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Abstract: Air pollution and COVID-19 infection affect the pathogenesis of cardiovascular disease.
The impact of these factors on the course of ACS treatment is not well defined. The purpose of this
study was to evaluate the effects of air pollution, COVID-19 infection, and selected clinical factors on
the occurrence of perioperative death in patients with acute coronary syndrome (ACS) by developing
a neural network model. This retrospective study included 53,076 patients with ACS from the ORPKI
registry (National Registry of Invasive Cardiology Procedures) including 2395 COVID-19 (+) patients
and 34,547 COVID-19 (−) patients. The neural network model developed included 57 variables, had
high performance in predicting perioperative patient death, and had an error risk of 0.03%. Based on
the analysis of the effect of permutation on the variable, the variables with the greatest impact on
the prediction of perioperative death were identified to be vascular access, critical stenosis of the left
main coronary artery (LMCA) or left anterior descending coronary artery (LAD). Air pollutants and
COVID-19 had weaker effects on end-point prediction. The neural network model developed has
high performance in predicting the occurrence of perioperative death. Although COVID-19 and air
pollutants affect the prediction of perioperative death, the key predictors remain vascular access and
critical LMCA or LAD stenosis.

Keywords: air pollution; COVID-19 infection; acute coronary syndrome; neural network; left main
coronary artery (LMCA) stenosis; critical left anterior descending coronary artery (LAD)

1. Introduction

The COVID-19 viral pandemic has been ongoing since 2019, and it is particularly dan-
gerous for older patients with comorbidities and for younger patients with compromised
immunity [1].

Acute coronary syndrome (ACS) is one of the most serious medical problems in Poland.
During the pandemic, the management of patients with ACS changed in terms of isolating
infected patients and adequately protecting uninfected patients in hospitals, as well as
protecting medical staff [2,3]. At the beginning of the pandemic, the number of patients
hospitalized for ACS including STEMI decreased. The treatment of patients did not change.
Such findings were presented in a large study by Campo et al. [4]. Similarly, a significant
decrease in the number of procedures performed in ACS was observed in Poland during
the pandemic.

There is a high probability of a relationship between the incidence of COVID-19 and
air pollution, mainly particulate matter (PM10 or PM2.5) and the heavy metals that it
contains [5], because air pollution affects the rate of spread of both chemical (dioxins) and

Int. J. Environ. Res. Public Health 2022, 19, 16654. https://doi.org/10.3390/ijerph192416654 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192416654
https://doi.org/10.3390/ijerph192416654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-8407-2527
https://doi.org/10.3390/ijerph192416654
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192416654?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 16654 2 of 13

biological (viruses) toxic substances [6]. The health effects of PM10 PM2.5 dust depend on
the size of the particles and their chemical composition. PM2.5 can penetrate the deepest
parts of the lungs, where it is accumulated or dissolved in biological fluids and then
transported throughout the body with the bloodstream [7].

Air pollution in Poland is high. A report by the World Health Organization (WHO)
shows that in 2018, out of the 50 European cities analyzed, 36 were in Poland [8].

Air pollution significantly affects parameters of sudden out-of-hospital cardiac ar-
rest [9]. In the analysis of the available literature, numerous papers were encountered
evaluating the influence of air pollution factors on patient prognosis after out-of-hospital
cardiac arrest [10–12]. As demonstrated by Yusuf et al., almost 7 in 10 cases of CAD can be
linked to typical risk factors such as high blood pressure, smoking, socioeconomic status,
dyslipidemia, poor diet, obesity, diabetes, depression, and air pollution. Thus, air pollution
is one of the risk factors for ischemic heart disease [13], as shown by Kuzma et al. in a large
clinical study comparing rural and urban areas in Poland on more than 9000 patients with
ACS. The risk of air pollution-related ACS was higher in industrial than non-industrial
areas. Chronic exposure to air pollution may underlie differences in the short-term effects
of particulate air pollution on STEMI incidence. Clearly, the association of air pollution with
peri-procedural death is indirect [14]. The risk of peri-procedural death during treatment
of ACS was demonstrated by Sielski et al. in a study including 113,456 cases. This risk was
significantly higher in patients with history of diabetes, stroke, myocardial infarction, or
renal failure. Thus, the current study assumed a possible effect of air pollution on the risk
of perioperative death in ACS [15].

