therefore, air pollution is treated as a global threat and emission reduction strategies
are implemented in many countries. It should be highlighted that, in Poland, the PM;
(particulate matter) concentration still exceeds the permissible limits and causes premature
deaths of over 40,000 people every year [2].

Air pollution causes negative changes in the human respiratory and circulatory sys-
tems, even when pollutant concentrations do not exceed permissible levels [3-8]. It may
trigger various reactions of organisms, including mental health disorders [9,10]. It was also
found that air pollution can negatively affect the economy [11-14]. High concentrations of
air pollutants have a negative effect on plants, which is manifested in the reduction of crop
yields in agriculture [15,16].

The control and reduction of anthropogenic emissions are now recognized as the keys
to good global air quality. An important element of the control system is the assessment of
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air quality. This task is performed using air quality monitoring. Air monitoring includes
continuous measurements of air pollutants. The main air pollutants include O3z, SO,, NOy,
CO and PMjyj [17]. Concentrations of the mentioned pollutants can be measured with
automatic air monitoring stations. These types of stations are often equipped with devices
that also continuously measure meteorological data such as temperature, wind direction,
wind speed and solar radiation. Measurement results at automatic air monitoring stations
are recorded in the form of 1 h averages, e.g., hourly concentrations, hourly temperature,
etc. In the EU, average hourly concentrations are the basis for calculating averages over
longer periods of time that are required for air quality standards, such as 8 h, 24 h and
annual concentrations [18]. The system acquires and collects measurement data of the air
pollutants” concentration levels at many individual air monitoring stations, according to
the standardized measurement methods [19-23]. The collected hourly concentrations in
the air monitoring system constitute the basis for direct and indirect statistical evaluation
of air quality in the zones represented with individual monitoring stations, in accordance
with the procedures described in the relevant legal acts [18]. Correct assessment requires a
high degree of completeness of the time series of concentrations obtained at the monitoring
stations. Usually, the completeness should exceed 90% in an annual series of hourly
measurements. Unfortunately, monitoring data are never 100% complete in annual terms,
and often they do not even have the completeness required by the regulations. When
there is a deficit of data in a series of measurements, then there is a need to complete the
missing data.

Missing data can be supplemented by introducing modeled concentrations in the
measurement gaps [24-27]. The time series data obtained with air monitoring have specific
characteristics. All measurements, both of concentrations and meteorological parameters,
are performed simultaneously and are recorded in similar time series. Therefore, methods
based on auto-regression and regression can be used for modeling monitoring concentra-
tions. If historical data from the selected air monitoring station are available, they can
be used to explore the knowledge hidden in them. Autonomous models of this type can
be accurate and have a very significant advantage: the approximation of concentrations
does not require external data from outside the monitoring system [26,27]. In the first
models, classical statistical regression techniques were used [28]. Classical methods are
increasingly being replaced by methods that use machine learning artificial intelligence,
including artificial neural networks (ANNs) [29-37]. ANN models enable a deeper explo-
ration of knowledge hidden in historical data and, as a result, more accurate concentration
predictions.

In regression modeling, it was found that the application of one neural network to the
entire range of concentrations of the predicted pollutant resulted in different prediction
accuracies in the concentration sub-ranges [38,39]. It was considered advisable to replace
one neural network with several networks (sub-models), each of which would be adjusted
to specific concentration sub-ranges [39]. The use of several sub-range models should
improve the accuracy of the prediction. This paper presents an analysis that verifies the
above thesis.

The main aim of the study was to improve the accuracy of prediction of air pollutant
concentrations in neural regression models, using many predictive models created for
various sub-ranges of air pollutant concentrations. The analyzed data came from two air
monitoring stations in the Upper Silesian Region, Poland. The quality of prediction was
assessed separately for the concentrations of six main air pollutants: O3, NO, NO,, SO,,
PM;y and CO. Multi-layer perceptrons with an identical architecture were used to model all
pollutants. The predicted concentrations were compared with the observed ones to estimate
the prediction error. The prediction errors were calculated for various sub-models, and,
based on them, the prediction error was estimated over the entire concentration range. This
error was compared with the approximation error obtained from a single model covering
the entire concentration range.
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2. Materials and Methods
2.1. Air Monitoring Data

Hourly data from two air monitoring stations located in a highly industrialized region
of Poland were used for the analysis. The data were recorded in Zabrze and Ztoty Potok in
the years 2011-2016. The location of selected monitoring stations is shown in Figure 1.

o

Figure 1. Locations of the air monitoring stations Zabrze and Ztoty Potok in Poland.

The city of Zabrze is one of the most polluted towns in Poland and throughout the
EU. The station at Zabrze was an urban background monitoring site. Zioty Potok is a
rural town, located outside the Upper Silesian Agglomeration. In Ztoty Potok, there is a
background monitoring station for the Upper Silesian Region. The data were provided
by the Voivodeship Inspectorate of Environmental Protection in Katowice. Time series
data, including 1 h average values of O3, NO, NO,, SO,, PM;g and CO concentrations,
as well as meteorological data for temperature, wind speed, solar radiation and relative
humidity, were recorded. The analyzed data sets are not publicly available. We received
them on an individual request from the Voivodeship Inspectorate for Environmental Pro-
tection. Time series of concentrations are available on the website of the Chief Inspectorate
of Environmental Protection: https://powietrze.gios.gov.pl/pjp/archives, accessed on
30 April 2022. This is only part of the data. Meteorological data are not available online.
The data also include two variables describing the time: day and hour. These two variables
were converted to numeric form following the procedure described in [39].

The following symbols were used to describe the time series (variables):

D—numeric day,

H—numeric hour,

Os—hourly average of O3 concentration (ug/ m3),

NO—hourly average of NO concentration (ig/m?),

NO,—hourly average of NO, concentration (pg/m?),

SO,—hourly average of SO, concentration (ug/ m3),

CO—hourly average of CO concentration (mg/m?),

PMjo—hourly average of PMyg concentration (nug/m?),

WS—hourly average of wind speed (m/s),

T—hourly average of air temperature (°C),

I—hourly average of solar radiation intensity (W/m?),
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RH—hourly average of relative humidity (%).
Descriptive statistics of the 6-year set of hourly concentrations of monitored air pollu-
tants are presented in Table 1.

Table 1. Descriptive statistics of the set of hourly concentrations of monitored air pollutants,
2011-2016.

Zabrze Zloty Potok
Descriptive 03 NO N02 SOZ PMlO CcO 03 NO N02 502 PM][) Cco
Statistics pug/m® pg/md  ug/m3 pgm®  pug/md®  mg/md  pgmd pg/m3  pg/m® ug/md pg/m®  mg/md
Minimum 0.7 0.0 1.0 0.1 0.1 0.07 1.1 0.0 00 00 1.0 -
Maximum 198.0 709.0 160.0  362.0 1187.0 9.02 212.6 50.0 820 1160  298.0 -
Mean 423 102 244 168 51.0 060 595 1.1 96 74 278 -
Median 37.0 3.0 20.0 10.0 33.8 0.42 56.0 0.97 7.0 4.6 22.3 -
Standard 324 242 168 194  6l1 05 310 18 79 81 207 -
deviation
Completeness 94.2 78.8 94.5 91.0 80.2 94.2 92.3 87.1 87.1 88.5 95.7 -
2.2. Regression Models
Multi-layer perceptrons with identical architecture were used to model all pollutants.
The predicted concentrations were compared with the observed ones to estimate the
prediction error. The prediction errors were calculated for various sub-models, and, based
on them, the prediction error was estimated over the entire concentration range. This
error was compared with the approximation error obtained from a single model covering
the entire concentration range. For all air pollutants, similar perceptron models were
created. The output of this was the concentration of the chosen air pollutant (explained
variable), and the inputs were the date and hour, concentrations of other air pollutants and
meteorological parameters (explanatory variables). Table 2 presents the predicted variables
and predictors, with separate lines for individual models. For example, the following 11
input variables were used to model the ozone concentration in Ztoty Potok: H, D, NO,
NOz, SOZ, CO, PMlo, WS, T, I and RH.
Table 2. Classification of predictors for individual models at both air monitoring stations. A + symbol
means the variable was treated as an input in the model. A — symbol means no measurement.
Explanatory Variables (Predictors)
Locality Explained Variable
H D O3 NO NO; SO, CO PMy WS T I RH
O3 + + + + + + + + + + -
NO + o+ 4+ + + + + + + o+ -
Zab NO, + + + + + + + + + + —
abrze SO, + + + + + + + + + + —
CcO + + + + + + + + + + —
PMyo + + + + + + + + + + —
O3 + + + + + + + + + + +
NO + + + + + + + + + + +
Zioty Potok NO, + + + + + + + + + + +
SO, + + + + + + + + + + +
Cco - - - - - - - - - - - -
PMyo + + + + + + + + + + +

For regression modeling, artificial neural networks in the form of multi-layer per-
ceptrons were used. Each perceptron consisted of input neurons, with 10 neurons in one
hidden layer and one output neuron. Figure 2 shows such a perceptron used to model O3
concentrations. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used in the
learning process. The Broyden-Fletcher—Goldfarb—Shanno algorithm is used in problems
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related to numerical optimization [40]. The BFGS algorithm was developed on the basis of
solutions proposed in 1970 by the four mathematicians mentioned in its name [41-44]. The
algorithm uses an iterative method of solving unlimited non-linear optimization problems.

