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Abstract: Low Birth weight (LBW) infants pose a serious public health concern worldwide in both
the short and long term for infants and their mothers. Infant weight prediction prior to birth can
help to identify risk factors and reduce the risk of infant morbidity and mortality. Although many
Machine Learning (ML) algorithms have been proposed for LBW prediction using maternal features
and produced considerable model performance, their performance needs to be improved so that they
can be adapted in real-world clinical settings. Existing algorithms used for LBW classification often
fail to capture structural information from the tabular dataset of patients with different complications.
Therefore, to improve the LBW classification performance, we propose a solution by transforming
the tabular data into a knowledge graph with the aim that patients from the same class (normal or
LBW) exhibit similar patterns in the graphs. To achieve this, several features related to each node are
extracted such as node embedding using node2vec algorithm, node degree, node similarity, nearest
neighbors, etc. Our method is evaluated on a real-life dataset obtained from a large cohort study in the
United Arab Emirates which contains data from 3453 patients. Multiple experiments were performed
using the seven most commonly used ML models on the original dataset, graph features, and a
combination of features, respectively. Experimental results show that our proposed method achieved
the best performance with an area under the curve of 0.834 which is over 6% improvement compared
to using the original risk factors without transforming them into knowledge graphs. Furthermore, we
provide the clinical relevance of the proposed model that are important for the model to be adapted
in clinical settings.

Keywords: low birth weight; knowledge graph; topological features; healthcare; birth weight prediction

1. Introduction

Infant birth weight (BW) is an important factor that must be considered during the
clinical evaluation of newborns. Infants born with a BW < 2500 g are considered as having
a low birth weight (LBW) [1]. Several contributing factors are associated with LBW, such as
low pregnancy weight, low maternal caloric intake, short stature, prematurity, smoking,
and female sex of the infant [1]. Infants with LBW are at a higher risk of adverse health
outcomes such as intellectual disabilities, learning disabilities, lower IQ, hearing and visual
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disabilities, obesity, diabetes, and long-term disabilities including premature death [2–4].
Every year, nearly 20 million babies, nearly 14.6% of births worldwide, are born with
LBW [5,6]. This is an alarming concern; therefore, timely identification of LBW fetuses is
essential to minimize the risk of LBW by taking appropriate clinical interventions.

In sectors such as healthcare, the utmost focus is given to introducing key enablers
that aid prolonged health through proper care and treatment. To achieve this, machine
learning (ML)-based algorithms have demonstrated promising performance to aid medical
personnel in making informed decisions. Table 1 shows a brief overview of several studies
conducted to predict LBW using several ML models by utilizing maternal risk factors
associated with LBW. For example, Faruk et al. [7] proposed an LBW prediction model
using multiple ML models by utilizing data from 12,055 women, noting eight risk factors
for each patient. The authors showed that the random forest (RF) method achieved the
best performance. Feng et al. [8] used binary support vector machine (SVM) classification
to predict fetal weight using ultrasound features from a dataset of 7875 obtained from a
hospital in China. Lu et al. [9] proposed an ensemble learning model comprising three
models: RF, XGBoost, and LightGBM. The ensemble learning model was based on a genetic
algorithm (GA) and was applied to estimate the fetal weight at any gestational age. The
authors used a dataset of 4214 women with 14 features obtained from a hospital in China
and showed that the proposed ensemble model with a GA achieved better performance
than the individual models. Trujillo et al. [10] used data from 250 women with 23 features
obtained from a healthcare center in Mexico for infant BW prediction using the support vec-
tor regression (SVR) algorithm. Pollob et al. [11] recently built an LBW classification model
using ML on a dataset of 2351 instances with 17 risk factors obtained from Bangladesh.
The authors demonstrated that logistic regression (LR) achieved the best classification
performance. Do et al. [12] used ML to predict mortality in very LBW infants from a dataset
of 7472 infants obtained from different hospitals in Korea, and showed that artificial neural
networks (ANN) achieved the best performance in predicting mortality in these infants.
Lin et al. [13] used ML models to predict the hospital stay of very LBW infants from a
dataset of 3519 infants obtained from hospitals in Taiwan.