However, there is little data on the impact of heavy metal air pollution on the disease
course and mortality of COVID-19. Heavy metals contained in PM10 and PM2.5 particulate
matter play an important role in the impact of air pollution on human health, especially
on the occurrence of cardiovascular diseases [16–19]. Some authors [9,20,21] in their
studies showed statistically significant relationship between the occurrence of ventricular
fibrillation (VF) at the arrival of emergency ambulance and the presence of arsenic (As) in
the air. A multivariate regression model confirmed the relationship between the occurrence
of VF and As and clinical parameters, as well as the relationship between the occurrence of
death at the arrival of the ambulance and arsenic exposition.

Periprocedural mortality plays an important role in the analysis of mortality due to
ACS [15]. Perioperative death is defined as death occurring from the time of anesthesia
until 30 days after the procedure [22]. For this reason, we decided to assess the impact of
heavy metal air pollution on periprocedural mortality during ACS in patients infected with
COVID-19.

The aim of the study is to determine to what extent air pollution with particulate
matter (PM2.5 and PM10) and heavy metals and coexisting COVID-19 infection influence
perioperative mortality during ACS in Poland. Another aim is to assess the use of neural
networks as a useful method in the analysis of many variables.

2. Materials and Methods
2.1. Patients Data

The Polish National Registry of Invasive Cardiology Procedures (Ogólnopolski Rejestr
Procedur Kardiologii Inwazyjnej, ORPKI) was established in 2004. Since that year, data on
the management of ACS have also been collected. Due to the development of IT systems
in Poland, the electronic version of the registry has been in operation since January 2014.
Currently, there are 161 hemodynamic laboratories in Poland which collect data for the
electronic version of the registry, as do invasive cardiology centers in Poland that are
reported in the registry [23]. Currently, the management of patients with ACS is based
on the guidelines of the Polish Cardiac Society. In general, the most important guidelines
include fast transport of a patient with ASC and fast myocardial revascularization [24,25].

Our study group consists of invasively treated patients diagnosed with ACS in Poland
and reported to the ORPKI registry during 2020, the year when COVID-19 struck Poland
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and when both Polish residents and health care workers had their first contact with this
pathogen. The study was conducted between 1 January 2020 and 31 December 2020. The
group of patients pooled for the analysis—i.e., patients qualified for the treatment ACS
and registered in the ORPKI registry—consisted of 53,076 patients. Patients eligible for our
analysis were those diagnosed with ACS and qualified for invasive treatment based on the
guidelines of the Polish Society of Cardiology. Angiography was performed on all patients
qualified for invasive treatment with diagnosed ACS. The study group consisted of patients
who were initially diagnosed with acute coronary syndrome and qualified for invasive
cardiology procedures. This group included COVID-19 patients as well as those who were
not infected. After the COVID-19 test was performed, it became clear who was infected.
Then, it was possible to group patients into COVID-19 and non-COVID-19 groups. Both
groups were equally exposed to inhaled contaminated air. Only patients registered with
complete data for analysis were included; patients with incomplete data were excluded.
During the procedure itself, we did not distinguish the sub-periods of the procedure. The
time before the invasive procedure was divided into time from onset of coronary pain to
first medical contact and time from onset of pain to first balloon inflation or to angiogram.
It was not possible to evaluate patients who died several days after the procedure. The
ORPKI registry that we used in this manuscript does not collect such data related to death
of patients after a hemodynamic procedure. The study group included 34,547 patients who
were not infected with COVID-19 (93.8%) and 2395 patients with diagnosed COVID-19
infection (6.2%). Detailed study flowchart is presented on Figure 1.
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Patients diagnosed with COVID-19 disease were included in the comparative analysis.
Positive results were obtained with an antigen test performed by an emergency medical
team, by an appropriate primary care physician, and finally by hospital staff. As this
invasive cardiologic procedure must be performed immediately, it was carried out before
the final results of the PCR test were received. The study covers the year 2020—the
first year of the epidemic. Patients from the pre-vaccination period were analyzed to
eliminate the effect of vaccination on the studied parameters. A study of patients with ACS
and the impact of vaccination was presented by our research team in another paper [26].
Correlations between acute coronary syndromes and various clinical, peri-procedural, and
environmental factors have been studied by our team for several years [15,27,28]. The
current work presents for the first time the correlations between environmental factors (air
pollution and COVID-19 infection).