NO
NO,
co

S0,

PM,,

The output

Ws

RH

o P
o )
._»[

The inputs The hidden layer

Figure 2. An architecture diagram of the multi-layer perceptron with ten neurons in a single hidden
layer.

The learning process was always limited to 300 epochs. An epoch is a specialized
expression related to the learning process of a neural network. In the network learning pro-
cess, one epoch means a single learning cycle. In the learning process, the network repeats
the cycles many times in order to minimize the learning error. The function of activating
hidden and output neurons was a logistic function. The scales were initiated randomly.
The network initialization was random (Gaussian). Modeling was performed using the
Statistica program, version 13.3. Each prediction was performed 5 times. Repeating the
training of the neural network, while maintaining the same parameters of the learning
process, is a routine procedure. Each model’s learning process is somewhat random and
leads to a different network. The created networks have the same structure of neurons, but
differ in terms of weights and the degree of activation of individual neurons. In general,
they differ slightly in the modeling error. The most accurate of the 5 created models was
selected for reporting. The other models were rejected. The sum of squares (SOS) was
assumed as the error function. SOS is the sum of the squared distances of all predicted
values from the actual values.

2.3. Preparation of Data for Modeling

The complete set of hourly air monitoring data from the 6-year measurement period
should have included 52,608 cases (hourly observations). Prior to modeling, raw data
from the air monitoring database were prepared by removing the cases where there were
missing data. After removing the cases with missing data, a set of cases with complete data
was obtained for further analysis. This set was called the full-range set. The full-range sets
included 36,460 and 15,536 cases, for Zabrze and Ztoty Potok stations, respectively. Before
starting the learning process, each data set was divided into three subsets: the training
subset consisted of 70% of the cases, the validation subset consisted of 15% of the cases and
the test subset consisted of 15% of the cases.

Two approaches were adopted during modeling and, therefore, two groups of models
were developed for each of the stations. In the first approach, all cases in the data set were
sorted according to the real value of the predicted variable, from the lowest concentration
to the highest. Then, a set of cases sorted in this way was divided into subsets. The entire
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set of cases was divided gradually into 2, then 4, and finally 8 subsets of the same size.
The subsets prepared in this way differed in the ranges of the real concentration values
of the predicted variable. For each of these subsets, regression models called RVS (Real
Values Sorting) were created. As a result, for each set/subset, a separate predictive model
was obtained, marked with the same symbol as the modeled set/subset. The name of the
monitoring station (ZAB or ZP) was also added to the designations of sets and subsets. The
full-range model was marked as RVS-1/1. As a result of the division of the full-range set,
the following subsets and submodels were obtained:

— Two sub-models (RVS-1/2, RVS-2/2), after division into two subsets;

— Four sub-models (RVS-1/4, RVS-2/4, RVS-3/4, RVS-4/4), after division into four subsets;
— Eight sub-models (RVS-1/8, RVS-2/8, RVS-3/8, RVS-4/8, RVS-5/8, RVS-6/8, RVS-7/8,
RVS-8/8), after division into eight subsets.

In a situation where the real concentrations of the pollutant to be modeled were not
known, the RVS-type models could not be used because it was not possible to sort and
classify the cases into the real concentration sub-ranges. Therefore, RVS models reflect
only the potential, not practical, opportunities to improve the quality of modeling through
segmentation of the prediction process. If the real concentrations are not known and there
is a need to predict them, then the RVS sub-range models are not available. In such a
situation, a different approach can be proposed, which also uses division into sub-ranges,
but then with sectoral modeling in designated sub-ranges. The most important step in
this approach is the initial modeling of the concentrations of the selected pollutant in the
full-range set, understood as a set of all cases containing complete data of all explanatory
variables (model inputs) for the modeled pollutant. After initial modeling of the entire
range of cases, predictive concentrations of the dependent variable are obtained. Then,
the entire set of cases is sorted according to the increasing predictive concentrations of
the modeled pollutant. The next step is to divide the sorted full-range set of cases into a
specified number of equal sub-ranges. In this way, you can generate a model called PVS
(Predicted Values Sorting). As a result of the division of the full-range set, the following
subsets and submodels were obtained:

— Two sub-models (PVS-1/2, PVS-2/2), after division into two subsets;

— Four sub-models (PVS-1/4, PVS-2/4, PVS-3/4, PVS-4/4), after division into four subsets;
— Eight sub-models (PVS-1/8, PVS-2/8, PVS-3/8, PVS-4/8, PVS-5/8, PVS-6/8, PVS-7/8,
PVS-8/8), after division into eight subsets.

The scheme of dividing the full-range set into sub-ranges is shown in Figures 3 and 4
for both monitoring stations.

Model 1/1]
T 1
Model 1/2 Model 2/2
| 18,230 cases |
T 1 T 1
Model 1/4 Model 2/4 Model 3/4 Model 4/4
' 9115 cases | 1 9115 cases | | 9115 cases | ' 9115 cases |

Model 1/8 Model 2/8 Model 3/8 Model 4/8 Model 5/8 Model 6/8 Model 7/8 Model 8/8
4558 cases 4558 cases 4558 cases 4558 cases 4558 cases 4558 cases 4558 cases 4558 cases

Figure 3. The scheme of the division into sub-ranges for the Zabrze station.
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Model 1/1
1 1
Model 1/2 Model 2/2

' 3884 cases |

' 3884 cases | | 3884 cases | | 3884 cases |

Model 1/8 Model 2/8 Model 3/8 Model 4/8 Model 5/8 Model 6/8 Model 7/8 Model 8/8
1942 cases 1942 cases 1942 cases 1942 cases 1942 cases 1942 cases 1942 cases 1942 cases

Figure 4. The scheme of the division into sub-ranges for the Ztoty Potok station.

Thanks to the divisions of the full-range set, it was possible to check how the modeling
accuracy changed in the concentration sub-ranges, and whether the modeling carried out in
the sub-ranges would improve the modeling quality in relation to the full-range modeling.

2.4. Assessment of the Approximation Error

To assess the accuracy of the obtained regression models, the MAE and RMSE values
were used, which were calculated on the basis of the discrepancy between the actual and
predicted values. The formulas for calculating individual errors are presented in Equations
(1) and (2).

MAE—mean absolute error

MAE = Elxz yz 1)
RMSE—root-mean-squared error

Y (- y)

n

RMSE = 2)
where n—number of cases, y—predicted concentrations, x—real concentrations, i—the case
number.

3. Results

For each pollutant, modeling errors were calculated in relation to the real pollutant
concentrations (O3, NO, NO,, SO,, CO and PM; for the Zabrze station; and O3, NO, NO,,
SO, and PMjy for the Zloty Potok station). To assess the modeling accuracy, two error
measures were calculated: MAE and RMSE.

3.1. The Results of the Modeling of O3 Concentrations

Tables 3-6 show the results of O3 concentration predictions obtained with the full-
range and sub-range models. The errors of the PVS models for the Zabrze monitoring
station are presented in Table 3 and the Ztoty Potok monitoring station in Table 4. Similar
lists of errors for the RVS models are presented in Tables 5 and 6. The presented results
show that the sub-range modeling errors changed for individual sub-ranges. Regardless
of the number of sub-range models, the modeling error usually increased with increasing
concentration values in the sub-ranges. A good way to assess the quality of the prediction
is to compare the overall prediction error over the entire range of concentrations of the
modeled pollutant, and not in individual sub-ranges. Therefore, the tables include average
values for the entire ranges: “overall MAE” and “overall RMSE”.
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Table 3. Values of approximation errors of O3 concentrations in PVS models, Zabrze 2011-2016.

