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Abstract: The ability to effectively detect N-nitrosamine compounds by liquid chromatography–
tandem mass spectrometry presents a challenge due to the problems of high detection limits and
difficulty in simultaneous N-nitrosamine compound detection. In order to overcome these limitations,
this study reduced the detection limit of N-nitrosamine compounds by applying n-hexane pre-
treatment to remove non-polar impurities before the conventional process of column extraction. In
addition, ammonium acetate was used as the mobile phase to enhance the retention of nitrosamine
target substances on the chromatographic column, with formic acid added to the mobile phase
to improve the ionization level of N-nitrosodiphenylamine, to achieve the simultaneous detection
of multiple N-nitrosamine compounds. Applying these modifications to the established detection
method allowed the rapid and accurate detection of N-nitrosamine in water within 12 min. The
linear relationship, detection limit, quantification limit and sample spiked recovery rate of nine types
of nitrosamine compound were investigated, showing that the correlation coefficient ranged from
0.9985–0.9999, while the detection limits of the instrument and the method were 0.280–0.928 µg·L−1

and 1.12–3.71 ng·L−1, respectively. The spiked sample recovery rate ranged from 64.2–83.0%, with
a standard deviation of 2.07–8.52%, meeting the requirements for trace analysis. The method was
applied to the detection of N-nitrosamine compounds in nine groundwater samples in Wuhan, China,
and showed that the concentrations of N-nitrosodimethylamine and NDEA were relatively high,
highlighting the need to monitor water bodies with very low levels of pollutants and identify those
requiring treatment.

Keywords: groundwater; solid phase extraction (SPE); ultra-high performance liquid chromatogra-
phy triple quadrupole instrument (UHPLC-MS/MS); n-nitrosamine compounds

1. Introduction

The safety of groundwater resources is important for public and environmental health,
economic development and social stability [1,2]. The direct discharge or ineffective treat-
ment of chemical sewage and wastewater, as well as the excessive agricultural use of
nitrogen containing pesticides, fertilizers and other chemical products, has resulted in the
migration of N-nitrosamine compounds and their precursors into groundwater resources
through the soil, causing a serious deterioration in groundwater quality [3–5].

N-Nitrosamine compounds are highly toxic and carcinogenic, having been listed by the
International Research Agency on Cancer as one of the three most serious potential human
carcinogens [6]. In particular, the American Toxic Substances and Disease Registry of the
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U.S. Department of Health and Human Services found that N-nitrosodiphenylamine (ND-
PhA) can cause bladder cancer in rats [7]. Furthermore, the U.S. Environmental Protection
Agency (US EPA) reported that even at a trace level of 0.7 ng·L−1, N-nitrosodimethylamine
(NDMA) exposure may lead to a risk of cancer [8,9]. The detection of N-nitrosamine com-
pounds has become a mandatory aspect of the water treatment process in many countries.
For example, it has been widely performed and studied in drinking water supplies in
Canada, the US and Japan [10,11]. However, in view of the relatively low concentration
of N-nitrosamines observed in polluted groundwater worldwide and the unique difficul-
ties presented by groundwater pollution detection, the monitoring of N-nitrosamines in
groundwater resources poses a major challenge [12–16].

N-Nitrosamines (NAs) are small-molecule and highly polar compounds contain-
ing nitrogen. The physicochemical properties of common N-nitrosamines are shown in
Table 1 [16]. The physical and chemical properties of N-nitrosamines are vary greatly; most
can dissolve in organic solvents such as alcohol and dichloromethane, and only some
compounds can dissolve in water. Therefore, the quantification of N-nitrosamines is very
difficult [17–19].

Table 1. Physicochemical properties of common N-nitrosamines.

Compound Abbr. Molecular
Formula Structural Formula Boiling

Temperature (◦C) Carcinogenicity

N-nitrosodimethylamine NDMA C2H6N2O

1 

 

                                   

    

 

                         

153 2A a

N-nitromorpholine NMOR C5H10N2O

1 

 

                                   

    

 

                         

226.1 2B b

N-nitrosopyrrolidine NPYR C4H8N2O

1 

 

                                   

    

 

                         

214 2B

N-nitrosomethylethylamine NMEA C3H8N2O

1 

 

                                   

    

 

                         

154.4 2B

N-nitrosodiethylamine NDEA C4H10N2O

1 

 

                                   

    

 

                         

173.9 2A

N-nitrosopiperidine NPIP C5H10N2O

1 

 

                                   

    

 

                         
229.8 2B

N-nitrosodi-n-propylamine NDPA C6H14N2O

1 

 

                                   

    

 

                         

206 2B

N-nitrosodi-n-butylamide NDBA C8H18N2O

1 

 

                                   

    

 

                         
250 2B

N-nitrosodiphenylamine NDPhA C12H10N2O

1 

 

                                   

    

 

                         

268 —

a There is limited evidence of carcinogenicity in humans. b Animal evidence is sufficient but human data
is insufficient.