Several studies concerning infant birth weight among the population of the United
Arab Emirates have been carried out. Abdulrazzaq et al. [14] conducted a study to deter-
mine the incidence of LBW from data of 3514 births obtained from three hospitals in Al Ain
in 1991. The authors showed that, in the selected population, the rate of LBW was 8.4%,
and the important risk factors identified were multiple pregnancies, premature membrane
rupture, and previous pregnancies with LBW. Nasir et al. [15] used statistical modeling to
identify the prevalence and risk factors associated with LBW in a hospital in Ajman, using
data from 197 pregnant women between January 2011 and December 2012. The authors
showed that 80.7% of LBW cases were observed in women aged—20–34 years, of which 62%
were non-Arabs. Another study conducted by Nasir et al. [16] showed that the important
risk factors associated with LBW infants were light weight, short interpregnancy interval,
nulliparity, and first-cousin marriage. Detailed work related to infant BW estimation and
classification can be found in [2,17].

Although many studies have been conducted on LBW classification (Table 1), the
performance of these studies can be improved. The algorithms used in these studies ignore
the relationships between different entities and rely on grid-like data [18,19]. Furthermore,
the core assumption of ML algorithms is that the patients in a dataset are independent of
each other [18]. However, patients might have relationships that share the same diseases
or complications [20,21]. Thus, for ML algorithms, extraction of useful information from
complex data with relational structures is challenging [22].

To address this issue, we propose a novel solution that incorporates node embeddings
and graph topological features extracted from the knowledge graph (KG) for infant BW
prediction. We achieve this by first transforming the original dataset into a graph and then
extracting useful graph features to construct a feature vector for prediction. KG-based
solutions are promising solutions that have shown tremendous performance in many
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applications, including healthcare [18,19,21–28]. However, KG-based solutions are limited
to graph datasets, and few studies have focused on extracting graph features from real-life
tabular datasets, especially for infant BW prediction. This study addresses these limitations.
The contributions of this study are as follows:

1. A well-curated dataset obtained from 3453 patients with 41 important risk factors was
used for infant BW prediction in the UAE.

2. Experiments were performed using the five most commonly used ML classifiers on
the original tabular dataset and graphs obtained from the original dataset.

3. A detailed performance evaluation was performed using the original risk factors,
graph features, and combinations of these features.

Table 1. Related works completed for LBW prediction.

References Method Used Performance Limitations

Faruk et al. [7]
LBW prediction using LR, RF.
Basic data preprocessing
was performed.

AUC of LR was 0.50, Accuracy of
RF was 93%.

No other performance other than
accuracy was shown for RF.
A small set of features were used.

Feng et al. [8]

Fetal weight estimation and
classification using
ultrasound features.
SMOTE [29] was used for
data balancing.
deep belief network (DBN)
for estimation.
SVM for classification.

DBN achieved better performance
with an MAE of 198.55 g ± 158 g,
MAPE of 6.09 ± 5.06%,

LBW and NBW samples were
treated as the same class to
predict High BW.

Lu et al. [9]
Fetal weight estimation using
ensemble (RF, XGBoost, and
LightGBM) models.

Accuracy of 64.3% and mean
relative error of 7% which was
improved by 12% and
3% respectively.

Performance needs
further improvement.

Trujillo et al. [10] Infant BW estimation using
support vector regression.

Results show the SVR was able to
predict BW with nearly 250 g.

Only one ML model was used
for evaluation.

Pollob et al. [11] LBW classification using LR and
decision tree

Sensitivity, specificity, and AUC
of 0.99, 0.18, and 0.59 was
achieved using LR.

Low performance was achieved
with a Specificity of 0.18 and an
AUC of only 0.59.

Do et al. [12]
Mortality prediction in very LBW
infants using ML (LR, ANN,
KNN, RF, SVM) models.

ANN achieved an AUC of 0.845, a
sensitivity, and specificity of 0.76
and 0.78, respectively.

A small set of features was used.
The sensitivity and specificity
need further improvement.

Lin et al. [13]

Prediction of in-hospital length of
stay of very LBW infants. Six ML
models (KNN, MLP, RF, LR etc)
were used.

LR achieved the best performance
with AUC of 0.72, precision, recall,
and F-score of 0.76, 0.78. 0.744.

Performance needs further
improvement.

Khan et al. [2]

BW estimation and LBW
classification, SMOTE for data
balancing, and multiple sets
of features.