Number of . Sub-Ranges.of Os Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ugfm® MAE, pg/m® ug/m® RMSE,
pug/m?3 ’ ug/m?
1 PVS-1/1-ZAB 1.0-165.0 36,460 8.4 8.4 11.3 11.3
PVS-1/2-ZAB 1.0-37.4 18,230 6.1 8.5
2 PVS-2/2-ZAB 37.4-165.0 18,230 104 8.25 134 10.94
PVS-1/4-ZAB 1.0-17.7 9115 3.5 5.0
PVS-2/4-ZAB 17.7-37.4 9115 8.45 10.8
4 PVS-3/4-ZAB 37.4-59.9 9115 9.84 8.02 12.7 1043
PVS-4/4-ZAB 59.9-165.0 9115 10.3 13.2
PVS-1/8-ZAB 1.0-8.6 4558 1.98 2.8
PVS-2/8-ZAB 8.6-17.7 4558 4.81 6.3
PVS-3/8-ZAB 17.7-27.5 4558 7.47 9.6
PVS-4/8-ZAB 27.5-37.4 4558 9.4 11.9
8 PVS-5/8-ZAB 37.4-47.6 4558 9.91 8.02 12.7 10.34
PVS-6/8-ZAB 47.6-59.9 4558 9.98 12.9
PVS-7/8-ZAB 59.9-79.5 4558 9.78 12.7
PVS-8/8-ZAB 79.5-165.0 4558 10.81 13.7
Table 4. Values of approximation errors of O3 concentrations in PVS models, Zloty Potok 2011-2016.
Number of . Sub-Ranges.of 05 Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m® MAE, pg/m® ug/m® RMSE,
pg/m’ ’ ug/m?
1 PVS-1/1-ZP 1.6-147.5 15,536 8.41 8.41 10.7 10.7
PVS-1/2-7ZP 1.6-50.3 7768 7.66 9.9
2 PVS-2/2-ZP 50.3-147.5 7768 8.16 791 10.3 10.09
PVS-1/4-ZP 1.6-34.8 3884 6.22 8.2
4 PVS-2/4-7ZP 34.8-50.3 3884 8.52 755 10.9 9.68
PVS-3/4-ZP 50.3-68.7 3884 7.81 ’ 10.0 :
PVS-4/4-7ZP 68.7-147.5 3884 7.64 9.6
PVS-1/8-ZP 1.6-25.3 1942 5.46 72
PVS-2/8-ZP 25.3-34.8 1942 8.26 10.6
PVS-3/8-ZP 34.8-42.9 1942 8.57 10.9
PVS-4/8-ZP 42.9-50.3 1942 8.69 11.3
8 PVS-5/8-ZP 50.3-58.4 1942 7.86 7.67 10.1 984
PVS-6/8-ZP 58.4-68.7 1942 7.57 9.6
PVS-7/8-ZP 68.7-89.9 1942 7.60 9.7
PVS-8/8-ZP 90.0-147.5 1942 7.36 9.3

Division into the sub-ranges generally improved the accuracy of prediction, especially
in the case of RVS models. The exceptions were the eight-sub-range PVS models for both
monitoring stations. In the case of Zabrze, the same average value of MAE was recorded in
the eight-sub-range models as in the four-sub-range models (8.02 pg/m?). In the case of
Zloty Potok, even an increase in the overall values of MAE and RMSE errors was observed
in the eight-sub-range models compared to the overall error of the four-sub-range models.
In the case of RVS models, a decrease in the overall values of MAE and RMSE was always
observed with an increase in the number of sub-ranges. The comparison showed that
dividing the area into sub-ranges and separately modeling these sub-ranges improved the
overall quality of the prediction, but that having too many sub-ranges and sub-models may
be ineffective.
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Table 5. Values of approximation errors of O3 concentrations in RVS models, Zabrze 2011-2016.

Number of . Sub-Ranges.of Os Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ugfm® MAE, pg/m® ug/m® RMSE,
pug/m?3 ’ ug/m?
1 RVS-1/1-ZAB 0.7-198.0 36,460 84 8.4 11.3 11.3
5 RVS-1/2-ZAB 0.7-37.0 18,230 4.8 6.8 6.3 8.9
RVS-2/2-ZAB 37-198.0 18,230 8.8 : 114 :
RVS-1/4-ZAB 0.7-15.0 9115 22 2.8
4 RVS-2/4-ZAB 15.0-37.0 9115 4.6 51 5.6 64
RVS-3/4-ZAB 37.0-62.0 9115 5.1 : 6.1 :
RVS-4/4-ZAB 62.0-198.0 9115 8.6 11.1
RVS-1/8-ZAB 0.7-6.0 4558 1.0 1.2
RVS-2/8-ZAB 6.0-15.0 4558 1.8 22
RVS-3/8-ZAB 15.0-26.0 4558 2.6 3.0
8 RVS-4/8-ZAB 26.0-37.0 4558 2.8 33 3.2 40
RVS-5/8-ZAB 37.0-49.0 4558 2.8 ’ 3.3 ’
RVS-6/8-ZAB 49.0-62.0 4558 3.1 3.6
RVS-7/8-ZAB 62.0-82.0 4558 4.2 5.1
RVS-8/8-ZAB 82.0-198.0 4558 8.3 10.8
Table 6. Values of approximation errors of O3 concentrations in RVS models, Ztoty Potok 2011-2016.
Number of . Sub-ranges ?f 05 Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m® MAE, pg/m® ug/m® RMSE,
pg/m’ ’ ug/m?
1 RVS-1/1-ZP 1.1-162 15,536 8.38 8.38 10.7 10.7
RVS-1/2-ZP 1.1-51.0 7768 5.97 7.6
2 RVS-2/2-ZP 51.0-162.0 7768 7.05 6-51 8.9 8.25
RVS-1/4-ZP 1.1-32.3 3884 4.06 51
RVS-2/4-ZP 32.3-51.0 3884 3.85 47
4 RVS-3/4-ZP 51.0-72.0 3884 420 4.67 5.1 584
RVS-4/4-ZP 72.0-162.0 3884 6.56 8.4
RVS-1/8-ZP 1.1-21.1 1942 2.98 3.6
RVS-2/8-ZP 21.1-32.3 1942 2.48 3.0
RVS-3/8-ZP 32.3-42.0 1942 227 2.7
RVS-4/8-ZP 42.0-51.0 1942 217 2.6
8 RVS-5/8-ZP 51.0-60.4 1942 2.28 3.06 26 374
RVS-6/8-ZP 60.4-72.0 1942 2.56 3.1
RVS-7/8-ZP 72.0-90.3 1942 3.68 4.5
RVS-8/8-ZP 90.4-162.0 1942 6.06 7.9

sub-ranges are presented in Figures 5-8.

The values of “overall MAE” and “overall RMSE” depending on the number of
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Figure 5. Overall MAE and RMSE values for O3 concentration prediction in PVS models depending
on the number of created sub-models, Zabrze.
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Figure 6. Overall MAE and RMSE values for O3 concentration prediction in PVS models depending
on the number of created sub-models, Ztoty Potok.
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Figure 7. Overall MAE and RMSE values for O3 concentration prediction in RVS models depending
on the number of created sub-models, Zabrze.
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Figure 8. Overall MAE and RMSE values for O3 concentration prediction in RVS models depending
on the number of created sub-models, Ztoty Potok.

3.2. The Results of the Modeling of NO Concentrations

Tables 7-10 show the results of NO concentration predictions obtained with the full-
range and sub-range models. The errors of the PVS models for the Zabrze monitoring
station are presented in Table 7 and the Zloty Potok monitoring station in Table 8. The
corresponding errors for the RVS models are presented in Tables 9 and 10. The division
into sub-ranges generally improved the accuracy of prediction, especially in the case of
RVS models. In general, as the number of sub-models increased, the overall measures of
modeling error decreased. The exceptions were the eight-sub-range PVS models for the
monitoring station at Ztoty Potok. At this station, the overall MAE value for the eight-
sub-range sub-models (0.429 ng/m3) was comparable to the overall MAE value for the
four-sub-range sub-models (0.428 pg/ m3). In the case of RVS models, a decrease in the
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overall values of MAE and RMSE errors was always observed with an increase in the
number of sub-ranges. In the Zloty Potok station, for the real concentrations in sub-ranges
with a range of 0.0-0.0 pg/m3 and 1.0-1.0 pg/m3, RVS sub-models could not be created due
to the lack of variability in these concentration ranges. Therefore, the overall error for this
group of sub-models was not estimated. Figures 9-12 show the overall values of MAE and
RMSE graphically.