Int. J. Environ. Res. Public Health 2022, 19, 16680 3 of 11

Low-concentration N-nitrosamine detection is currently a key focus in environmental
research [20,21]. GC–MS is the most commonly applied method for the detection of N-
nitrosamine compounds [22–25]. For example, using the 521 method of the US EPA, GC–MS
is capable of detecting six types of N-nitrosamine compound, such as NDMA, requiring a
minimum concentration in drinking water of 1–2 ng·L−1 to be achieved using SPE column
pre-concentration and enrichment [26]. Mousa Amayreh (2019) developed an automated
headspace solid-phase microextraction coupled with gas chromatography–mass spectrom-
etry (automated HS-SPME/GC–MS) for the determination of four N-nitrosamines—N-
nitrosodiethylamine N-nitrosodi-n-propylamine, N-nitrosopiperidine and N-nitrosodi-n-
butylamide—in groundwater samples and determined the N-nitrosamine in groundwater
samples from different locations in Saudi Arabia [27]. However, this method could not
detect thermally unstable nitrosamine compounds such as NAPhA [28,29]. Liquid chro-
matography can be used to analyze and detect N-nitrosamine compounds that easily
decompose and are difficult to volatilize into a gas when heated, allowing the determi-
nation of substances that cannot be detected by gas chromatography [30]. Liquid chro-
matography tandem mass spectrometry (LC–MS) is a highly accurate method for the
determination of trace compounds in complex sample matrices, overcoming the problem
of the insufficient sensitivity of liquid chromatography for the detection of small-molecule
nitrosamines [31,32]. Cristina Ripollés et al. (2017) used LC–MS to determine eight types of
N-nitrosamine substances in water (not NDPhA), achieving detection limits of 1–8 ng·L−1;
NDPhA was not detectable using this method [33]. In contrast, Kadmi et al. (2013) were
only able to determine four types of nitrosamine compounds (NDPA, NMOR, NMEA and
NDMA) in water using LC–MS/MS [34]. Ji-Hyun et al. (2019) used LC–MS/MS (APCI)
to determine nine types of N-nitrosamine in water, achieving recovery rates of >70%, ex-
cept for NDPhA which had a recovery rate of <50% [35]. Arnaud Djintchui Ngongang
(2015) developed a methodology for the analysis of nine N-nitrosamines based on ultra-
high-performance liquid chromatography (UHPLC) coupled to mass spectrometry using
heated electrospray ionization (HESI) in positive ionization mode with a Q-Exactive mass
spectrometer. The extraction recoveries in real matrices ranged from 68–83% for eight of
the nine target nitrosamines and values of 22–31% for NDPhA; the detection limits ranged
from 0.4 to 12 ng·L−1 [36]. Among the currently available LC–MS detection methods, few
approaches allow the simultaneous determination of nine types of nitrosamine compound
and the detection limits are typically relatively high. Furthermore, few studies have de-
scribed NDPhA detection methods. The existing methods for NDPhA detection are limited
by problems such as low recovery rates. Although the conventional elution process can
effectively remove polar impurities using activated carbon extraction columns, it does not
effectively remove non-polar impurities. As a result, non-polar impurities remain in the
eluted concentrated solution along with the target substances, resulting in interference from
the sample matrix and increasing the detection limit of nitrosamine substances [37–39].
Therefore, the detection limit for nitrosamine substances can be effectively reduced by
improving the removal of non-polar impurities during the conventional column extraction
process [40].

Volatile small-molecule nitrosamine substances, such as NDMA, become extremely
volatile when methanol is used as the solvent, making it impossible to maintain effective
analysis and testing over the long-term. Pure water is commonly used as the solvent during
the extraction of nitrosamines from water [41]. However, the insolubility and volatility
of NDPhA in water results in a relatively poor detection response using APCI sources,
leading to a low recovery rate for NDPhA and difficulty in simultaneously detecting other
nitrosamine substances [42]. Therefore, it is necessary to find a suitable solvent that allows
NDPhA solubility and reduces the volatility of other nitrosamine substances to realize the
simultaneous detection of nine types of nitrosamine compound.

