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Abstract: The negative health impacts of air pollution are well documented. Not as well-documented,
however, is how particulate matter varies at the hyper-local scale, and the role that proximal sources
play in influencing neighborhood-scale patterns. We examined PMj 5 variations in one airshed within
Indianapolis (Indianapolis, IN, USA) by utilizing data from 25 active PurpleAir (PA) sensors involving
citizen scientists who hosted all but one unit (the control), as well as one EPA monitor. PA sensors
report live measurements of PM, 5 on a crowd sourced map. After calibrating the data utilizing
relative humidity and testing it against a mobile air-quality unit and an EPA monitor, we analyzed
PM,; 5 with meteorological data, tree canopy coverage, land use, and various census variables. Greater
proximal tree canopy coverage was related to lower PM, 5 concentrations, which translates to greater
health benefits. A 1% increase in tree canopy at the census tract level, a boundary delineated by the
US Census Bureau, results in a ~0.12 ug/ m? decrease in PM, 5, and a 1% increase in “heavy industry”
results in a 0.07 pg/ m? increase in PM, 5 concentrations. Although the overall results from these
25 sites are within the annual ranges established by the EPA, they reveal substantial variations that
reinforce the value of hyper-local sensing technologies as a powerful surveillance tool.

Keywords: PM, 5; citizen science; low-cost sensor; PA; tree canopy coverage

1. Introduction

Particulate matter 2.5 (PM;5), defined as particle mass with an aerodynamic diameter
that is less than 2.5 um, is regulated by the United States Clean Air Act and reported as
micrograms per meter cubed (ug m~?3), which is a mass-based concentration [1]. PMj 5
is typically found in higher concentrations in densely populated regions [2], and in com-
bination with other air pollutants such as nitrogen dioxide (NO,) and O3 (Ozone), has
been associated with serious health effects and an increased risk of mortality [3,4]. PM3 5
was ranked #1 as a risk factor for deaths in China and #6 as a risk factor for deaths in the
US [3]. Using an atmospheric chemical transport model, Anenberg et al. (2010) estimated
that global anthropogenic PM; 5 was associated with millions of cases of cardiopulmonary
mortality and thousands of cases of lung cancer mortalities, but when reduced to a lower
concentration of 5.8 tg m 2, the mortality estimates were reduced by approximately 30% [5].
Between 2010 and 2012, roadway air pollution alone in 42 New York City neighborhoods
resulted in 320 deaths and 870 hospitalizations and emergency room visits due to PMy 5 [6].
The overlap of high particulate matter, high population, and poor health quality in the
Midwestern region of the US results in a high incident of premature mortality [7].
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Due to the serious human health impacts, the US Environmental Protection Agency
(EPA) requires states to monitor exposure to PM; 5 and other gases. The EPA has set
exposure limits of PM, 5 at 35 pg/m? in a 24-h cycle that is averaged over three years, and
a 12 pg/m3 annual standard limit. However, many studies indicate that chronic human
exposure to levels of air pollution below the EPA standards results in a positive associa-
tion with adverse health effects including shaping DNA methylation through epigenetic
mechanisms, which can have multi-generational effects. Humans are most susceptible
to such impacts during pregnancy, childhood, and the elderly stages of life [8-13]. Even
though anthropogenic pollution from vehicles and industry result in increased PM; 5, there
is also a correlation between PM; 5 and meteorological variables, which can explain up to
50% of the daily variations in some regions. For instance, on stagnant days, the average
PM, 5 concentrations tend to be 2.6 pg/m3 higher [14,15]. Independent of geography,
age, or gender, increasing long-term PM, 5 by 10 pg/m?> of PM, 5 increases non-accidental
mortality by 6% [16]. A limitation of the studies that use PM; 5 in relation to human health
outcomes is that due to the high cost and maintenance of regulatory monitors, most US
cities have few monitors to gauge air quality and health burdens, sometimes just one or
two sensors for millions of people. Enhanced spatial and temporal detail in monitoring is
critical as a host of studies show the important role that local sources play in driving air
pollution [14,17,18].