Patients who qualified for invasive treatment were asked to sign a declaration of
informed consent to the procedure, in accordance with the recommendations of the Helsinki
Foundation of 1964. As we used anonymized data from the ORPKI database, the study did
not require the approval of the bioethics committee.

2.2. Air Pollution Data

Air pollution data obtained from the Main Environmental Protection Inspectorate
were analyzed. Air pollutants recorded in 66 air monitoring stations in Poland were
analyzed for their content of PM10, PM2.5, and heavy metals such as lead (Pb), nickel (Ni),
cadmium (Cd) and arsenic (As) [26]. Daily data for each analyzed pollutant were obtained
from the Chief Inspectorate of Environmental Protection for 66 stations in 16 provinces
in Poland. The data pertained to the year 2020. The locations of air monitoring stations
corresponded in the vast majority to the locations of hemodynamic laboratories to which
patients reported. This allowed us to assume that the patients were exposed to the analyzed
air pollutants. The amount of air contamination does not have a significant effect on the
date the patient reported to the hemodynamic laboratory, as some time must have expired
for the contaminants to have an effect. Moreover, the toxic effect of heavy metals depends
on many factors, e.g., the rate of metal penetration, distribution in tissues, rate of metal
excretion. In addition, cardiovascular diseases with which patients present themselves are
the result of a multifactorial response of the body. On the contrary, excess metal and its
toxic effects depend on certain factors such as ingestion or inhalation of metal, rate of metal
penetration, distribution in tissues and achieved concentration, and finally the rate of metal
excretion. Mechanisms of toxicity include inhibition of enzyme activity, protein synthesis,
changes in nucleic acid function and changes in cell membrane permeability [29,30].

Knowing the location of the hemodynamics laboratories, sites of air monitoring sta-
tions most similar to them were selected, assuming that it was also the place where the
patient was exposed to particulate matter and heavy metals. A small proportion of patients
were non-local patients who had not been exposed to the effects of air pollution. This is a
limitation of the study that was declared in the section “Study Limitations”. Due to the
large amount of data and the large number of patients, a neural network constructed for
this purpose was used for statistical analysis.

2.3. Statistical Analysis

Continuous variables are presented as means and standard deviations (SD) or medi-
ans and interquartile ranges (IQR). Categorical variables are presented as numbers and
percentages. The normality of the data distribution was checked using Student’s t-test.
Hertigan’s dip test was used to test for multimodal distributions. Tukey’s test was used to
indicate far outliers.

The multiple imputation method was applied to impute the missing data to minimize the
effect of missing data on the neural network analysis. The oversampling method was applied to
balance the class imbalance in the target variable, which was death during the procedure.
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The study sample was randomly divided into two groups: the training group (70%) and
the validation group (30%). A feedforward classification that fully connected the multi-layer
perceptron neural network with three hidden layers was implemented. All 57 of the variables
were added in the input layer. During the learning process, each patient was randomly
presented as a new learning case. The algorithm repeatedly tried to match the weights of the
variables in order to obtain the best prediction of the outcome. The output layer included
one categorical variable, death during the procedure. Three hidden layers were constructed
between the input layer and the output layer, which allowed more complex patterns between
the input variables and the output variable to be learned. A hyperbolic tangent activation
function was used. Binary cross-entropy loss was used for neural network optimization. The
neural network was trained with the backpropagation method, using an adaptive stochastic
gradient descent algorithm. Our neural network considered 57 variables and was highly
effective in predicting patient periprocedural death. The risk of error in this process was 0.03%.
The model of the neural network is shown in Figure 2.
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The model was evaluated with the area under the receiver operating characteristics
curve (AUCROC). After the neural network was trained and evaluated, a permutation
feature importance analysis was performed to test which variable had the greatest impact
on the neural network model. The results are presented on a graph. The features were
ordered from those on which permutation of the feature values had the greatest impact
on the neural networks’ binary cross-entropy loss (difference in loss before and after the
permutation was largest) to those on which permutation had almost no impact on the
neural networks’ loss. In the analysis, a significance level of α ≥ 0.05 was set. The most
importance features were those for which the change in binary cross-entropy loss was
higher than or equal to 5%.