In view of the aforementioned problems, this study modified the conventional anal-
ysis process, with the aim of removing non-polar impurities from samples prior to the
conventional column extraction process [43]. In addition, ammonium acetate was used as
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the mobile phase to enhance the retention of nitrosamine target substances by the chromato-
graphic column, with formic acid added to the mobile phase to improve the ionization level
of NDPhA [44]. The pH value of the mobile phase was controlled with the aim of ensuring
that target substances existed in an ionic form, reducing peak deformation and splitting
caused by the coexistence of ionic and molecular forms, inhibiting silanol group activity,
and preventing the tailing of alkaloids in ionic form, while ensuring that the retention time
of the target substances was not affected by acidity [45,46]. Finally, the intensity and peak
pattern of the target substance mass spectrum response were investigated with varying
formic acid concentrations in the mobile phase.

2. Materials and Methods
2.1. Reagents and Chemicals

A methanol solution (2000 mg·L−1 each component) containing N-nitrosodimethylamine
(NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-
n-propylamine (NDPA), N-nitromorpholine (NMor), N-nitrosopyrrolidine (NPyr), N-nitroso-
piperidine (NPip), N-nitrosodi-n-butylamide (NDBA), N-nitrosodiphenylamine (NDPhA)
were purchased from Sigma–Aldrich (Milan, Italy). Ammonium acetate was LC–MS grade
from Merck (Darmstadt, Germany), and methanol, n-hexane dichloromethane and formic
acid were LC–MS grade from Fisher (Pittsburgh, Pennsylvania, PA, USA). All ultra-pure
water used in the experiment was prepared by a Milli-Q system (Millipore, MA, USA).

2.2. UHPLC-MS/MS Conditions

The UHPLC–MS/MS system consisted of automatic sampling system (Shimadzu
SIL-30AC), ultra-high performance liquid chromatography (Shimadzu LC-30AD), a triple
quadrupole tandem mass spectrometer (Shimadzu LCMS8060) and ESI source (Shimadzu
Japan). For quantitative analysis, a Shim-pack GIST C18 chromatographic column (2 µm,
2.1 mm I.D. × 100 mm L) was used. The mobile phase composed of pure methanol (A),
and 5 mmol·L−1 ammonium acetate aqueous solution (containing 0.1% formic acid) (B).
Liquid chromatography operating parameters and mobile phase gradient conditions are
shown in Table 2. The flow rate was set at 0.3 mL·min−1. The column temperature was
set at 40 ◦C and the injection volume was 10 µL. The column temperature was set at 30 ◦C,
and the sample tray temperature was maintained at 15 ◦C.

Table 2. Liquid chromatography operating parameters and mobile phase gradient conditions.

Time (min) Module Command Value

0.01 Pumps Pump B Conc. 90
2.50 Pumps Pump B Conc. 40
10.00 Pumps Pump B Conc. 40
10.01 Pumps Pump B Conc. 90
12.00 Pumps Stop

All components were directly determined by MS/MS after liquid chromatography
separation. For MS/MS detection, high-purity nitrogen was used as the nebulizer and
the drying gas. The nebulizer gas was set at 3.0 mL·min−1 and the drying gas was set at
12.0 mL·min−1. Air was used as the heating gas and set 8.0 mL·min−1. Argon was used
as the collision activation dissociation (CAD) gas. The ESI source was operated under
the positive ion ESI (+) multiple selective reaction monitoring conversion (MRM) mode.
The following parameters were used: interface temperature, 250 ◦C; DL temperature,
290 ◦C; heating module temperature, 350 ◦C; delay time, 3.0 ms; dwell time, 12.0 ms; and
MRM parameters are shown in Table 3. Data acquisition was performed using MRM
mode, monitoring two pairs of MRM conversion ion pairs. The instrument was controlled
by Labsolution 5.93 (Shimadzu, Kyoto, Japan). Under the same analytical conditions as
the calibration standard sample, the qualitative confirmation of the target substance in
the sample was mainly based on two factors: (1) relative to the calibration standard, a
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retention time difference within 0.2 min; (2) the ratio difference between two pairs of
MRM conversions of the target substance relative to the calibration standard sample was
within 20%. For the quantification of the target substance, each nitrosamine substance was
quantified by using MRM-converted ion pair with high abundance or less background
interference, and the calibration curve was performed using the external standard peak
area method [47].