Scarcity of regulatory monitors has led to using satellite data to extend spatial cov-
erage [19,20]. The deployment of low-cost in situ sensors in air quality studies has also
increased with the development of more accurate monitoring devices, which has enhanced
analysis of fine-scale variations [21-23]. Although low-cost devices have analytical draw-
backs, they have been used effectively in research [24,25]. Low-cost PA sensors in particular
perform well with respect to EPA regulatory monitors and have been used in several air
quality studies [26] as a cheaper alternative to regulatory monitors to examine indoor
and outdoor PM; 5 [24,27]. The interest in low-cost sensors grew as the need to assess
and evaluate personal exposure to airborne pollutants and their impacts on humans and
communities became clearer [1,28,29]. For example PA sensors have been found to have
high self-consistency and can be used to fill in the gaps from sparse coverage available
from regulatory grade sensors [30]. These sensors cost under USD 300, and have been
used in cities such as Ft. Collins and Pittsburgh to examine air pollution as well as in a
unique study to examine the association of the deployment and demographics in parts of
California [30-32].

The goal of this study was to measure the spatio-temporal distribution and variability
of outdoor air quality using 25 PA units that record and report real-time PM, 5, temperature,
and humidity in Marion County, Indiana (Figure 1). Sensors were deployed from August
2018 through November 2019 and the resulting data were used to analyze the relationships
between PM; 5 and various meteorological, land-use, and census variables in the Pleasant
Run airshed in Indianapolis, Indiana. We examined: (1) the factors associated with daily
averages of PM; 5 values that exceeded World Health Organization (WHO) guidelines
of 25 ug/ m?3 (in 2021, this was changed to 15 pg/ m3) [33], (2) locations with the highest
odds ratio of exceeding the daily average of 25 tg/m3, and (3) the impact of tree canopy
percentage on PM; 5 averages at the census tract level.
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Figure 1. Locations of 25 PA sensors in the study area.

2. Materials and Methods
2.1. Sensor Network

We conducted this research in Indianapolis, partly because it has the characteristics
of many large Midwest US cities (e.g., flat topography, multiple sources of PM), but also
because it is local, allowing easier access for monitor deployment, QA /QC analysis, and
the troubleshooting of sensors. Moreover, our research partner, Keep Indianapolis Beautiful
(KIB) had access to citizen science networks from which we recruited volunteers to host the
sensors. KIB is a local community-based nonprofit organization with a focus on improving
the environment. We identified a list of individual households to contact and recruited
32 citizen scientists within the study area. We installed 32 PA-II-SD sensors, with Wi-Fi
capabilities, over a roughly 96 (12 x 8) km? study area in the eastern part of Indianapolis in
Marion County, Indiana, to collect PM; 5 data (Figure 1). One of the sensors was installed
on a three-story balcony. We are assuming that at such a height there may only be a small
monotonic gradient difference between the ground and that level for PM; 5, based on
previous research [34] and our own assessment of monitor performance in comparison
to other monitors installed on the first floor of structures. All the sensors, as per the
recommendations of the manufacturer, were installed under at least an overhang to provide
some protection against the weather. The installation height of all but one sensor ranged
from approximately 4 to 8 feet (1.2-2.4 m) above the ground, based on the availability of
power outlets and overhead coverage at each location.
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PA sensors are designed with a fan that draws a sample of air past its two independent
laser counters labeled ‘Channel A" and ‘Channel B’. Light from a particle is reflected to a
detection plate where it is measured by a pulse. Particle size is determined by the length of
each pulse, and particle count is determined by the number of pulses. Airborne particulate
matter can include organic particles, inorganic particles, smoke, or dust. Particle sizes of
0.3,0.5,1,2.5,5, and 10 um are counted and used to calculate mass concentrations (pg/ m?)
of PM; 9, PM; 5, and PMjg using an algorithm that was developed by Plantower for the
PMS5003 sensor, a factory-calibrated instrument that estimates the number of suspended air
particles based on the method outlined above. This compensates for the varying densities
of various sources of PM,5. PM; 5 readings are averaged and reported every 120 s on
an interactive website from which they can also be downloaded. A chip in the sensors
(ESP8266) provides the Wi-Fi capabilities enabling the uploading of its collected data to
storage in the cloud provided by ThingSpeak. As needed, PA utilizes the sensor’s firmware
to remotely check the devices and modify its software. An additional BME280 sensor is
also incorporated into the PA unit that measures temperature, humidity, and pressure. The
correction factor that the PA utilizes to adjust temperature and humidity before reporting
it on their interactive map cannot be used universally. This technology, which uses a 5 v
USB power source, offers a cheaper option than federal reference monitors to report PMj 5.
Additionally, PA sensors also report relative humidity and temperature readings [35,36].