3. Results

Patients hospitalized for ACS in 2020, the first year of the pandemic in Poland, were an-
alyzed. In this group, 2395 patients had a COVID-19 (+) status and 34,547 had a COVID-19
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(−) status. The patients in the COVID-19 (+) group were younger and were predominantly
male. ACS in the COVID-19 (+) group more often presented clinically as ST-elevation
myocardial infarction (STEMI) and much less often as unstable angina (UA) (16,865 (31.8%)
vs. 1372 (57.3%), p < 0.001). The time from pain onset to first medical contact (180.0
(70.0.540.0) vs. 150.0 (60.0.480.0), p < 0.001), time to balloon inflation or angiogram (460.0
(188.0.1348.5) vs. 320.0 (180.0.960.0) p < 0.001), and the time from first medical contact to
inflation or angiogram (125.0 (60.0.420.0) vs. 120.0 (65.0.240.0) p < 0.001) were significantly
shorter in the COVID-19 (+) group. We observed 253 (0.68%) peri-procedural deaths in
the study group. COVID-19 (+) patients were more likely to be transported directly to
the Hemodynamics Laboratory (3350 (11.6) vs. 596 (26.2), p < 0.001) and they were more
likely to experience sudden cardiac arrest before being admitted to the Hemodynamics
Laboratory (441 (1.5) vs. 227 (10.0); p < 0.001).

When analyzing the concentrations of basic air pollutants in Poland during the study
period, we found that the highest average airborne accumulation of PM10 particulate matter
occurred in the Silesian agglomeration, where the average annual concentration of particulate
matter was 31.57 µg·m−3; the number of ACS cases at that time was 5933 (Figure 3).
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The highest average annual concentration of PM2.5 (21.69 µg·m−3) was also found in the
Silesian agglomeration; the number of ACS cases in this area at that time was 5933 (Figure 4).
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Figure 4. Distribution of acute coronary syndromes and mean PM2.5 levels in 2020. The circles
indicate the accumulation of air pollution in a region. ACS—acute coronary syndrome.

The general characteristics of the air pollutants under study are presented in Table 1.

Table 1. Descriptive characteristics of air pollution of the analyzed area in 2020.

As (PM10) Cd (PM10) Ni (PM10) Pb (PM10) PM10 PM2.5

ng·m−3 ng·m−3 µg·m−3 µg·m−3 µg·m−3 ng·m−3

records 50,002 50,066 49,808 51,156 52,898 52,607

mean 1.15 0.34 1.76 0.01 24.46 16.05

SD 1.92 0.46 3.16 0.01 14.86 11.25

min 0.10 0.01 0.14 0.0002 2.31 1.00

25% 0.50 0.13 0.50 0.004 14.92 8.90

50% 0.50 0.24 1.12 0.01 20.10 12.68

75% 1.14 0.40 1.97 0.01 29.75 19.53

max 23.20 5.39 91.95 0.27 256.30 166.00
As—arsenic; Cd—Cadmium; Ni—nickel; Pb—lead; SD—standard deviation.

Based on the analysis of the influence of permutation on the variable, the variables
with the greatest impact on the prediction of periprocedural death were determined to
be vascular access, critical left main coronary artery (LMCA) stenosis, critical left anterior
descending coronary artery (LAD) stenosis, unfractionated heparin (UFH), unstable angina,
pre-admission cardiac arrest, arterial hypertension, right coronary artery (RCA), age, drug-
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eluting stent (DES) implantation, kidney disease, COVID-19 infection, diabetes, active
smoking, NSTEMI, gender, and number of implanted stents (Figure 5). The quality of the
model was confirmed by the area under the ROC curve for the training and validation
phases (Figures S1 and S2).
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Figure 5. Variables and their impact on the network model based on permutation feature importance
analysis. As—arsenic; Cd—Cadmium; Hg—mercury; Zn—zinc; Pb—lead; STEMI—ST-elevation
myocardial infarction; NSTEMI—non-ST-elevation myocardial infarction; SD—standard deviation;
LMCA—left main coronary artery; LAD—left anterior descending coronary artery; RCA—right
coronary artery; DES—drug-eluting stent; PCI—percutaneous coronary intervention; LMWH—low
molecular weight heparin; IVUS—intravascular ultrasound; SvG—saphenous vein grafts; BMS—
bare metal stent; LIMA—left internal mammary artery; RIMA—right internal mammary artery;
OCT—optical coherence tomography; BVS—bioresorbable vascular scaffolds.