Table 3. Mass spectrometric parameters of N-nitrosamines.

Compound CAS No. Interface
Voltage (KV)

Precursor
Ions Product Ions Q1 Pre

Bias (V)
CE
(V)

Q3 Pre
Bias (V)

NDMA 62-75-9 1.0 75.15
58.10 * −13 −15 −22
43.10 −13 −16 −16

NMOR 59-89-2 4.5 117.30
87.20 * −13 −11 −13
45.00 −19 −18 −17

NPYR 930-55-2 4.5 101.10
55.15 * −17 −16 −20
39.05 −17 −30 −13

NMEA 624-78-2 4.5 89.15
61.10 * −17 −11 −23
43.10 −15 −18 −16

NDEA 55-18-5 4.5 103.10
75.20 * −17 −13 −30
47.20 −20 −15 −19

NPIP 100-75-4 4.5 115.15
69.15 * −20 −16 −28
41.05 −20 −23 −14

NDPA 621-64-7 4.5 131.20
89.10 * −22 −12 −16
43.10 −24 −14 −16

NDBA 924-16-3 0.5 159.25
103.10 * −11 −12 −24

57.15 −11 −14 −16

NDPhA 86-30-6 0.5 199.15
169.15 * −13 −11 −10

66.10 −13 −24 −10

* Represents quantitative ion pair.

2.3. Sample Extraction

Water samples (500 mL) were filtered by glass fiber filter paper (0.7 µm) to avoid
blocking the solid phase extraction column. All the target substances were extracted by a
solid phase extraction column (Resprep EPA Method 521, 2 g/6 mL, Milford, MA, USA)
through an automatic solid phase extraction instrument. In order to enable the analyte
to be in close contact with the solid surface, facilitate adsorption, and at the same time
remove impurities in the column and reduce pollution, the solid phase extraction column
was wetted and activated in turn with 10 mL n-hexane, 20 mL dichloromethane and
20 mL methanol. Then, the solid phase extraction column was washed with 20 mL ultra-
pure water to make the sample solution in good contact with the adsorption surface and
improve the extraction efficiency [48]. The water sample passed through the activated solid
phase extraction column at a flow rate of 15 mL·min−1. Then, the solid phase extraction
column was washed with 10 mL ultra-pure water and dried with high-purity nitrogen
to remove the water in the column. The solid phase extraction column was eluted with
15 mL dichloromethane and dried; the eluent was concentrated to near dryness by nitrogen
blowing (keeping the liquid level slightly fluctuating) and diluted to 0.5 mL with ultra-pure
water (containing 25% methanol). The samples were filtered by 0.2 µm filter membrane to
remove particulate matter before detection, and then analyzed by UHPLC-MS/MS.

2.4. Collection and Preservation of Water Samples

Nine groundwater samples were selected from different places in Wuhan, China, and
named Sample 1, Sample 2, Sample 3, Sample 4, Sample 5, Sample 6, Sample 7, Sample 8
and Sample 9. On-site sampling of each groundwater sample was carried out, and all
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the water samples were placed in brown glass bottles (500 mL) avoiding headspace and
sealed with Teflon lined caps after addition of 50 mg of Na2S2O3 (Sigma–Aldrich, Italy) for
dechlorination [49,50]. The samples were stored at 4 ◦C and analyzed within 4 days [51].

3. Results and Discussion
3.1. Optimization of Chromatographic Conditions

The signal response of the target compound on the ESI source may depend largely
on the liquid chromatographic conditions, so the mobile phase proportions and column
models were investigated. In the experiment, the mobile phase consisted of methanol
and 5 mmol·L−1 ammonium acetate aqueous solution. To obtain a better target response
value, various concentrations (0, 0.1%, 0.2%) of formic acid were added to the aqueous
ammonium acetate solution, and the standard solution was determined at a mobile phase
flow rate of 0.3 mL·min−1. The results showed that when 0.1% formic acid was added to
the aqueous phase, the mass spectrometry response was the highest, and the peak type
was the best. Therefore, methanol and 5 mmol·L−1 ammonium acetate aqueous solution
(containing 0.1% formic acid) were used in the mobile phase.