The PA sensors evaluated by South Coast AQMD against Federal Equivalent Method
instruments costing over USD 20,000 found that laser b (Channel B) reported slightly higher
PMj; 5 mass concentrations; however, the two independent laser counters had a coefficient
of determination of over 0.90 (R-square) tested over a range from 0 to 250 ug/m?, even
though the maximum range is >1000 pg/m? based on the technical documentation. The
accuracy of the PA sensors with FEM between 0 and 250 pg/m?> was between 54.3 and
96.1% (moderate to good accuracy). The maximum consistency error for PM; 5 was found
at £10% at 100-500 pg/m?3, and £10 between 1 and 100 pg/m? [36,37]. Due to a much
higher number of rows of missing data (9197), we used the output from Channel B instead
of Channel A in this study:.

2.2. Processing PM, 5 Data

The PA sensors were deployed from August 2018 through November 2019, cov-
ering 20 census tracts on the east side of Indianapolis. The US Census Bureau (https:
//www.census.gov/ (accessed on 9 January 2023)) delineates census tracts, the geographi-
cal boundaries within a county of each state, with an ideal population of 4000 to gather and
report statistical data (https:/ /www.census.gov/programs-surveys/geography/about/
glossary.html#par_textimage_13 (accessed on 9 January 2023)). Data from 25 of the 32 PA
sensors (not in sequential order), deployed over an 11 month period from November 2018
to October 2019, was used in this study. A recall of power cords by the manufacturer
in February 2019 resulted in approximately one lost data month as the sensors were dis-
connected and new cords were delivered and installed in all units. Hourly data from
each sensor collected over the study period was downloaded from the PA website and we
utilized Base-R in open-source software R-Studio version 4.0.3 (Posit, Boston, MA, USA),
an open-source statistical computing software program, for data processing and analysis.
Additionally, to validate the output from the PA, at deployment we compared raw PA
online readings with an EPA-grade portable sensor (Thermo Scientific MIE pDR-1500).

PA units do not adjust for humidity, which impacts the hygroscopic growth of particles
and particle count [30,38]. To reduce this humidity effect and account for the hygroscopic
growth, the PM, 5 data were corrected using the formula in Equation (1) [32]:

PM; 5

1 0.25RH?
(1—RH)

C-PMy5 = @
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In Equation (1), C-PM3 5 is the corrected PM; 5 that is reported by PA in pg/ m3, PM, 5
is the raw PM, 5 value reported by PA (ug/ m?), and RH is relative humidity retrieved from
the Indiana Department of Environmental Management’s (IDEM) regulatory air quality
monitor at Washington Park in Indianapolis. After this adjustment, the correlation between
the data of the three closest sensors (Sensor 25, 30, and 31) to the two IDEM monitors
(Washington Park monitor and I-70 monitor) was also examined. The Washington Park
(WP) location is the only location that has a photochemical assessment monitoring station
(PAMS), providing hourly samples of data that are available via the IDEM website from
1999 to present day [39]. Additionally, the I-70 monitor had more missing data than the
WP monitor. Utilizing the WP monitor instead of the PA data in the above equation does
introduce some uncertainty into this calibration process. However, since this is a very small
region of the city close to the WP monitor, we believe that it is more appropriate to make
this adjustment than either not calibrate the data or utilize PA relative humidity values,
which are not accurate.

2.3. Meteorological Data

Some abnormal fluctuations in the temperature and humidity data were detected
in the PA sensors in our study area. A study in Pittsburg (USA) concluded that due to
the shape of the PA units, they can trap heat and increase the inside temperature by an
average of 2.7 °C (36.86 °F) and lower the humidity by an average of 9.7% versus outside
the unit [30]. This necessitated downloading meteorological data (temperature, relative
humidity, windspeed) from the IDEM website reporting data from the air quality monitor at
WP (https://www.in.gov/idem/airquality/ (accessed on 20 December 2020)). They have
recently changed their reporting system, which now requires a request to the air monitoring
department of IDEM for data needed for analysis. WP data are continuously monitored
by a photochemical assessment monitoring station and electronically transmitted to IDEM
for processing. Meteorological factors such as relative humidity, windspeed, and drought
conditions play a role in PMj; 5 concentrations [14,40-42].