Table 7. Values of approximation errors of NO concentrations in PVS models, Zabrze 2011-2016.

Sub-Ranges of

Number of Regression Model NO Number of MAE, Overall RMSE, ?{‘IC;;%I
Sub-Ranges & Concentrations, Observations pg/m3 MAE, pg/m3 pg/m3 3
3 ug/m
pug/m
1 PVS-1/1-ZAB 0.0-709.0 36,460 3.74 3.74 8.26 8.26
5 PVS-1/2-ZAB 0.0-3.0 18,230 0.52 337 0.66 6.18
PVS-2/2-ZAB 3.0-709.0 18,230 6.22 ’ 11.70 .
PVS-1/4-ZAB 0.0-1.1 9115 0.23 0.32
PVS-2/4-ZAB 1.1-3.0 9115 0.34 0.42
4 PVS-3/4-ZAB 3.0-8.0 9115 0.94 2.76 117 432
PVS-4/4-ZAB 8.0-709.0 9115 9.55 15.37
PVS-1/8-ZAB 0.0-1.0 4558 0.23 0.32
PVS-2/8-ZAB 1.0-1.1 4558 0.01 0.01
PVS-3/8-ZAB 1.1-2.0 4558 0.15 0.21
8 PVS-4/8-ZAB 2.0-3.0 4558 0.19 5 0.26 314
PVS-5/8-ZAB 3.0-4.7 4558 0.39 : 0.47 .
PVS-6/8-ZAB 4.7-8.0 4558 0.77 0.92
PVS-7/8-ZAB 8.0-19.3 4558 2.16 2.64
PVS-8/8-ZAB 19.4-709.0 4558 13.86 20.25
Table 8. Values of approximation errors of NO concentrations in PVS models, Zioty Potok 2011-2016.
Sub-Ranges of Overall
Number of Regression Model NO Number of MAE, Overall RMSE, RMSE
Sub-Ranges 8 Concentrations, Observations pg/m3 MAE, pg/m3 pg/m3 3
3 Hg/m
pug/m
1 PVS-1/1-ZP 0.1-49.8 15,536 0.459 0.459 0.789 0.789
PVS-1/2-7ZP 0.1-0.6 7768 0.324 0.425
2 PVS-2/2-ZP 0.6-49.8 7768 0.535 0.430 0.979 0.702
PVS-1/4-ZP 0.1-0.4 3884 0.301 0.373
PVS-2/4-7ZP 0.4-0.6 3884 0.319 0.434
4 PVS-3/4-ZP 0.6-1.1 3884 0.331 0428 0.501 0.663
PVS-4/4-7P 1.1-49.8 3884 0.762 1.344
PVS-1/8-ZP 0.1-0.3 1942 0.261 0.326
PVS-2/8-ZP 0.3-0.4 1942 0.302 0.389
PVS-3/8-ZP 0.4-0.5 1942 0.311 0.398
PVS-4/8-ZP 0.5-0.6 1942 0.357 0.497
8 PVS-5/8-ZP 0.6-0.8 1942 0.350 0.429 0.497 0.634
PVS-6/8-ZP 0.8-1.1 1942 0.316 0.517
PVS-7/8-ZP 1.1-1.8 1942 0.386 0.586
PVS-8/8-ZP 1.8-49.8 1942 1.150 1.859
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Table 9. Values of approximation errors of NO concentrations in RVS models, Zabrze 2011-2016.

Number of . Sub-Ranges ?f NO Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, pg/m? ug/m® RMSE,
pug/m?3 ’ pg/m3
1 RVS-1/1-ZAB 0.0-709.0 36,460 3.74 3.74 8.26 8.26
5 RVS-1/2-ZAB 0.0-3.0 18,230 0.52 337 0.66 6.18
RVS-2/2-ZAB 3.0-709.0 18,230 6.22 : 11.70 )
RVS-1/4-ZAB 0.0-1.1 9115 0.23 0.32
RVS-2/4-ZAB 1.1-3.0 9115 0.34 0.42
4 RVS-3/4-ZAB 3.0-8.0 9115 0.94 276 117 4.32
RVS-4/4-ZAB 8.0-709.0 9115 9.55 15.37
RVS-1/8-ZAB 0.0-1.0 4558 0.23 0.32
RVS-2/8-ZAB 1.0-1.1 4558 0.01 0.01
RVS-3/8-ZAB 1.1-2.0 4558 0.15 0.21
8 RVS-4/8-ZAB 2.0-3.0 4558 0.19 599 0.26 314
RVS-5/8-ZAB 3.04.7 4558 0.39 ’ 0.47 ’
RVS-6/8-ZAB 4.7-8.0 4558 0.77 0.92
RVS-7/8-ZAB 8.0-19.3 4558 2.16 2.64
RVS-8/8-ZAB 19.4-709.0 4558 13.86 20.25
Table 10. Values of approximation errors of NO concentrations in RVS models, Ztoty Potok 2011-2016.
Number of . Sub-Ranges ?f NO Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, ug/m> ug/m® RMSE,
pg/m’ ’ ug/m?
1 RVS-1/1-ZP 0.0-50.0 15,536 0.430 0.430 0.746 0.746
RVS-1/2-ZP 0.0-0.8 7768 0.184 0.234
2 RVS-2/2-ZP 0.8-50.0 7768 0.436 0310 o908 071
RVS-1/4-ZP 0.0-0.3 3884 0.054 0.088
RVS-2/4-ZP 0.3-0.8 3884 0.064 0.081
4 RVS-3/4-ZP 0.8-1.0 3884 0.037 0229 0053 0408
RVS-4/4-7ZP 1.0-50.0 3884 0.760 1.411
RVS-1/8-ZP 0.0-0.0 1942 - -
RVS-2/8-ZP 0.0-0.3 1942 0.069 0.097
RVS-3/8-ZP 0.3-0.6 1942 0.048 0.060
8 RVS-4/8-ZP 0.6-0.8 1942 0.041 B 0.049 B
RVS-5/8-ZP 0.8-1.0 1942 0.045 0.056
RVS-6/8-ZP 1.0-1.0 1942 - -
RVS-7/8-ZP 1.0-2.0 1942 0.148 0.206
RVS-8/8-ZP 2.0-50.0 1942 0.991 1.752
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Figure 9. Overall MAE and RMSE values for NO concentration prediction in PVS models depending
on the number of created sub-models, Zabrze.
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Figure 10. Overall MAE and RMSE values for NO concentration prediction in PVS models depending
on the number of created sub-models, Ztoty Potok.
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Figure 11. Overall MAE and RMSE values for NO concentration prediction in RVS models depending
on the number of created sub-models, Zabrze.
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Figure 12. Overall MAE and RMSE values for NO concentration prediction in RVS models depending
on the number of created sub-models, Ztoty Potok.

3.3. The Results of the Modeling of NO, Concentrations

Tables 11-14 show the results of NO, concentration predictions obtained with the
full-range and sub-range models. The errors of the PVS models for the Zabrze monitoring
station are presented in Table 11 and the Zloty Potok monitoring station in Table 12. The
corresponding errors for the RVS models are presented in Tables 13 and 14. The division
into sub-ranges generally improved the accuracy of prediction, especially in the case of
RVS models. In general, as the number of sub-models increased, the overall measures
of modeling error decreased. The exceptions were the eight-sub-range PVS models for
both monitoring stations. The overall MAE and RMSE values for the eight-sub-range
sub-models were higher than the overall MAE and RMSE values for the four-sub-range
sub-models. In the case of RVS models, a decrease in the overall values of MAE and RMSE
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errors was always observed with an increase in the number of sub-ranges. In the case of
PVS models, it appeared that having too many sub-ranges and sub-models could degrade
the quality of the modeling. Figures 13-16 show the overall values of MAE and RMSE
graphically.

Table 11. Values of approximation errors of NO, concentrations in PVS models, Zabrze 2011-2016.