In order to obtain the maximum sensitivity and optimize the chromatographic peak
shape and resolution, ACQUITY UPLC C18 (2.1 mm × 50 mm, 1.8 µm) and Shim-pack
GIST C18 (2.1 mm × 100 mm, 2 µm) were selected in this experiment. It was found that the
two chromatographic columns had good separation and peak shape, but the ACQUITY
UPLC C18 (2.1 mm × 50 mm, 1.8 µm) chromatographic column was easily blocked and
the liquid phase pressure was too high. Therefore, the Shim-pack GIST C18 (2.1 mm I.D.
× 100 mm L, 2 µm) chromatographic column was selected because it can significantly
increase the sample flux. It can be seen from Figure 1 that all the target analytes have good
chromatographic peaks and could be eluted from the chromatographic column within
12 min; the detection sensitivity and efficiency of the target compounds met the research
needs. The determined chromatographic conditions were as follows: a mobile phase
composed of pure methanol (A) and 5 mmol·L−1 ammonium acetate aqueous solution
(containing 0.1% formic acid) (B). Liquid chromatography operating parameters and mobile
phase gradient conditions are shown in Table 2. The flow rate was set at 0.3 mL·min−1.
The column temperature was set at 40 ◦C and the injection volume was 10 µL. The column
temperature was set at 30 ◦C and the sample tray temperature was maintained at 15 ◦C.
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Figure 1. MRM chromatogram of N-nitrosamine compounds (50.0 µg·L−1).
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3.2. Optimization of Mass Spectrometry Conditions

To simultaneously and rapidly detect the nine N-nitrosamines in drinking water, we
optimized the multiple reaction monitoring (MRM) method for each N-nitrosamine for
greater sensitivity and selectivity. The pretest showed that the ESI (+) mode could get
a better signal response than the ESI (−) mode, so the ESI (+) mode was used in this
study. Using 50 µg·L−1 standard solution, the mass spectrometry conditions were further
optimized by automatic optimization to obtain the parent ion, daughter ion, optimal cone
voltage and collision energy of the target compound. The results are shown in Table 3.
When analyzing the target substance, the protonated molecular ion peak ([M+H]+) was
selected as the parent ion because of its high abundance. The N=O group and the =O group
were removed during the protonation of the target substance. The two fragment ions of
these compounds were [M-N=O-H]− and [M−=O-H]−, respectively; they were selected as
daughter ions [52].

3.3. Validation of the Quantitative Method

The validation process was performed using the criteria from the International Confer-
ences of Harmonization (ICH), more specifically the Q2 (R1) guidelines [53]. The validation
was performed to evaluate the NA analytical method in terms of the following parameters:
linearity, precision, accuracy (% bias), instrumental detection limit, method detection limits
and quantification limits. The recovery of the extraction procedure was also calculated for
the nine target nitrosamines [54].

Nine N-nitrosamine calibration mixed solutions were prepared with 25% methanol
aqueous solution, with the concentrations of each substance were set to 1.0, 5.0, 10.0, 50.0
and 100.0 µg·L−1. The calibration solutions of N-nitrosamine compounds were determined
according to the analysis conditions in Section 2.2. The calibration curve was made by
an external standard method with concentration as the abscissa and peak area as the
ordinate (Table 4). Table 4 shows that the correlation coefficients of the nine N-nitrosamine
compounds range from 0.9985 to 0.9999, and the linear correlation coefficients are good. The
instrument detection limits and method detection limits (MDL) of the nine N-nitrosamine
compounds are 0.280–0.928 µg·L−1 and 1.12–3.71 ng·L−1, respectively.

Table 4. Calibration curve parameters of nine N-nitrosamine compounds.

Compound Regression Equation R2 LOD
(µg·L−1)

MDL
(ng·L−1)

NDMA Y = 9577.26X + 5759.90 0.9999 0.928 3.71
NMOR Y = 5047.71X − 13,728.0 0.9992 0.546 2.19
NPYR Y = 47,890.0X − 43,846.3 0.9985 0.639 2.56
NMEA Y = 16,819.2X − 15,053.7 0.9996 0.280 1.12
NDEA Y = 10,235.0X − 3454.58 0.9990 0.513 2.05
NPIP Y = 41,240.2X − 12,518.2 0.9995 0.717 2.87