2.4. Land Use and Land Cover

The estimates of tree canopy cover (TC) in the study region were based ona 1 m
resolution land cover raster produced by our partner KIB and the University of Vermont
Spatial Analysis Laboratory. The land cover data were derived from the classification of
National Agricultural Imagery Program (NAIP) data acquired in 2013 and LiDAR data
acquired in 2009. This dataset was used to quantify the tree canopy cover in the study
region census tracts and within buffers at varying distances from the PA sensor locations.

Additionally, the distribution of “Heavy Industrial” land use was modeled using a
vector-based GIS dataset from the City of Indianapolis’s data portal [43] and processed
using the mapping software Maptitude 2020 by Caliper®. This polygon layer, with land use
information, is utilized by the city of Indianapolis for zoning and planning. This particular
variable was incorporated into the analysis to capture its impact on this study area [44].

2.5. American Community Survey

The most recent American Community Survey (ACS) 5-year estimates (2014-2018), at
the census tract level, were used for socioeconomic and demographic variables [45]. Census
tract data have been used in the past in conjunction with PA to examine environmental
justice implications [46].

Statistical analysis including correlation, logistic regressions, and stepwise regression
incorporating all of the variables discussed above (Appendices A and B) was conducted
using the open-source software RStudio version 4.0.3. The binary response variables for
logistic regression represent the success of days at sensor locations that exceeded the WHO
daily limit (1) versus days that did not exceed the limit (0). The probability of an outcome
varies based on the values of the explanatory variables.
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3. Results

Sparse networks of regulatory monitors established by states are inadequate in pro-
viding us with local information, limiting the use of these data to make informed decisions
on zoning and the infrastructure required to build robust communities. A dense network
of sensors, as established in this study, enables us to examine local impacts that can then
be utilized to make future informed decisions. The temporal array for each sensor spans
thousands of data points, but the spatial array is limited. Due to a limited dataset, we did
not examine a spatial relationship among the sensor arrays.

One clear example of local monitoring to assess event-based air quality variations in-
volves smoke emissions from US Independence Day celebrations on 4 July 2021. As a result,
sensor 4, as shown in Figure A1, and other sensors revealed higher daily PM, 5 averages
due to local fireworks than the values reported later that month (second highest peak) that
resulted from massive forest fires in the Pacific Northwest and southern Canada [47-49].

3.1. PA Data and Portable EPA Grade Sensor

At deployment, PA validation with the portable EPA grade sensor indicated that,
on average, the values for 21 of the 25 sensors deployed were 13.56% higher than the
EPA grade sensor, which is within a relative accuracy of +/—20% [30]. It is important to
note that the PA sensors’ factory calibration is based on specific ambient aerosol, which
may not be identical to our study region and could have contributed to the observed
differences. The calibration of raw data has been shown to reduce errors by as much as
25% for extreme cases and by 10% for typical cases. Additionally, there is a systematic bias
between instruments that can be compounded with the variation of particle composition
and the sensors’ performance in the field, which can be balanced by longer term (one year)
averaging, thus significantly reducing the error [30]. Our field validation was limited with
the EPA grade portable sensor, typically lasting just ~1 h at the beginning of deployment.

3.2. Correlation of PA Data against IDEM Monitor Data

Spearman’s correlation was used to examine the relationship between the PM; 5
measurements collected at the two IDEM monitoring sites and the adjusted PM; 5 data
collected at the three closest PA sensors (labeled 25, 30, and 31; Figure 2). This calculation
was based on data spanning 11 months with over 300 observations each for the three
sensors (Table 1).
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Figure 2. Sensors nearest to Indiana Department of Environmental Management (IDEM) regula-
tory monitors.
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Table 1. Correlation of sensors 25, 30, and 31 with IDEM monitors and PM, 5 data.