Sub-Ranges of

Number of Regression Model NO, Number of MAE, Overall RMSE, ?{‘ﬁgaél
Sub-Ranges & Concentrations, Observations ug/m3 MAE, pg/m3 ug/m3 3
3 pg/m
ug/m
1 PVS-1/1-ZAB 3.6-134.4 36,460 53 53 74 74
) PVS-1/2-ZAB 3.6-20.6 18,230 3.13 501 4.2 6.89
PVS-2/2-ZAB 20.6-134.4 18,230 7.29 ’ 9.6 ’
PVS-1/4-ZAB 3.6-12.2 9115 2.29 3.0
4 PVS-2/4-ZAB 12.3-20.6 9115 3.85 514 5.0 6.66
PVS-3/4-ZAB 20.6-32.8 9115 5.89 ’ 7.6 ’
PVS-4/4-ZAB 32.8-134.4 9115 8.54 11.1
PVS-1/8-ZAB 3.6-9.2 4558 1.80 24
PVS-2/8-ZAB 9.2-12.2 4558 2.88 3.7
PVS-3/8-ZAB 12.3-16 4558 3.43 44
8 PVS-4/8-ZAB 16-20.6 4558 4.33 520 5.6 6.72
PVS-5/8-ZAB 20.6-26.2 4558 5.71 ’ 7.3 ’
PVS-6/8-ZAB 26.2-32.8 4558 6.33 8.2
PVS-7/8-ZAB 32.8-41.7 4558 7.65 9.9
PVS-8/8-ZAB 41.7-134.4 4558 9.47 12.3
Table 12. Values of approximation errors of NO, concentrations in PVS models, Ztoty Potok 2011-
2016.
Sub-Ranges of Overall
Number of Regression Model NO, Number of MAE, Overall RMSE, RMSE
Sub-Ranges & Concentrations, Observations ug/m?3 MAE, ug/m3 ug/m?3 3
3 pg/m
ug/m
1 PVS-1/1-ZP 1.6-52.9 15,536 1.919 1.919 2.65 2.65
PVS-1/2-ZP 1.6-6.7 7768 1.268 1.69
2 PVS-2/2-ZP 6.7-52.9 7768 2435 1852 3.24 2463
PVS-1/4-ZP 1.6-4.7 3884 0.989 1.33
PVS-2/4-7ZP 4.7-6.7 3884 0.989 1.33
4 PVS-3/4-ZP 6.7-10.8 3884 1852 1.686 2.39 2.207
PVS-4/4-7ZP 10.8-52.9 3884 2915 3.78
PVS-1/8-ZP 1.6-3.7 1942 0.812 1.08
PVS-2/8-ZP 3.7-4.7 1942 1.273 1.66
PVS-3/8-ZP 4.7-5.6 1942 1.366 1.73
PVS-4/8-ZP 5.6-6.7 1942 1.671 217
8 PVS-5/8-ZP 6.7-82 1942 1786 1811 2.26 2.342
PVS-6/8-ZP 8.2-10.8 1942 1.972 2.55
PVS-7/8-ZP 10.8-16.0 1942 2.361 3.06

PVS-8/8-ZP 16.1-52.9 1942 3.246 4.22
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Table 13. Values of approximation errors of NO, concentrations in RVS models, Zabrze 2011-2016.

Sub-Ranges of

Number of Regression Model NO, Number of MAE, Overall RMSE, ?{‘ﬁ;aél
Sub-Ranges & Concentrations,  Observations pg/m3 MAE, pg/m®  pg/m3 Y
3 pg/m
ug/m
1 RVS-1/1-ZAB 1.2-145 36,460 531 531 7.49 7.49
RVS-1/2-ZAB 1.2-20.0 18,230 237 297
2 RVS-2/2-ZAB 20.0-145 18,230 6.47 442 8.84 5.91
RVS-1/4-ZAB 12-115 9115 1.56 191
RVS-2/4-ZAB 11.5-20.0 9115 1.82 219
4 RVS-3/4-ZAB 20.0-33.0 9115 273 3.18 327 410
RVS-4/4-ZAB 33.0-145.0 9115 6.61 9.03
RVS-1/8-ZAB 1.2-8.0 4558 1.03 126
RVS-2/8-ZAB 8.0-11.5 4558 0.86 1.00
RVS-3/8-ZAB 11.5-15.2 4558 0.93 1.07
RVS-4/8-ZAB 15.2-20.0 4558 1.12 1.32
8 RVS-5/8-ZAB 20.0-26.0 4558 1.40 2.04 1.64 2.57
RVS-6/8-ZAB 26.0-33.0 4558 1.68 1.97
RVS-7/8-ZAB 33.0-43.1 4558 2.44 2.87
RVS-8/8-ZAB 43.1-145.0 4558 6.84 9.44

Table 14. Values of approximation errors of NO, concentrations in RVS models, Ztoty Potok 2011-

2016.
Sub-Ranges of Overall
Number of Regression Model NO, Number of MAE, Overall RMSE, RMSE
Sub-Ranges & Concentrations, Observations ug/m?3 MAE, ug/m3 ug/m?3 3
3 pg/m
ug/m
1 RVS-1/1-ZP 0.4.0-60.3 15,536 1.919 1.919 2.672 2.672
RVS-1/2-7ZP 0.4-7.0 7768 0.894 1.110
2 RVS-2/2-ZP 7.0-60.3 7768 2.164 1.529 2.985 2.047
RVS-1/4-ZP 0.4-4.0 3884 0.593 0.726
RVS-2/4-7ZP 4.0-7.0 3884 0.586 0.706
4 RVS-3/4-ZP 7.0-11.1 3884 0.891 1.150 1.088 1.487
RVS-4/4-7ZP 11.1-60.3 3884 2.529 3.426
RVS-1/8-ZP 0.4-3.0 1942 0.427 0.521
RVS-2/8-7P 3.0-4.0 1942 0.304 0.354
RVS-3/8-ZP 4.0-5.4 1942 0.283 0.349
RVS-4/8-ZP 5.4-7.0 1942 0.332 0.408
8 RVS-5/8-ZP 7.0-8.7 1942 0.438 0.773 0.501 0.968
RVS-6/8-ZP 8.7-11.1 1942 0.631 0.736
RVS-7/8-ZP 11.1-16.6 1942 1.107 1.332

RVS-8/8-ZP 16.6-60.3 1942 2.661 3.544
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Figure 13. Overall MAE and RMSE values for NO; concentration prediction in PVS models depend-
ing on the number of created sub-models, Zabrze.
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Figure 14. Overall MAE and RMSE values for NO; concentration prediction in PVS models depend-
ing on the number of created sub-models, Ztoty Potok.
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Figure 15. Overall MAE and RMSE values for NO; concentration prediction in RVS models depend-
ing on the number of created sub-models, Zabrze.
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Figure 16. Overall MAE and RMSE values for NO, concentration prediction in RVS models depend-
ing on the number of created sub-models, Ztoty Potok.

3.4. The Results of the Modeling of SO, Concentrations

Tables 15-18 show the results of SO, concentration predictions obtained with the
full-range and sub-range models. The errors of the PVS models for the Zabrze monitoring
station are presented in Table 15 and the Zloty Potok monitoring station in Table 16. The
corresponding errors for the RVS models are presented in Tables 17 and 18. The division
into sub-ranges generally improved the accuracy of prediction, especially in the case of
RVS models. In general, as the number of sub-models increased, the overall measures of
modeling error decreased. The exceptions were the four-sub-range and eight-sub-range
PVS sub-models for the monitoring station at Zabrze.
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Table 15. Values of approximation errors of SO, concentrations in PVS models, Zabrze 2011-2016.