NDPA Y = 15,371.4X − 2776.90 0.9998 0.481 1.92
NDBA Y = 45,940.36X − 14,909.9 0.9997 0.766 3.07

NDPhA Y = 184,657X − 168,651 0.9994 0.912 3.65

The groundwater samples were used for standard addition experiments. The ground-
water and matrix spiked sample solutions were obtained according to the preparation
method in Section 2.3. The sample spiked content was 20 µg·L−1, and the parallel deter-
mination was performed six times. The recovery rate and standard deviation results are
shown in Table 5. The recovery rate of the nine N-nitrosamine compounds was 64.2~83.0%,
with a standard deviation of 2.07~8.52%, which meets the requirements for trace anal-
ysis. Moreover, the higher the concentration of the standard addition, the higher the
recovery rate.
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Table 5. Results of recovery rate (n = 6).

Compound Recovery Rate (%) RSD (%)

NDMA 71.4 2.65
NMOR 69.2 3.48
NPYR 65.1 2.07
NMEA 70.6 8.52
NDEA 64.2 3.92
NPIP 70.6 2.96

NDPA 68.0 2.43
NDBA 67.2 4.85

NDphA 66.0 6.41

3.4. Analysis of Actual Water Samples

According to the analysis method established above, nine groundwater samples were
sampled and detected in Wuhan, China, and the distribution map of N-nitrosamine in
the groundwater of the city was obtained (Figure 2). At least one kind of N-nitrosamine
was detected within all nine groundwater samples. However, low concentrations of N-
nitrosamines were observed in the groundwater samples. From Figure 2, it can be seen
that six N-nitrosamine were mainly detected in the nine samples. It is worth noticing
that six types, including NDMA, NPYR, NDEA, NDPA, NDBA and NDphA, were de-
tected in the groundwater samples with concentrations ranging from 4.81~60.99 ng·L−1,
2.29~12.14 ng·L−1, 1.86~40.60 ng·L−1, 0~1.47 ng·L−1, 0~8.22 ng·L−1, 0~1.13 ng·L−1. NDMA,
NDEA and NPYP were all detected in all nine samples; the concentration of NDMA was
the highest. It could be concluded that the kinds of nitrosamine disinfection by-products in
the groundwater of this city are more concentrated, but the detection rate is high and the
content is generally low. The identified types have also been previously observed in the
Wuhan section of the Yangtze River, suggesting that various kinds of N-nitrosamines may
pollute groundwater through surface water [51,54–56]. The average concentrations of the
nine N-nitrosamine detected are less than the World Health Organization’s drinking water
limit of 100 ng·L−1, but NDMA and NEMA greatly exceed the corresponding concentra-
tions of 0.7 ng·L−1 and 0.2 ng·L−1 with carcinogenic risks [8–12]. The concentrations of the
other seven nitrosamines are lower than the corresponding concentrations of carcinogenic
risk levels in drinking water.
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4. Conclusions

In this study, nine types of N-nitrosamine compound (including unstable NDPhA)
were investigated in groundwater environmental water samples, and simultaneous de-
tection using triple quadrupole mass spectrometry and ultra-high performance liquid
chromatography was used. The method was optimized effectively, by adjusting the pre-
treatment extraction column packing material and mobile phase components.

The detection method established in this study was used to determine nine types of
N-nitrosamine compounds in calibrated solutions. Within the linear range, all correlation
coefficients were greater than 0.998, exhibiting good linearity. The instrument detection
limit and method detection limit were 0.280–0.928 µg·L−1 and 1.12–3.71 ng·L−1, respec-
tively, effectively meeting the requirements of the World Health Organization (WHO) and
various relevant national standards. The results of spiked recovery tests using groundwater
samples exhibited recovery rates from 64.2–83.0%, with standard deviations of 2.07–8.52%,
meeting the requirements for trace analysis.

The analysis of nine groundwater samples using the optimized method showed that
many kinds of nitrosamine disinfection by-products are present in groundwater in the study
region, although generally the content was relatively low, with average concentrations all
below the drinking water limit of 100 ng·L−1 specified by the WHO. However, the NDMA
and NEMA concentrations were relatively high, exceeding the concentrations of 0.7 ng·L−1

and 0.2 ng·L−1 and corresponding to an increased cancer risk [8–12].
Therefore, treatment techniques for minimization of N-nitrosamines need to be devel-

oped. Further attention needs to be paid to the monitoring and treatment of groundwater
with very low levels of pollutants.
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