Sensor Number IDEM Site Correlation p-Value
(Spearman)
25 WP 0.75 <22 x 10716
30 WP 0.74 <22 x 10716
31 WP 0.72 <2.2 x 10716
25 1-70 0.72 <22 x 10716
30 1-70 0.71 <22 x 10716
31 I-70 0.72 <22 x 10716

The association between PMj 5 readings at the three PA sensors was strongest with the
IDEM Washington Park sensor. The range of raw PM; 5 was 0.36-103.80 pg m 3 with RH
ranging from 44 to 99%, and the average temperature was between —2.7 and 85.2 °F (—19
to 30 °C), based on the WP sensor data. After applying the relative humidity correction, this
range adjusted to 0.08-80.14 j1g m 3, the mean values to 16.22-9.03 g m~3, and the median
to 14.64-8.10 pug m 3. This RH correction underestimation may be more pronounced due
to the higher humidity in Indianapolis most of the year versus a less humid environment
such as that examined in Colorado, where the median bias was reduced by —15% after the
correction [32].

Table 2 shows that when the WP monitor’s relative humidity values are used in
Equation (1) to correct PM; 5, the WP-adjusted values are less than 2% different from the
WP data. This indicates that, based on the chemical composition of the pollutants in this
region, an RH-based correction (Equation (1)) is adequate for calibration, which is what
was used for all further analyses in this study. The mean value of PMj; 5 is lower in this
network of 25 locations than is reported in a prior study in Indianapolis [50]. One possible
explanation could be that the sensors in this study are predominantly in residential areas
versus being near or on major thoroughfares.

Table 2. Results from applying Equation (1) to PA data.

% Diff from WP Unit Diff from WP

. . _3

Variable Median (ug m—3) PM, 5 PM, 5

Raw PM; 5 12.874 36.45% 3.439
WP adjusted PM; 5 o

(Equation (1)) 9.616 1.92% 0.181

WP PM; 5 9.435 0.00% 0.000

3.3. Driving Factors Impacting Daily Averages of PM, 5 Exceeding WHO Limits

A total of 8124 counts of cumulative data by month were used in the regression
analysis (Table 3). We recognize that the grouping of the months is subjective, but we
grouped them, as outlined in Table 3, to best capture the seasonal variations in the study.
To identify the potential factors impacting the days that PM; 5 values exceed the WHO
threshold of 25 pg/m3, the independent variables listed in Table 4 (Appendices A and B)
were used in setting up a logistic regression equation. The dependent binary variable is
represented by 1 when the adjusted PM; 5 values are greater than or equal to the WHO
limit of 25 ug/m?, and 0 when the adjusted PM, 5 values are less than the WHO limit of
25 pug/m?3.

Logistic regression output and its significance based on p-values is represented in
Table 4 for the days that exceed the WHO limit versus the days that do not. This model
indicates that five variables (precipitation, windspeed, Month group 5, Tuesday, and
Saturday) are significant in impacting the days exceeding the daily WHO limit (Table 4).
Month groups 2-5 are in reference to Month group 1, indicating that all else being equal,
Month group 5 is significant when compared to Month group 1. Saturday through Thursday
are referenced against Friday. For ease of interpretation, the significant variables from
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Table 4 are further extrapolated in Table 5 into the odds of a day exceeding the daily WHO
limit. Any odds under 1 are represented by reduced odds and over 1 by increased odds of
resulting in a high PM, 5 concentration exceeding the WHO daily guidelines. Increased
precipitation, increased windspeed, and Month group 5 (compared to Month group 1) have
reduced odds of exceeding the WHO guidelines per day (Table 5). On Saturday, the odds
of exceeding the WHO limit are sixfold compared to the reference day (Friday), and on
Tuesday those odds decrease to threefold.

Table 3. Logistic regression observation breakdown by month for 25 deployed sensors.

Month Month Group Observations
2018
November 1 728
December 2 769
2019
January 2 739
March 3 753
April 3 726
May 3 773
June 4 702
July 4 752
August 4 751
September 5 733
October 5 698
Total 8124

Table 4. Logistic regression output. Negative values indicate a decrease, and positive values an
increase, in the number of days with PM; 5 averages above WHO guidelines.

Variable Estimate Pr(>1zl)
(Intercept) —2.05301 0.0014 **
Precip cm —34.137 0.0060 **

Windspeed kmh —0.27462 0.0000 **

Temp C —0.02154 0.2569

Month group 2 —0.58128 0.1487
Month group 3 0.10966 0.7550
Month group 4 —1.08057 0.0518
Month group 5 —-1.1233 0.0214 *
Day (Monday) 0.5873 0.2822
Day (Saturday) 1.84268 0.0002 **
Day (Sunday) 1.01762 0.0509 .
Day (Thursday) 0.09561 0.8816
Day (Tuesday) 1.17912 0.0184 *
Day (Wednesday) —1.07063 0.2030

“.” signifies p-value < 0.1, “*” signifies p-value < 0.05, “**” signifies p-value < 0.01.