Number of . Sub-Ranges (.)f S0, Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, pg/m? ug/m® RMSE,
pug/m?3 ’ pg/m3
1 PVS-1/1-ZAB 1.3-321.9 36,460 5.25 5.25 8.1 8.1
5 PVS-1/2-ZAB 1.3-10.6 18,230 2.57 517 3.7 730
PVS-2/2-ZAB 10.6-321.9 18,230 7.78 : 10.9 ’
PVS-1/4-ZAB 1.3-6.4 9115 1.81 2.6
4 PVS-2/4-ZAB 6.4-10.6 9115 3.30 517 4.6 715
PVS-3/4-ZAB 10.6-21.3 9115 5.88 : 8.1 ’
PVS-4/4-ZAB 21.3-321.9 9115 9.69 13.3
PVS-1/8-ZAB 1.3-4.9 4558 1.49 2.2
PVS-2/8-ZAB 49-6.4 4558 2.19 3.0
PVS-3/8-ZAB 6.4-8.2 4558 2.85 3.9
8 PVS-4/8-ZAB 8.2-10.6 4558 3.85 518 53 700
PVS-5/8-ZAB 10.6-14.4 4558 5.46 ) 7.5 ’
PVS-6/8-ZAB 14.4-21.3 4558 6.69 9.1
PVS-7/8-ZAB 21.3-34.0 4558 7.08 9.3
PVS-8/8-ZAB 34.0-321.9 4558 11.82 15.9
Table 16. Values of approximation errors of SO, concentrations in PVS models, Ztoty Potok 2011-2016.
Number of . Sub-Ranges (.)f S0, Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, ug/m> ug/m® RMSE,
pg/m’ ’ ug/m?
1 PVS-1/1-ZP 0.8-74.2 15,536 1.920 1.920 3.133 3.133
PVS-1/2-ZP 0.8-4.0 7768 0.935 1.302
2 PVS-2/2-ZP 40-742 7768 2.899 1917 4298 2.800
PVS-1/4-ZP 0.8-2.8 3884 0.823 1.099
PVS-2/4-7ZP 2.8-4.0 3884 1.135 1.597
4 PVS-3/4-ZP 4072 3884 1710 1.876 2395 2620
PVS-4/4-7ZP 7.2-74.2 3884 3.836 5.389
PVS-1/8-ZP 0.8-2.2 1942 0.699 0.899
PVS-2/8-ZP 22-28 1942 0.855 1.131
PVS-3/8-ZP 2.8-3.3 1942 1.008 1.379
PVS-4/8-ZP 3.3-4.0 1942 1.246 1.778
8 PVS-5/8-ZP 40-5.1 1942 0.057 1759 00s 2413
PVS-6/8-ZP 5.1-7.2 1942 2.024 2.813
PVS-7/8-ZP 7.2-11.8 1942 3.108 4.545
PVS-8/8-ZP 11.8-74.2 1942 5.072 6.681
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Table 17. Values of approximation errors of SO, concentrations in RVS models, Zabrze 2011-2016.

Number of . Sub-Ranges (.)f S0, Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, pg/m? ug/m® RMSE,
pug/m?3 ’ pg/m3
1 RVS-1/1-ZAB 0.1-362 36,460 5.26 5.26 8.15 8.15
5 RVS-1/2-ZAB 0.1-10.0 18,230 1.58 433 1.95 614
RVS-2/2-ZAB 10.0-362.0 18,230 7.08 ’ 10.33 )
RVS-1/4-ZAB 0.1-5.0 9115 0.85 1.03
4 RVS-2/4-ZAB 5.0-10 9115 111 318 1.32 430
RVS-3/4-ZAB 10.0-22.3 9115 2.66 ’ 3.21 ’
RVS-4/4-ZAB 22.4-362.0 9115 8.11 11.64
RVS-1/8-ZAB 0.1-3.2 4558 0.55 0.64
RVS-2/8-ZAB 3.2-5.0 4558 0.41 0.48
RVS-3/8-ZAB 5.0-7.0 4558 0.48 0.56
8 RVS-4/8-ZAB 7.0-10 4558 0.73 995 0.85 908
RVS-5/8-ZAB 10.0-14.9 4558 1.16 ’ 1.36 ’
RVS-6/8-ZAB 14.9-22.3 4558 1.82 2.14
RVS-7/8-ZAB 22.4-36.0 4558 3.02 3.58
RVS-8/8-ZAB 36.0-362.0 4558 9.84 14.21
Table 18. Values of approximation errors of SO, concentrations in RVS models, Ztoty Potok 2011-2016.
Number of . Sub-Ranges (.)f S0, Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations ug/m*  MAE, ug/m> ug/m® RMSE,
pg/m’ ’ ug/m?
1 RVS-1/1-ZP 0.0-85.0 15,536 1.96 1.96 3.186 3.186
5 RVS-1/2-ZP 0.0-4.0 7768 0.63 166 0.780 045
RVS-2/2-7ZP 4.0-85.0 7768 2.68 ’ 4.116 ’
RVS-1/4-ZP 0.0-2.1 3884 0.38 0.455
4 RVS-2/4-7ZP 2.1-4.0 3884 0.36 123 0.461 171
RVS-3/4-ZP 4.0-7.4 3884 0.73 ’ 0.891 ’
RVS-4/4-7ZP 7.4-85.0 3884 3.45 5.048
RVS-1/8-ZP 0.0-1.8 1942 0.26 0.333
RVS-2/8-ZP 1.8-2.1 1942 0.04 0.063
RVS-3/8-ZP 2.1-3.0 1942 0.19 0.245
8 RVS-4/8-ZP 3.0-4.0 1942 0.23 0.84 0.289 114
RVS-5/8-ZP 4.0-5.0 1942 0.34 ’ 0.385 ’
RVS-6/8-ZP 5.0-7.4 1942 0.58 0.683
RVS-7/8-ZP 7.4-12.0 1942 1.01 1.216
RVS-8/8-ZP 12.0-85.0 1942 4.05 5.909

At this station, the overall MAE values (5.18 ug/m? for the eight-sub-range sub-

models, and 5.17 pg/m?3 for the four-sub-range sub-models) were comparable to the overall
MARE value for the two-sub-range sub-models (5.17 pg/m3). In the case of RVS models, a
decrease in the overall values of MAE and RMSE was always observed with an increase in
the number of sub-ranges. In the case of PVS models, it appeared that having too many
sub-ranges and sub-models could degrade the quality of the modeling. Figures 17-20 show
the overall values of MAE and RMSE graphically.
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Figure 17. Overall MAE and RMSE values for SO, concentration prediction in PVS models depending
on the number of created sub-models, Zabrze.
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Figure 18. Overall MAE and RMSE values for SO; concentration prediction in PVS models depending
on the number of created sub-models, Z1oty Potok.
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Figure 19. Overall MAE and RMSE values for SO, concentration prediction in RVS models depending
on the number of created sub-models, Zabrze.
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Figure 20. Overall MAE and RMSE values for SO, concentration prediction in RVS models depending
on the number of created sub-models, Ztoty Potok.

3.5. The Results of the Modeling of PMjy Concentrations

Tables 19-22 show the results of PM;g concentration predictions obtained in the full-
range and sub-range models. The errors of the PVS models for the Zabrze monitoring
station are presented in Table 19 and the Zloty Potok monitoring station in Table 20. The
corresponding errors for the RVS models are presented in Tables 21 and 22. The division
into sub-ranges generally improved the accuracy of prediction, especially in the case of
RVS models. In general, as the number of sub-models increased, the overall measures of
modeling error decreased. The exceptions were the eight-sub-range PVS models for the
monitoring station at Ztoty Potok. The overall MAE and RMSE values for the eight-sub-
range models were higher than the overall MAE and RMSE values for the four-sub-range
models and even the two-sub-range models. In the case of RVS models, a decrease in the
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overall values of MAE and RMSE was always observed with an increase in the number
of sub-ranges. In the case of PVS models, it appeared that having too many sub-ranges
and submodels could degrade the quality of the modeling. Figures 21-24 show the overall
values of MAE and RMSE graphically.

Table 19. Values of approximation errors of PM;g concentrations in PVS models, Zabrze 2011-2016.

Sub-Ranges of

Number of Regression Model PMy Number of MAE, Overall RMSE, ?{‘ﬁ;aél
Sub-Ranges 8 Concentrations, Observations pug/m®  MAE, pg/m®  pg/m® 3
3 pg/m
ug/m
1 PVS-1/1-ZAB 8.2-980.5 36,460 11.83 11.83 18.7 18.7
PVS-1/2-ZAB 8.2-33.1 18,230 6.53 8.79
2 PVS-2/2-ZAB 33.1-980.5 18,230 16.99 11.76 25.22 17.00
PVS-1/4-ZAB 8.2-22.1 9115 552 7.6
PVS-2/4-ZAB 22.1-33.1 9115 7.42 9.7
4 PVS-3/4-ZAB 33.1-55.6 9115 10.01 11.51 132 15.76
PVS-4/4-ZAB 55.6-980.5 9115 23.07 326
PVS-1/8-ZAB 8.2-17.9 4558 447 5.9
PVS-2/8-ZAB 17.9-22.1 4558 6.39 8.8
PVS-3/8-ZAB 22.1-26.9 4558 6.72 8.9
PVS-4/8-ZAB 26.9-33.1 4558 8.24 10.7
8 PVS-5/8-ZAB 33.1-41.2 4558 9.18 11.20 12.1 14.93
PVS-6/8-ZAB 41.2-55.6 4558 11.11 14.4
PVS-7/8-ZAB 55.6-90.1 4558 14.67 19.0
PVS-8/8-ZAB 90.2-980.5 4558 28.79 39.7