LR achieved the best classification
performance with an accuracy of
0.90, precision, recall, and F-score
of 0.88, 0.90, and 0.89, respectively.
Important risk factors
were highlighted.

Performance metric such as AUC
and PR-value was not used. The
classification performance of LBW
samples was low.

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods used to explain the proposed methodology. Section 3 explains the experi-
mental results, followed by a discussion of the results in Section 4. Finally, we provide the
conclusions and discuss future work in Section 5.

2. Materials and Methods

An overview of the proposed method, which consists of several modules, is shown in
Figure 1. First, we explain the dataset collection and data preprocessing, followed by the
transformation of the tabular dataset into a knowledge graph. We extract several useful
graph features (node embeddings and graphs features), followed by feature vector creation.
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Finally, we evaluate the performance of multiple ML models using different performance
metrics. Each module is described in the following subsections.
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2.1. Dataset Collection and Data Preprocessing

The dataset used in this study is obtained from a currently ongoing prospective
maternal and child cohort study in Al Ain, UAE [29]. Data on birth weight and other
41 potential risk factors selected based on literature [2] and medical justification were
obtained using self-administered questionnaires answered by the pregnant women during
pregnancy or retrieved from their medical records. LBW was defined as an infant whose
weight was less than 2500 g.

The study was approved by the Abu Dhabi Health Research and Technology Ethics
Committee (DOH/CVDC/2022/72). Informed written consent was obtained from the
participant prior to the data collection. The details regarding the study can be found in [29].
The descriptive statistics of the original risk factors used in this study are provided in the
Supplementary Table S1.

2.2. Problem Formulation and Knowledge Graph Construction

The dataset (D1), as explained in Section 2.1, is transformed into a graph. D1 consists
of 3453 patients with 37 risk factors. The first task is to transform D1 into a graph G that
consists of nodes V and edges (links) E. The edges are connected to a pair of nodes, rep-
resented as G = (V, E) where V = {v1, v2, v3, . . . . . . vn} and E =

{(
vi, vj

)
f or vi, vj ∈ V

}
.

Each patient and disease are represented as a node, whereas the link between them is
represented by an edge. Based on [21], we assume that patients with similar complications
will have stronger relations/edges.

The KG was constructed by identifying nodes, properties, and edges. Each patient
was considered as a node, while factors including age, body mass index (BMI), and height
were the node properties associated with each patient. Diseases and complications were
also considered nodes that were connected using an edge with the associated patients.
For instance, if a patient had gestational diabetes, there would be an edge between the
patient and the gestational diabetes node. After transforming the tabular data into a KG,
we extracted several graph features, as explained below.

2.2.1. Node Embeddings

The node embedding algorithm maps the graph structure and relationships into a
set of vectors while preserving its structural information. Node2Vec, proposed by Grover
and Leskovec [30], is a scalable node embedding algorithm that can efficiently learn the
continuous representation of nodes in a graph. Node2Vec uses a flexible biased random
walk that explores neighboring nodes using both depth-first search (DFS) and breadth-first
search (BFS) strategies. Consider the sample graph in Figure 2 which shows the currently
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visited node (n) using the rank walk transitioned from t. The next node after n must be
determined based on the transition probabilities πnx on the edges (n, x). In the Node2Vec
algorithm, 2nd order random walk is used, which is based on two parameters p and q
where the unnormalized transition probability is used. πnx = αpq(t, x)·wnx. where wnx is
the static edge weight and αpq(t, x) can be represented as:

αpq(t, x) =


1/p i f dtx = 0
1 i f dtx = 1

1/q i f dtx = 2
(1)

dtx represents the shortest distance between nodes t and x which can be in either
{0,1,2} to guide the walk. p is a return parameter that controls the likelihood of revisiting a
node while walking, while q is the in-out parameter that controls the inward and outward
nodes. For instance, a higher value of q will follow BFS behavior, that is, it will visit nodes
locally, whereas a lower value of q will enforce the walk to visit farther nodes, thereby
approximating DFS behavior. Further details of the Node2Vec algorithm can be found
in [29].
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2.2.2. Graph Topological Features

In addition to node embedding, we extract multiple graph topological features such
that we obtain a feature vector f = { f1, f2, f3, . . . fn} which is given to ML models
for classification. Descriptions of the extracted graph topological features are briefly
explained below:

• Graph degree;

We calculate the node degree, which is defined as the number of edges connected to a
node ni in a directed graph represented by d(ni) = 2 ∑n

j ni↔j, where d(ni) is the degree d of
a node ni in a given graph G. The term ni↔j represents the edge of ni with its adjacent node
nj. A node degree consists of both in-degree and out-degree, which is the number of edges
coming to a node ni represented by d−(ni) = ∑n

j d
(
ni←j

)
and the number of edges coming

out from a node is represented by d+(ni) = ∑n
i d
(
ni→j

)
, respectively. A weighted degree is

the sum of the in-degree and out-degree, represented as dweighted(ni) = d−(ni) + d+(ni);

• Closeness centrality;

The closeness centrality is the distance measured by a node to reach other nodes in Gi.
If the node ni has the shortest path with other nodes in Gi, then the CC is higher [31], as
represented as CC(ni) = 1/∑n

j=1 d
(
ni , nj

) for i 6= j;

• Betweenness centrality;

Betweenness centrality is defined as the importance of a node being in between other
nodes, that is, the shortest path a node ni has with other nodes [32]. It is represented as

BC(ni) = ∑i 6=j 6=k
σi,j(ni)

σi,j
where σi,j is the shortest path between any two nodes in Gi;



Int. J. Environ. Res. Public Health 2023, 20, 1317 6 of 15

• Eigenvector centrality;

This measures the importance of a node while considering the importance of its
neighbors. A node is considered influential if the eigenvector centrality (EC) of the node
and its neighbor is higher [33]. The EC for node ni can be represented by ni =

1
λ ∑n

j ai,j.ni;

• Hub;

The hub represents the nodes connected to many other nodes in graph G. Because hub
nodes are highly authoritative, with a large number of neighbors, they are widely used in
many applications, including outbreak detection, page search, and network analysis [34];

• Authority;

Authority is the amount of information a node holds by connecting to many good
hubs [19,35]. For node ni the authority can be represented as ni = ∑j→i nj where j→ i
indicates that there is a link from j to i. Conversely, a good hub, as represented by whether
it is connected with good authorities, is represented as ni = ∑i→j nj;

• PageRank;

The PageRank (PR) algorithm [36] ranks the importance of a node for a graph G. The

PR for a node ni can be represented as PR(ni) =
1−c

n + c. ∑j
PR(nj)
d+(ni)

, where c is the dumping
factor usually maintained around 0.85 (between 0 and 1) [36];

• Clustering coefficient;

This shows the probability that a node ni has two connected neighbors. Mathemat-
ically, the ratio of triangles to the ratio of triples node ni in a graph G is represented as
Cc(ni) =

λ(ni)
d(ni)

2 − d(ni)/2
;

• K-nearest neighbors;

This returns the nearest neighbors of any node ni by calculating the Euclidean distance
to its neighbor nodes nj for i 6= j;

• Node similarity;

This compares similar nodes based on their neighbors. Nodes are considered similar
if they have the same neighbors. Computing node similarity between two nodes n1 and n2

using Jaccard similarity can be calculated as J(n1, n2) =
|n1∩ n2|
|n1∪ n2|

;

• Community detection;

This metric identifies communities in the graph. We have used the Louvain algo-
rithm [37], which is fast and scalable.

2.2.3. Feature Combination for Classification

Feature combination is an effective method for better classification [38]; therefore, to
improve the classification performance, we combine graph embedding features with the
original risk. Overall, we aim to perform experiments by utilizing the original risk factors,
graph-based features, and a combination of features using multiple ML classifiers.

2.2.4. Machine Learning Models

To evaluate the performance of our proposed method, we aim to use multiple ML
models such as random forest (RF) [39], support vector machine (SVM) [40], logistic
regression (LR) [41], naïve Bayes (NB) [42], multi-layer perceptron (MLP) [43], XGBoost [44],
and LightGBM [45]. The parameters used for these ML models are shown in Table 2.
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Table 2. Machine Learning models along with its parameter used in this study.