Table 5. Odds of the significant coefficients from the regression output.

Variable Odds
Precip cm 0.0000
Windspeed_kmh 0.7599
Month group 5 0.3252
Day (Saturday) 6.3134
Day (Sunday) 2.7666

Day (Tuesday) 3.2515




Int. |. Environ. Res. Public Health 2023, 20, 1934 90f18

3.4. Identify Sensors with Highest Odds Ratio of Exceeding the WHO Daily Limit

Odds ratio calculations were run to identify locations within the study area that are
the likeliest to exceed the WHO daily limit for PM, 5. There were only two sensors out of
a total of 25 that had significant odds ratios for days that exceed the WHO daily limit of
25 ug/m?3. The odds for sensor 16 are 3.04 times that of other locations to meet or exceed
25 pg/m3, and for sensor 13 it is 2.37 (Table 6). Interestingly, the two sites proximal to major
interstate freeways in the area (sensors 32 and 25) had low odds ratios for exceeding the
air quality parameters, perhaps owing to freeway turbulence, lack of idling, and modern
emission controls for most vehicles.

Table 6. Odds output from significant sensors.

Sensor# chi_sq (p-val) Significant Status OR
13 0.0243 Signif Relationship 2.37
16 0.0008 Signif Relationship 3.04

3.5. Analysis at the Census Tract Level

Correlations at the census tract level aggregation of PM, 5 data, census data, tree
canopy data, and GIS data revealed that four variables are significant (p-value 0.05), with
one being almost significant at that level (Table 7, Appendix B). The two negative relation-
ships with Tree Canopy % and White Only % indicate that they have an inverse relationship
with PM, 5 concentrations. The two positive correlations were found with ‘Heavy Ind %’
and ‘Hwy Length km’ with PM; 5 concentrations.

Table 7. Correlations of average PMj 5 at the census tract level.

Correlations
with PM; 5 Method Value
Census Tract Level
Tree Canopy % Spearman —0.67 *
Heavy Ind % Spearman 0.63 *
Hwy Length km Spearman 0.50 *
Road Length km Spearman 0.29
Pop25 + LT high school % Spearman 04472
Pop25 + Some College_Assoc % Pearson —0.10
Pop25+ Graduate_Prof Degree % Spearman —0.20
Hispanic Latino % Spearman 0.24
Black One Race % Spearman 0.30
White Only % Spearman —047*
Median HH Inc. Spearman —0.41
Median Rent Pearson 0.10

*’ represents p-value < 0.05, ‘’ represents almost significant at p-value 0.05.

Regression models were run with all of the variables (Table 8, Appendix B). Model 1
resulted in an adjusted r-square of 66.47% with four significant variables at a p-value < 0.05.
However, this model resulted in a high variance inflation factor (VIF) of 176.17 for ‘Black
One Race %’, which led to running Model 2 without this variable. The second model with
an adjusted r-square of 57.94% resulted in a high VIF value of 12.57 for ‘Road Length km’.
Model 3 was run without ‘Road Length km’, which resulted in an adjusted r-square of
59.92%, higher that Model 2, but lower than Model 1, with all VIF values < 10. The output
of Model 3 is detailed in Table 8, which shows four significant variables at p-value < 0.05,
and population with some college and associates degree at p-value 0.1. As an additional
step, stepwise regression model was run on Model 3, which resulted in an adjusted r-square
of 62.79% with two significant variables at p-value < 0.01 and three variables significant
at p-value < 0.05. All VIF values for the variables in the final model (stepwise model) are
under 10, indicating that multicollinearity is not an issue in this model. We can make the
following observations from the final model for our data points at the census tract level:
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e A 1% increase in canopy coverage deceases average PM, 5 at the census tract level by
0.12 + 0.03 pg/m? (at the 95% confidence interval).
A 1% increase in Heavy Industrial area increases PM, 5 by 0.07 ug/ m3 4+ 0.02 ug/ m3.
As the percentage of population over 25 with some college and associates degree
increases, it results in a proportional increase in PM; 5 of 0.08 ug/ m?> + 0.03.

e  Hispanic Latino % has a proportional increase, indicating an increase in this population
by one percent results in an increase in PM; 5 of 0.06 pg/ m3 + 0.02.

e Median Rent has an inverse relationship. An increase of USD 100 in median rent
results in a decrease in PM; 5 of 0.9 pg/ m? + 0.03.