Table 20. Values of approximation errors of PMj concentrations in PVS models, Ztoty Potok 2011-

2016.
Number of . Sub-Ranges of PM1o 1/ perof ~ MAE,  Overall rRmsg, Overall
Sub-Ranges Regression Model Concentrations, Observations  ug/m® MAE, pg/m? ug/m® RMSE,
ug/m® ’ ug/m?
1 PVS-1/1-ZP 5.1-120.4 15,536 6.726 6.726 9.10 9.10
PVS-1/2-ZP 5.1-22.7 7768 4638 6.11
2 PVS-2/2-ZP 22.7-120.4 7768 8.541 6.589 11.18 8.646
PVS-1/4-ZP 5.1-18.0 3884 3.964 5.12
PVS-2/4-ZP 18.0-22.7 3884 5.230 6.76
4 PVS-3/4-ZP 22.7-30.9 3884 6.602 6.442 8.57 8.285
PVS-4/4-7P 30.9-120.4 3884 9.972 12.70
PVS-1/8-ZP 5.1-15.7 1942 3.406 439
PVS-2/8-ZP 15.7-18.0 1942 4634 6.01
PVS-3/8-ZP 18.0-20.2 1942 4963 6.43
PVS-4/8-ZP 20.2-22.7 1942 5.613 7.20
8 PVS-5/8-ZP 22.7-25.9 1942 6.751 6.639 8.74 8.519
PVS-6/8-ZP 25.9-30.9 1942 7.202 9.28
PVS-7/8-ZP 30.9-40.5 1942 8.027 10.23

PVS-8/8-ZP 40.5-120.4 1942 12.516 15.88
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Table 21. Values of approximation errors of PMjj concentrations in RVS models, Zabrze 2011-2016.

Number of . Sub-Ranges o.f PMio Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations  pg/m® MAE, pg/m® ug/m® RMSE,
pug/m?3 ’ ug/m?
1 RVS-1/1-ZAB 0.1-1145.0 36,460 11.84 11.84 18.8 18.8
5 RVS-1/2-ZAB 0.1-33.0 18,230 4.66 9.93 5.8 14.77
RVS-2/2-ZAB 33.0-1145.0 18,230 15.20 ) 23.8 )
RVS-1/4-ZAB 0.1-20.0 9115 3.09 3.8
RVS-2/4-ZAB 20.0-33.0 9115 2.97 3.5
4 RVS-3/4-ZAB 33.0-57.1 9115 5.02 7.83 6.1 1096
RVS-4/4-ZAB 57.1-1145.0 9115 20.23 30.4
RVS-1/8-ZAB 0.1-14.0 4558 2.26 2.8
RVS-2/8-ZAB 14.0-20.0 4558 1.49 1.7
RVS-3/8-ZAB 20.0-26.0 4558 1.51 1.8
8 RVS-4/8-ZAB 26.0-33.0 4558 1.74 5.76 2.0 7 68
RVS-5/8-ZAB 33.0-42.5 4558 2.30 ’ 2.7 ’
RVS-6/8-ZAB 42.5-57.1 4558 3.51 4.1
RVS-7/8-ZAB 57.1-91.1 4558 6.99 8.4
RVS-8/8-ZAB 91.1-1145.0 4558 26.32 38.0
Table 22. Values of approximation errors of PM;( concentrations in RVS models, Ztoty Potok 2011-
2016.
Number of . Sub-Ranges o.f PMio Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations  ng/m® MAE, pg/m? ug/m® RMSE,
pg/m3 . ug/m3
1 RVS-1/1-ZP 3.0-138.0 15,536 6.88 6.88 9.34 9.34
9 RVS-1/2-7ZP 3.0-22.8 7768 2.99 5.05 3.64 6.70
RVS-2/2-7ZP 22.8-138.0 7768 7.11 ) 9.75 )
RVS-1/4-ZP 3.0-16.0 3884 1.88 2.31
RVS-2/4-7P 16.0-22.8 3884 1.62 1.90
4 RVS-3/4-ZP 22.8-32.9 3884 2.29 3.46 2.71 4.48
RVS-4/4-7P 32.9-138.0 3884 8.07 11.00
RVS-1/8-ZP 3.0-12.1 1942 1.43 1.76
RVS-2/8-ZP 12.1-16.0 1942 0.84 0.99
RVS-3/8-ZP 16.0-19.0 1942 0.84 0.97
8 RVS-4/8-7ZP 19.0-22.8 1942 0.89 211 1.03 266
RVS-5/8-ZP 22.8-27.0 1942 1.04 ’ 1.21 ’
RVS-6/8-ZP 27.0-32.9 1942 1.46 1.69
RVS-7/8-ZP 32.9-43.0 1942 2.50 294
RVS-8/8-ZP 43.0-138.0 1942 7.88 10.71
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Figure 21. Overall MAE and RMSE values for PM;g concentration prediction in PVS models depend-
ing on the number of created sub-models, Zabrze.
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Figure 22. Overall MAE and RMSE values for PM;g concentration prediction in PVS models depend-
ing on the number of created sub-models, Ztoty Potok.
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Figure 23. Overall MAE and RMSE values for PM;y concentration prediction in RVS models depend-
ing on the number of created sub-models, Zabrze.

m MAE mRMSE

10

d
8
6
0 '
1 2 3 4 5 6

Number of sub-models

S

N

PM,, concentration, pg/m?

Figure 24. Overall MAE and RMSE values for PM;y concentration prediction in RVS models depend-
ing on the number of created sub-models, Ztoty Potok.

3.6. The Results of the Modeling of CO Concentrations

CO concentrations were not monitored at the Ztoty Potok station, so the analysis was
carried out only using monitoring data from Zabrze.

Tables 23 and 24 show the results of PM;g concentration predictions obtained with the
full-range and sub-range models. The errors in the PVS models for the Zabrze monitoring
station are presented in Table 23. The errors in the RVS models are presented in Table 24.
The division into sub-ranges improved the accuracy of prediction in the case of RVS models.
In general, as the number of sub-models increased, the overall measures of modeling error
decreased. The PVS models showed slight changes in accuracy. The MAE level did not
change much. The overall MAE value for the eight-sub-range models was higher than
the overall MAE value for the four-sub-range models and equal to the MAE value for the
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two-sub-range models. In the case of RVS models, a decrease in the overall values of MAE
and RMSE was always observed with an increase in the number of sub-ranges. In the
case of PVS models, it appeared that having too many sub-ranges and sub-models could
degrade the quality of the modeling. Figures 25 and 26 show the overall values of MAE
and RMSE graphically.

Table 23. Values of approximation errors of CO concentrations in PVS models, Zabrze 2011-2016.

Number of . Sub-Ranges f)f co Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations  pg/m® MAE, pg/m® ng/m® RMSE,
ug/m® ’ ug/m?
1 PVS-1/1-ZAB 0.16-8.28 36,460 0.119 0.119 0.202 0.202
PVS-1/2-ZAB 0.16-0.42 18,230 0.071 0.155
2 PVS-2/2-ZAB 0.42-8.28 18,230 0.162 0117 0.230 0.193
PVS-1/4-ZAB 0.16-0.30 9115 0.066 0.19
PVS-2/4-ZAB 0.30-0.42 9115 0.074 0.098
4 PVS-3/4-ZAB 0.42-0.69 9115 0.111 0.115 0.149 0.182
PVS-4/4-ZAB 0.69-8.28 9115 0210 0.285
PVS-1/8-ZAB 0.16-0.26 4558 0.072 0.198
PVS-2/8-ZAB 0.26-0.30 4558 0.069 0.177
PVS-3/8-ZAB 0.30-0.35 4558 0.065 0.085
PVS-4/8-ZAB 0.35-0.42 4558 0.079 0.106
8 PVS-5/8-ZAB 0.42-0.52 4558 0.099 0117 0.132 0.178
PVS-6/8-ZAB 0.52-0.69 4558 0.121 0.158
PVS-7/8-ZAB 0.69-1.03 4558 0.153 0.203
PVS-8/8-ZAB 1.03-8.28 4558 0275 0.365
Table 24. Values of approximation errors of CO concentrations in RVS models, Zabrze 2011-2016.
Number of . Sub-Ranges ?f co Number of MAE, Overall RMSE, Overall
Sub-Ranges Regression Model Concentrations, Observations  pg/m® MAE, pg/m® ug/m® RMSE,
pg/m’ ’ ug/m?
1 RVS-1/1-ZAB 0.1-9.0 36,460 0.118 0.118 0.198 0.198
RVS-1/2-ZAB 0.1-0.4 18,230 0.047 0.059
2 RVS-2/2-ZAB 0.4-9.0 18,230 0.160 0.104 0.262 0.161
RVS-1/4-ZAB 0.1-03 9115 0.034 0.042
RVS-2/4-ZAB 0.3-0.4 9115 0.030 0.035
4 RVS-3/4-ZAB 0.4-0.7 9115 0.055 0.078 0.066 0.104
RVS-4/4-ZAB 0.7-9.0 9115 0.19 0.274
RVS-1/8-ZAB 0.1-02 4558 0.027 0.033
RVS-2/8-ZAB 0.2-0.3 4558 0.014 0.016
RVS-3/8-ZAB 03-03 4558 0.014 0.017
RVS-4/8-ZAB 0.3-0.4 4558 0.018 0.021
8 RVS-5/8-ZAB 04-05 4558 0.025 0.055 0.030 0.070
RVS-6/8-ZAB 0.5-0.7 4558 0.038 0.045
RVS-7/8-ZAB 0.7-1.1 4558 0.077 0.093