4. Discussion

The COVID-19 pandemic has caused very significant changes in the functioning of
societies around the world as well as in the functioning of global health care. On the other
hand, the pandemic does not free us from other diseases or from environmental pollution
that can influence the course of these diseases. Due to these special circumstances, we
have undertaken a special task: studying the impact of heavy metal air pollution on the
incidence of ACS and periprocedural death during invasive treatment procedures in the
context of COVID-19 infection. Due to the large amount of medical data from the ORPKI
registry and environmental data from the pollution registry, we used a neural network for
statistical analysis.
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Air pollution is recognized as one of the important factors adversely affecting the
severity of COVID-19 infection. It is considered to be one of the risk factors of higher
COVID-19 mortality due to its effects on the respiratory system, chronic inflammation, and
reduced resistance to infection. Such reports have already been published by Chinese and
Italian researchers [5,31,32].

According to Chinese researchers, newly confirmed COVID-19 infections were associ-
ated with increased PM2.5, PM10, NO2, and O3 concentrations in 120 cities in China [33].
There have also been reports in the literature on the influence of heavy metal air pollution
on the respiratory system. Cd, mercury (Hg), zinc (Zn), and As play the most prominent
roles [34–37]. There are fewer reports, however, on the influence of these pollutants on the
cardiovascular system and ACS [9,38]. In contrast, an analysis of the available literature
found no reports on the impact of heavy metal air pollution on periprocedural deaths in
patients with and without COVID-19 viral infection.

During the epidemic, there have been many important findings and analyses of the
specific behavior of the circulatory system during COVID-19 infection. Shi et al. studied a
group of 416 patients infected with COVID-19. They focused on the cardiovascular status
of these patients. In the COVID-19 group, elderly patients were found to have a greater
number of reported comorbidities—e.g., arterial hypertension—with higher values of high-
sensitivity troponins and higher values of serum BNP levels seen in the follow-up [39]. In a
large European study, Mafham et al. analyzed a total of 3017 hospitalizations for ACS and
COVID-19 in the UK. They reported fewer admissions of patients with ACS and an increase
in out-of-hospital deaths during the epidemic [40]. Our study of a total of 53,076 patients
hospitalized for ACS in 2020 found that patients with COVID-19 were more likely to
present clinically with STEMI and were much less likely to present with UA. Patients with
COVID-19 were more likely to be transported directly to the hemodynamic laboratory
and were more likely to experience a sudden cardiac arrest before being admitted to the
hemodynamic laboratory.

The relationship between the incidence of ACS, periprocedural mortality resulting
from this disease, and the incidence of COVID-19 has not been sufficiently reported in the
literature [41]. In a relatively small Italian study evaluating the number of hemodynamic
procedures in ACS in the province of Terrini in 2020—the first year of the pandemic—they
found that the number of hemodynamic procedures decreased. However, the hypothesis
that this was related to the reduction of air pollution during lockdown has not been
confirmed. Direct associations between the incidence of COVID-19 and heavy metal
air pollution and periprocedural mortality in ACS are difficult to find in the literature.
However, there are indirect correlations that indicate a significant comorbidity of COVID-
19 with obesity, diabetes, hypertension, and cancer. In the case of arsenic, Moon et al.
conducted a meta-analysis on its effect on increased cardiovascular morbidity, including
ischemic heart disease [42]. Contemporary studies on nickel (Ni) and ACS focus mainly
on detecting episodes of acute myocardial ischemia by assessing nickel binding to human
albumin [43,44]. However, the influence of airborne PM10 and PM 2.5 on the course of ACS
is multifaceted. On the one hand, there are reports of a reduction in the incidence of ACS
in metropolitan areas due to the restriction of urban traffic during subsequent pandemic
waves [43]. On the other hand, the reduction in the frequency of STEMI and NSTEMI
during the COVID-19 epidemic may have resulted from the fear of contacting a physician
and having to be transported to the hospital, which is associated with higher mortality
in STEMI. For NSTEMI, a correlation was found between lower NO2 emissions during
lockdown and the number of diagnosed cases of disease [45]. Our analysis of a large group
of ACS patients across Poland found that the COVID-19 (+) group, on the day of disease
onset, had a higher concentration of PM10 for arsenic, nickel, and lead, as well as a higher
concentration of PM10 and PM2.5 overall.