Table 8. Stepwise regression output.

Model 1 Model 3 Stepwise
(Adj-R? = 66.47) (Adj-R%= 59.92) (Adj-R? = 62.79)
(Intercept) 32.1600 * 16.0000 ** 16.66913 **
Tree Canopy % —0.1840 * —0.1165* —0.1243 **
Heavy Ind % 0.0796 * 0.0724 * 0.069337 *
Hwy Length km —0.1284 0.0225
Road Length km 0.0097
Pop25 + LT high school % —0.4331 —0.4173 —0.48426
Pop25 + Some College_Assoc % 0.1603 * 0.0790 0.080368 *
Pop25 + Grad Prof Degree % —0.0131 0.0634 0.044515
Hispanic Latino % —0.0831 0.0590 * 0.060178 *
Black One Race % —0.1201
White Only % —0.0860 0.0167 0.01149
Median HH Inc 0.0000 0.0000
Median Rent —0.0153 * —0.0083 * —0.00873 **

“*” signifies p-value < 0.05, “**” signifies p-value < 0.01.

4. Discussion

Community engagement in meteorology may have its earliest examples dating back
to the 1840s [51]. At any level, citizen science poses many challenges as well as opportuni-
ties [52]. By creating a link between researchers and the public, such engagement not only
benefits the researchers, but also creates a more engaged citizenry [51]. Low-cost sensors
such as PA are an inexpensive way for communities to use citizen science to participate in
examining air quality at a fine scale [21].

The South Coast AQMD has tested PA sensors to evaluate their performance and
found high field accuracy. Our findings generally corroborate this instrumental fidelity,
with the correlation between the three sensors tested against the Washington Park sensor
of >0.7. Over time, sensor fidelity does degrade [53], along with the added confounding
effects of temperature and humidity. Thus, low-cost monitoring data need to be carefully
examined over time to ensure that the calibration equation is adequately addressing any
data deviations. To suppress the sensor from humidity [24], we calibrated the PA sensor
output with humidity values (Equation (1)) from the Washington Park IDEM monitor [54].
This is a limitation of this study, since we were unable to utilize humidity data from each
sensor location; however, we believe that, given the study area, utilizing accurate humidity
data from the WP monitor was adequate. We also found that a relative humidity correction
alone in the PR dataset was adequate (Table 2). We selected several census tracts for this
comparison, as this analysis was used as an illustrative example of how AQ related to
public health costs rather than a comprehensive analysis of this relationship, which is
beyond the capabilities of this sensor array and our experimental approach.
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In our study area, Saturday and Sunday were in the top three days for exceeding WHO
PM, 5 standards. This may be due to a higher volume of vehicle trips during these days on
local roadways, with an increase in idling time as well as stop-and-go traffic. More vehicle
traffic on residential roads proximal to the sensors during weekends would be captured
by the sensors, as opposed to standard work commute days when the traffic would be
more limited to traveling along major arterial roads to and from work. A previous study in
Indianapolis (Sullivan & Pryor, 2014) found higher PM; 5 during weekdays, in contrast to
our results, but this is likely driven by the fact that this study used stationary sites from
IDEM monitoring sites that are intentionally placed distant from local air pollution sources
whereas the previous study sampled air quality using transects that were proximal to
freeways and major arterials as opposed to neighborhood-based sites.

We expected that sensors placed near major highways (sensors at location 32 and 25),
would have high odds of exceeding WHO limits, but we found instead that sensors 13
and 16 had the highest odds of exceeding daily limits. We expect that the exhaust from
traffic on highways creates a temperature gradient between it and the ambient air, which,
due to thermal buoyancy causes the plume to rise, which is then impacted by windspeed
and direction. Lower windspeeds versus high windspeed on highways result in traffic
exhaust plumes dispersing more slowly, thus resulting in higher measurements that are
detected for longer periods of time [55]. However, since sensor 32 is upwind from I-65, it is
impacted by local versus highway traffic. Sensor 16, on the other hand, along with vehicles,
is also impacted by the frequent use of a wood burning stove by its neighbor, thus having a
unique local impact, resulting in consistently higher values at that sensor location.