Classifier Parameter(s)

RF Batch Size = 100, number of trees = 100, Break Ties Randomly = False, Maximum Depth = None,
maximum features = “sqrt”, bootstrap = True, base estimator = DecisionTreeClassifier

SVM Kernel = Linear, nu = 0.5, penalty = l2, loss = squared hinge, maximum iterations = 1000.
Logistic Regression Batch Size = 100, Ridge = 1.0 × 10−8, penalty = l2.
Naïve Bayes Batch Size = 100, parameters = default.
MLP Hidden layers = default, activation = relu, alpha = 0.001, learning rate = 0.001, maximum iterations = 200,
KNN K = 3, distance measure = Euclidean
LightGBM Batch Size = 100, learning rate = 0.01

XGBoost Number of estimators = 100, learning rate = 0.01, random state = 42, maximum features = number
of features

CatBoost Iterations = 20, learning rate = 0.01, loss function = cross entropy

2.2.5. Performance Metrics

We use multiple performance metrics to better evaluate the performance of the method,
such as the weighted average of precision, recall, and F-score [46]. Since our dataset is
class imbalance, therefore, we also used the area under the curve of sensitivity versus false
positive rate (AUC-ROC), and precision–recall (PR) value [2,43], which are represented in
the equations below:

Precision = TP/TP + FP (2)

Recall = TP/TP + FN (3)

where TP, FP, and FN are true positives, false positives, and false negatives, respectively.
Meanwhile, the F-score can be calculated using the equation below:

Fscore = 2
Precision ∗ Recall
Precision + Recall

(4)

The PR values will be calculated using:

y =
TPA + x

TPA + x + FPA + FPB−FPA
TPB−TPA

.x
(5)

where y is the precision value between two points A and B at a particular point TPA + x,
where x = [1, TPB − TPA]. The details regarding the PR value can be found in [47].

3. Experiments and Results

A dataset of 3453 pregnant women was used in the experiments. In addition, 3062 (11.32%)
pregnant women gave birth to normal BW infants while 391 delivered LBW infants. The mean
(standard deviation, SD) maternal age was 31.6 (6.07) years. More descriptive statistics of the
sociodemographic and clinical characteristics of pregnant women are shown in the Supple-
mentary Table S1. Experiments were repeated five times using a five-fold cross-validation
technique, and the mean and SD results are represented in Tables 3–9. Experiments were
performed on the original risk factors, graph topological features, and a combination of fea-
tures. The knowledge graph was constructed using Neo4j [44,45], and graph algorithms were
implemented in Neo4j Graph Data Science and Py2Neo. For classification, experiments were
performed using Python 3.8.
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Table 3. Experiments performed using a random forest classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.843 (0.01) 0.887 (0.001) 0.864 (0.001) 0.746 (0.002) 0.306 (0.001) 0.878 (0.01)
Node Embedding 0.876 (0.05) 0.886 (0.004 0.881 (0.004) 0.767 (0.01) 0.330 (0.01) 0.886 (0.002)
Combination of
Graph Features 0.868 (0.01) 0.887 (0.01) 0.877 (0.01) 0.777 (0.01) 0.355 (0.01) 0.888 (0.01)

Combination
of all features 0.877 (0.02) 0.887 (0.01) 0.882 (0.01) 0.807 (0.01) 0.401 (0.01) 0.901 (0.01)

Table 4. Experiments performed using a naïve Bayes classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.840 (0.01) 0.870 (0.01) 0.855 (0.01) 0.726 (0.01) 0.260 (0.02) 0.868 (0.01)
Node Embedding 0.867 (0.01) 0.889 (0.01) 0.878 (0.01) 0.803 (0.02) 0.390 (0.02) 0.902 (0.01)
Combination of
Graph Features 0.855 (0.02) 0.866 (0.01) 0.860 (0.01) 0.779 (0.02) 0.322 (0.01) 0.889 (0.01)

Combination
of all features 0.862 (0.01) 0.860 (0.01) 0.861 (0.01) 0.799 (0.02) 0.346 (0.01) 0.895 (0.01)

Table 5. Experiments performed using a logistic regression classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.858 (0.003) 0.888 (0.003) 0.873 (0.005) 0.754 (0.003) 0.347 (0.003) 0.884 (0.002)
Node Embedding 0.872 (0.01) 0.895 (0.01) 0.883 (0.01) 0.809 (0.008) 0.419 (0.02) 0.906 (0.004)
Combinations of
Graph Features 0.875 (0.01) 0.895 (0.01) 0.885 (0.01) 0.814 (0.01) 0.431 (0.02) 0.908 (0.01)