Air pollution significantly affects the cardiovascular system and ACS. In a large
Chinese study, Chen R. et al. analyzed a population of 1,292,880 ACS patients from
2239 hospitals in 318 Chinese cities between January 2015 and September 2020. The authors
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found a significant effect of air pollution especially PM2.5, NO2, SO2, and CO on the
occurrence of ischemic heart disease [46]. These relationships also remain as a function of
climate [47]. During the COVID-19 pandemic, interesting correlations were observed in
this regard. Reports on the impact of the epidemic on the incidence of ACS are conflicting.
Picano et al. report a decrease in ACS in Europe due to the lockdown period [48]. In
contrast, results of other study not support the hypothesis of a decrease in ACS due to
improved air quality following a lockdown [49].

The analysis of a large number of variables in scientific studies requires the creation of
new statistical tools. Logistic regression seems to be a promising tool in this analysis and
has been successfully used by authors [28,49]. An even more interesting statistical tool for
the analysis of large amounts of data with the use of long-term databases is the creation
of neural networks. Niedziela et al. compared the creation and use of a neural network
in predicting the risk of death in STEMI patients [50]. Li et al. also used a mathematical
model of neural networks to study heavy metal air pollution in major Chinese cities [51].
In our study on the effect of PM2.5, PM10, and heavy metal air pollution on the frequency
of COVID-19 infections in patients with ACS, we used a neural network for analysis. The
neural network we designed perfectly considers all the numerous variables for analysis
and determines with a very high probability the risk of periprocedural death in a patient.

Study Limitations

A small proportion of patients were non-local patients. In these patients, the place
where the air pollution was measured was not the same as their place of residence. It may
be significantly similar. At the current stage of obtaining data for the database, it is not
possible to determine the proportion of these patients. However, due to its possibility of
influencing the results, we include the above fact as a limitation of the study.

Another limitation of the study is the lower number of patients presenting to the
hospital with ACS during the COVID-19 pandemic. Thus, the number is different from
the time before the epidemic and does not accurately represent the problem of ACS and
air pollution. During the pandemic, we also had to deal with different management of
infected/suspected patients and their placement in COVID-19 hospitals, which affected
ACS treatment time and the course of the disease.

5. Conclusions

1. The clinical factors with the greatest impact on predicting periprocedural death were
vascular access, critical LMCA stenosis, and critical LAD stenosis.

2. COVID-19 infection had a strong influence on predicting periprocedural death.
3. Air pollution influences peri-procedural deaths, however, to a lower degree than the

other analyzed factors.
4. The neural network that we designed is highly effective in predicting periprocedu-

ral death.
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9. Sielski, J.; Kaziród-Wolski, K.; Jóźwiak, M.A.; Jóźwiak, M. The influence of air pollution by PM2.5, PM10 and associated heavy
metals on the parameters of out-of-hospital cardiac arrest. Sci. Total Env. 2021, 788, 147541. [CrossRef]

10. Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates:
Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [CrossRef]

11. Wichmann, J.; Folke, F.; Torp-Pedersen, C.; Lippert, F.; Ketzel, M.; Ellermann, T.; Loft, S. Out-of-hospital cardiac arrests and
outdoor air pollution exposure in Copenhagen, Denmark. PLoS ONE 2013, 8, e53684. [CrossRef]

12. Xia, R.; Zhou, G.; Zhu, T.; Li, X.; Wang, G. Ambient Air Pollution and Out-of-Hospital Cardiac Arrest in Beijing, China. Int. J.
Environ. Res. Public Health 2017, 14, 423. [CrossRef] [PubMed]

13. Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al.
Modifiable risk factors, cardiovascular disease, and mortality in 155–722 individuals from 21 high-income, middle-income, and
low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [CrossRef] [PubMed]
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50. Niedziela, J.T.; Cieśla, D.; Wojakowski, W.; Gierlotka, M.; Dudek, D.; Witkowski, A.; Zdrojewski, T.; Lesiak, M.; Buszman, P.;
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