RVS-8/8-ZAB 1.1-9.0 4558 0.223 0.309
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Figure 25. Overall MAE and RMSE values for CO concentration prediction in PVS models depending

on the number of created sub-models, Zabrze.
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Figure 26. Overall MAE and RMSE values for CO concentration prediction in RVS models depending

on the number of created sub-models, Zabrze.

4. Summary and Discussion

Table 25 shows the percentage changes in the overall values of MAE and RMSE
obtained by modeling the concentrations in sub-ranges, calculated in relation to the error

values of the corresponding full-range models.
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Table 25. The percentage changes in the overall values of MAE and RMSE obtained by modeling
the concentrations in sub-ranges, in relation to the MAE and RMSE values of the corresponding
full-range models.

Zabrze Zloty Potok
Air Number of PVS Sub-Models RVS Sub-Models PVS Sub-Models RVS Sub-Models
Pollutant Sub-Models AMAE ARMSE AMAE ARMSE AMAE ARMSE AMAE  ARMSE
% % % % % % % %
2 21 29 ~19.2 213 59 5.6 -223 —-23.0
05 4 —49 74 —395 —43.4 -10.2 —95 —443 —455
8 —49 82 —60.7 —64.1 87 8.0 —63.5 —65.1
2 46 —229 —99 252 —6.4 ~11.0 279 235
NO 4 -7.7 —36.9 —26.1 —47.7 —6.7 ~16.0 —46.8 —453
8 83 —419 —40.6 —62.0 —65 -19.7 - -
2 17 75 ~16.8 212 —-35 -7.0 203 —234
NO, 4 -3.0 —~10.5 —40.2 —45.3 —12.1 -16.6 —40.1 —44.4
8 -19 938 —61.6 —65.7 56 —115 —59.7 —63.8
2 15 ~10.2 177 247 0.1 ~10.6 ~15.4 232
SO, 4 ~16 ~12.0 —395 —47.3 -23 —16.4 —37.2 —46.2
8 —14 —13.6 —57.2 —63.5 -84 —-23.0 —57.2 —64.2
2 —05 -89 ~16.1 213 2.0 5.0 266 282
PMo 4 -27 —-15.5 —33.9 —41.7 —42 —9.0 —49.6 —52.0
8 53 —20.0 —51.3 —59.1 -13 —6.4 —69.3 715
2 24 48 ~11.8 —~18.9 - - - -
CcoO 4 -35 ~10.1 —33.4 —47.3 - - - -
8 22 —12.1 —53.6 —64.5 - - - -

In the case of RVS models, each division into narrower concentration sub-ranges and
the development of appropriate sub-range models resulted in a significant reduction in
the overall value of the modeling error. The division into sub-models always improved
the accuracy of predictions in the case of RVS models. When the number of sub-models
increased, the overall measures of modeling error decreased. A significant improvement in
the quality of modeling was achieved at both air monitoring stations. Modeling errors could
be reduced by more than 60% using eight sub-models. However, it should be emphasized
that the RVS models are not of great practical importance because their use is related to
knowledge of the real concentrations of the pollutants. Moreover, once the concentration
values are known, there is no need to perform modeling. The importance of the RVS models
was that they allowed us to assess the potential for improving the quality of the modeling.

The division into sub-models generally improved the accuracy of the PVS models;
however, the decrease in modeling error was not as great as in the RVS models. Moreover,
quite often, after splitting the full-range set into eight sub-ranges and running eight sub-
models, the MAE and RMSE values could be higher than in the sub-models created after
division into only four sub-ranges. Such an effect was found for O3, NO, NO; and PMj in
Zloty Potok, and NO,, SO, and CO in Zabrze. The probable cause of the deterioration in the
quality of prediction in some eight sub-range PVS models was the error in the classification
of cases into individual sub-ranges. The classification was made on the basis of the predicted
concentration values obtained as a result of the preliminary prediction. With an increasing
number of sub-ranges, the sub-ranges of concentrations became narrower and the number
of misclassified cases also increased. The number of misclassified cases became so large
that it increased the mean prediction error in the sub-range.

The PVS models always showed a lower accuracy than the RVS models. This is
understandable, as the PVS models required a preliminary prediction, which introduced an
additional error. In conclusion, having too many sub-ranges and sub-models can degrade
the quality of modeling for the PVS models.
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After division into sub-ranges (two sub-ranges, four sub-ranges, eight sub-ranges), the
error in the models for the highest sub-ranges was always very large compared to the error
in the models for the lower sub-ranges. There are two reasons for this effect. The first is that
the width of the highest sub-range was always greater than that of the models of the lower
sub-ranges. The second reason was the need to predict extremely high concentrations. The
approximation of such unusual concentrations is always burdened with a higher error.

5. Conclusions

Monitoring data are often not complete enough to carry out an air quality assessment.
To fill the measurement gaps, predictive models are used. Such models often use archival
measurement data from air monitoring systems. This is the best source of knowledge about
the relationships between measured variables (concentrations and meteorological parame-
ters). There is a need to model the missing concentrations as accurately as possible. The use
of artificial neural networks reduces the prediction error compared to classical regression
methods. In previous studies, a single regression model over the entire concentration range
was used to approximate the concentrations of a selected pollutant. In this study, it was
assumed that not a single model, but a group of models, could be used for the prediction.
In this approach, each model from the group is dedicated to a different sub-range of the
concentration of a modeled pollutant. The aim of this analysis was to check whether this
approach would improve the quality of modeling.

The aim of the analysis was not to create the most up-to-date models based on possible
new data. Once trained, a model using historical data (e.g., from 2011 to 2016) should also be
able to predict concentrations for current data. This feature of the model’s “generalization
of acquired knowledge” was tested during the learning process on the cases from the test
subset, and also on the cases from the validation subset after the network training was
completed. The performed validation should show that the model can approximate the
target value using data independent of the learning process.

Air monitoring data from the period 20112016 allowed us to verify the possibility
of improving the accuracy of modeling by carrying out modeling in subsets. A similar
analysis can be carried out using data from other monitoring stations, or data from Zabrze
and Ztoty Potok stations from a different period. However, the selected set of cases should
cover a measurement period of several years, so that the recorded cases correspond to
different meteorological situations and different ranges of concentrations of monitored
pollutants.

The most important conclusions that resulted from the conducted analysis are as
follows:

1.  Modeling segmentation, consisting in prediction in the sub-ranges of concentrations
of the modeled pollutant, allowed for a higher overall modeling accuracy.

2. For RVS models, segmentation of the modeling process guarantees a significant
increase in modeling accuracy compared to a model based on the full-range of con-
centrations.

3. In the case of PVS models, segmentation of the modeling process allows to reduce
overall prediction errors. However, the number of concentration sub-ranges cannot
be too large. When predicting with 8 submodels, the modeling accuracy may be lower
than when predicting with 4 submodels.

The authors are aware that the article has its shortcomings and limitations. The analysis
was carried out using historical data from only two air monitoring stations. Stations from
the same region of Poland were selected. We are convinced that a similar analysis of
completely different data, e.g., from other regions of Poland or other countries/continents,
would confirm the formulated conclusions. It can be assumed with high probability that
the concept is valid and should yield similar results for other air monitoring data sets.
The effect was confirmed for six air pollutants. Not all possible air pollutants, e.g., PM; 5,
were included. The authors are convinced that a similar effect could be obtained for other
monitored pollutants.
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