Combination
of all features 0.870 (0.01) 0.884 (0.01) 0.877 (0.01) 0.8189 (0.01) 0.392 (0.01) 0.909 (0.01)

Table 6. Experiments performed using a KNN classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.803 (0.01) 0.876 (0.02) 0.838 (0.01) 0.530 (0.02) 0.127 (0.01) 0.806 (0.01)
Node Embedding 0.835 (0.01) 0.873 (0.02) 0.854 (0.01) 0.600 (0.02) 0.166 (0.02) 0.824 (0.01)
Combinations of
Graph Features 0.821 (0.01) 0.867 (0.03) 0.843 (0.01) 0.573 (0.03) 0.149 (0.02) 0.817 (0.01)

Combination
of all features 0.827 (0.02) 0.876 (0.02) 0.851 (0.01) 0.530 (0.01) 0.132 (0.01) 0.806 (0.01)

Table 7. Experiments performed using the MLP Classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.831 (0.01) 0.854 (0.01) 0.842 (0.01) 0.652 (0.02) 0.239 (0.02) 0.850 (0.01)
Node Embedding 0.844 (0.01) 0.860 (0.01) 0.852 (0.01) 0.7217 (0.01) 0.286 (0.02) 0.8734 (0.02)
Combinations of
Graph Features 0.848 (0.01) 0.857 (0.01) 0.852 (0.01) 0.745 (0.01) 0.307 (0.01) 0.881 (0.01)

Combination
of all features 0.863 (0.01) 0.876 (0.01) 0.869 (0.01) 0.787 (0.01) 0.384 (0.02) 0.897 (0.02)
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Table 8. Experimental results obtained using the LightGBM Classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.858 (0.01) 0.888 (0.01) 0.873 (0.01) 0.756 (0.01) 0.329 (0.01) 0.882 (0.01)
Node Embedding 0.868 (0.01) 0.911 (0.03) 0.889 (0.01) 0.807 (0.01) 0.409 (0.01) 0.905 (0.01)
Combination of
Graph Features 0.872 (0.01) 0.889 (0.01) 0.880 (0.01) 0.811 (0.01) 0.411 (0.01) 0.905 (0.01)

Combination
of all features 0.878 (0.01) 0.894 (0.01) 0.886 (0.01) 0.819 (0.02) 0.459 (0.02) 0.913 (0.02)

Table 9. Experimental results obtained using the XGBoost Classifier.

Method Precision
(SD) Recall (SD) F-Score (SD) AUC (SD) PR LBW (SD) PR Overall

(SD)

Original 0.865 (0.01) 0.891 (0.01) 0.878 (0.01) 0.762 (0.01) 0.406 (0.01) 0.891 (0.01)
Node Embedding 0.870 (0.01) 0.892 (0.01) 0.881 (0.01) 0.802 (0.01) 0.410 (0.02) 0.902 (0.01)
Combination of
Graph Features 0.872 (0.01) 0.894 (0.01) 0.883 (0.01) 0.822 (0.01) 0.440 (0.01) 0.909 (0.01)

Combination
of all features 0.888 (0.01) 0.898 (0.01) 0.893 (0.01) 0.834 (0.01) 0.481 (0.02) 0.916 (0.01)

After creating a knowledge graph, 3884 entities (nodes) were obtained using
25,862 relations by linking the entities. An example graph obtained from the original
risk factors using Neo4j is shown in Figure 3. In addition, we have shown the results
of using some graph algorithms; for instance, Figure 4 represents multiple communities
(sub-graphs) in the dataset using the Louvain algorithm [37]. An example of similar nodes
based on the node similarity algorithm is shown in Figure 5, which indicates that patients
with similar complications tend to be similar to each other. For instance, patients with
patient ID (PID) 1963, 1118, and 809 are similar to each other because they have similar risk
factors such as all of them being worried about their upcoming birth, having the same blood
group, and having Rh antibodies. In addition, PID 809 and 1963 are having gestational
diabetes, consanguinity, etc. Similarly, 1963 and 118 had the previous LBW. Figure 6 also
shows the node similarity using KNN models that represent how patients are similar (near)
to each other. For instance, it can be seen that patients with PID 585, 1919, and 312 are
similar to each other because they share similar complications compared to patients with
PID 253 and 211. Furthermore, these two groups of patients are having relatively similar
behavior (same blood group, worry about the upcoming birth, Streptococcus B carrier, etc.);
therefore, they are close to each other compared to other patient groups. We utilized these
data as graph-embedding features. All these combined features were used for classification.
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The experimental results obtained using the RF classifier are listed in Table 3. The
precision, recall, F-score, AUC-ROC, PR-value for the LBW class, and overall PR-value
using the original risk factors were 0.843, 0.887, 0.864, 0.746, 0.306, and 0.878, respectively;
when the performance was improved using node embedding, their new values improved
to 0.876, 0.886, 0.881, 0.767, 0.330, and 0.886, respectively. The combination of all graph
features further improved performance, achieving AUC-ROC and PR-value of 0.777 and
0.355, respectively. Finally, the combination of all features achieved the best performance
with precision, recall, F-score, AUC, and PR-value of 0.877, 0.887, 0.882, 0.807, and 0.401,
respectively. It can be seen that the best AUC of 0.807 was achieved using a combination of
the features while the best PR value of 0.401 was achieved using a combination of graph
features. Overall, the performance of the graph features and the combination of features
was improved compared to that of the baseline method.

The results obtained using the NB classifier (Table 4) show that node embedding
achieved the best performance compared to other features, with precision, recall, F-score,
AUC, and PR-value for LBW, and overall PR value of 0.867, 0.889, 0.878, 0.803, and 0.390,
and 0.902 respectively. Notably, node embedding improved the AUC by more than 7%
compared to the original risk factor; furthermore, the PR value was also increased by
approximately 13%.

The results obtained using the LR classifier are shown in Table 5, which shows that the
combination of graph features achieved the best classification performance, with precision,
recall, F-score, AUC, and PR-value of 0.875, 0.895, 0.885, 0.814, and 0.431, respectively.
Similarly, the experimental results obtained using the KNN classifier (Table 6) show that
node embedding performed well; however, the overall performance of the KNN classifier
was not satisfactory.

The experiments performed using the MLP classifier (Table 7) showed that the best
results were achieved using a combination of all the features, achieving AUC and PR-value
for LBW class of 0.787 and 0.384, respectively.

The results obtained using a LightGBM algorithm is shown in Table 8. It can be seen
that the best performance was achieved using a combination of all the features which
achieved an AUC of 0.819 and PR-value for LBW class of 0.459 for the LBW class.

Finally, the experiments performed using the XGBoost classifier (Table 9) show that
the best performance was achieved using all the (original and graph-based) features which
achieved the best performance with precision, recall, F-score, AUC, and PR-value of 0.888,
0.898, 0.893, 0.834 and 0.481, respectively. Furthermore, the performance of other features
was also comparable.

4. Discussion

LBW is a serious public health concern that poses a serious health challenge to infants.
Identifying LBW infants at the earliest stage before birth can help reduce the significant
risks associated with the mother and infant. Minimizing the risks associated with LBW in
infants can avoid immediate issues such as stunting, low IQ, and even death. Moreover, it
can prevent adverse consequences in later life, including obesity, heart disease, diabetes,
and other non-communicable diseases. Therefore, in this study, we proposed a promising
solution for predicting LBW by using a combination of maternal risk factors and graph-
embedding features.

The prevalence of LBW in this study was 11.32%, which is higher than that recently
reported by Taha et al. [6]; however, this could be related to differences in study designs,
settings, and included participants.

The original tabular dataset was transformed into a knowledge graph and several
graph-embedding features were extracted. Different ML classifiers were used to classify
LBW infants using various performance metrics. It was demonstrated that the proposed
method achieved promising performance.

Graphs have a unique advantage in that they explore the relationships among patients
(Figures 3–6) which helps in classification performance. For instance, it can be seen from
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Figure 5 that patients with ID 809, 1118, and 1963 are similar to each other because they
presented the same complications; all of them had birth anxiety and the same blood group.
Similarly, the node similarity for the patient in Figure 6 also reveals that patients are close
and similar to each other based on the complication type.

As shown in Tables 2–6, for all ML models, the graph features and combinations of all
features achieved better performance compared to the original risk factors. Furthermore,
the proposed method achieved a better PR-value, indicating that the model is robust for
classifying LBW instances.

Node embedding features achieved better performance in terms of precision while
including node embedding combinations of embedding features, and all feature combina-
tions achieved better AUC (Tables 3–9). The best AUC of 0.834 was achieved using XGBoost
when a combination of all features was used.

In addition to improved performance, the models developed will be deployed so they
can be used by physicians in decision-making. Furthermore, it can be seen in Figure 6 that
patients with PID 312, 585, and 1919 share the same complication; therefore, if any patient
is at higher risk of a particular disease (LBW, premature rapture membrane, etc.), then
the nearby/connected patients may also be at higher risk of such disease. Therefore, the
physicians can also closely monitor the patients at risk and propose effective interventions
such as early antenatal care, increase physical activity, better nutrition for mothers, and
other suggestions to minimize the associated risks. Hence, the proposed knowledge
graph-based method can assist physicians with understanding certain patient’s conditions.
Therefore, compared to existing techniques, it increases the trust among clinicians to adopt
such a method in the clinical setting with confidence.

The dataset used in this study was highly imbalanced; therefore, multiple performance
metrics were used. Multiple performance metrics are important to investigate the perfor-
mance of any method. For instance, it can be seen from Table 6 that the precision, recall,
and F-score is high (>80%); however, the AUC and PR-value of the LBW class are low. AUC
is calculated by using various threshold values; however, precision and recall are calculated
by using one threshold value. Similarly, PR-value shows the tradeoff between recall and
precision for different thresholds. Therefore, the small value of AUC and PR-value show
that the KNN classifier (Table 6) was unable to distinguish well between LBW and normal
BW class. Furthermore, all the classifiers achieved similar performance (except KNN)
which shows that the choice of classifier has little impact.

In the proposed work, we have selected an extensive list of 41 important risk factors
(Table S1) selected based on the literature [2] and clinical recommendations. However,
previous works completed for LBW prediction rely on a small number of maternal risk
factors, such as works carried out by Faruk et al. [7], Lu et al. [9], Pollob et al. [11], Do
et al. [12], and Lin et al. [13], which used only 9, 14,17, 11, and 21 risk factors, respectively.
Furthermore, it can be seen from Table 1 that works completed for LBW prediction need
further improvement; for instance, work completed by Faruk et al. [7] and Pollob et al. [11]
achieved an AUC of 0.50 and 0.59, while accuracy of only 64% was achieved by Lu et al. [9].
Work carried out by Do et al. [12] and Lin et al. [13] achieved an AUC of 0.845 and 0.72,
respectively. Compared to most of the works completed (Table 1), we also achieved a
comparatively higher performance with an AUC of 0.834.

The proposed study provides several advantages such as this using a relatively large
cohort study with a large number of important risk factors compared to works completed
in the UAE [2,6,14,15]. In addition, to the best of our knowledge, this is the first study that
utilized graph embedding features for LBW prediction, especially in the UAE. Although
this study has shown significant improvement compared to the original risk factors, it has
several limitations. For example, the node embedding and graph features are dependent
on the original risk factors and use information from the original dataset. It is challenging
to classify a new node that was not included during the graph construction phase, as it
may affect the structure of the graph. Embedding features are computationally complex
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and may require domain knowledge. Moreover, although several ML classifiers were used,
no extensive hyperparameter tuning was performed.

In the future, to better evaluate the performance of graph algorithms, we aim to
present a unified experimental setup to compare the proposed work with previous works
carried out for LBW prediction. Furthermore, since the choice of classifier had little impact
on the overall performance, extensive data preprocessing and hyperparameter tuning
will be performed for performance improvement. We also aim to include more robust
graph algorithms such as graph convolution networks [25,47–52]. Furthermore, since we
have identified several relevant relationships among the patients (Figures 3–5), we aim to
address them using a personalized medicine approach.

5. Conclusions

In this study, graph-embedding features were incorporated into the original risk
factors for LBW classification. Several ML models were used to evaluate classification
performance using various performance metrics, which showed that LR achieved the best
AUC of 0.834. It was shown that graph embedding features are a promising way to improve
performance and can be easily adapted in clinical settings.
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