Urban greening initiatives in census tracts with low tree canopy cover can positively
impact air quality and reduce related health disparities. Tree canopy coverage will become
increasingly important, as urban land is projected to increase to 8.1% in 2050 versus 3.1% in
2000. Indiana’s urban land is projected to increase from 8.8% in 2000 to 16.7% by 2050. In
1990, 2.6% of Indiana’s tree canopy coverage was in urban areas. This percentage increased
to 3.6% in 2000 and is expected to increase to 12.1% by 2050. By 2050, 8.8% of Indiana’s
tree canopy coverage outside of urban areas will be subsumed by urban growth. This
projection equates to 1500 km? of land being subsumed by urbanization between 2000 to
2050. Since forests and trees are critical in enhancing human and environmental health,
urban canopy cover should be prioritized [56]. Not only does reduced PM, 5 improve
air quality, but it also reduces expenses. A 10-city study in the USA found that mortality
related to PM; 5 ranged between 1 and 7.6 people/year, and the average value per mortality
incidence was USD 7.8 million. Additionally, the average health benefits were USD 1600 per
hectare of tree cover, with an average of USD 1.6 billion in health benefits per 1pug/m?3
reduction [57]. According to this study, the health savings in our 20 census tracts ranged
from approximately USD 36,300 (census tract 18097355900) to USD 1,121,585 (census tract
18097361400). This was calculated by multiplying the canopy coverage in each census tract
by cost savings of USD 1600 as reported by Nowak et al. (2013). When this calculation
is normalized by area, the health savings in census tract 18097361400 is 1.2 times that of
the former.

Planting trees in the census tract with lower canopy coverage in conjunction with
dividing the study area into low-emission zones (LEZs), where there are restrictions placed
on high-polluting vehicles from entering, could give us direct control over minimizing the
impacts from vehicle pollution [58] and combatting it through nature simultaneously.
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5. Conclusions

This air quality study in Indianapolis is a community-based attempt to examine local
impacts of PMj, 5 over a dense network of 25 sensors. This network was established by
collaborating with local partners through community engagement and enhancing the
examination of the impacts of canopy coverage along with land use and other variables on
PMj; 5 concentrations in the city.

We found that the relative humidity correction, as captured in Equation (1), is adequate
for calibrating raw PMj 5 data that is used in all the analysis. Increased percentage of tree
canopy coverage at the census tract level was associated with lower PM; 5 concentrations.
A 1% increase in canopy coverage at the census tract level resulted in lowering PM; 5 by
approximately 0.12 ug/m3. Based on research by Nowak et al. (2013), we extrapolate
further that the canopy coverage in our study region provides between USD 36,000 and
USD 1,121,585 in health savings. Additionally, a 1% increase in the Heavy Industrial area
classification in the census tract resulted in increasing PM; 5 by a modest 0.07 ug/ m3.

In our logistic regression analysis, we found that increased windspeed and precipita-
tion was associated with lower PM, 5 concentrations. We also found that local impacts, as
witnessed by the wood burning stove near sensor 16could exceed concentrations measured
at locations near major highways. Lastly, because our sensors were deployed in predomi-
nantly residential areas, our finding that Saturdays had the highest accumulations of these
particles may be due to increased neighborhood traffic on the weekends. Wind direction,
which impacts pollutant concentrations, was not modeled in this paper, but should be
included in future research.

Air pollutants such as PM; 5 can vary both spatially and temporally based on the
source(s), atmospheric conditions, and built environment features [59]. Integrating data
from dense sensor networks like the one established in our study along with health out-
comes data can facilitate understanding of spatial variability in air quality. It can also
serve as a tool to facilitate partnership between the community and government entities to
quantify and improve air quality as well as inform policies that contribute to creating more
resilient communities.
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Appendix A

This appendix contains spatial patterns and variable explanations used in the PM; 5
data and the writing.
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Figure A1. PM; 5 from sensor 19 highlighting the first highest peak from 4 July celebrations and the

second one from the fires in the northwest of US in 2021.

PA sensor data in micrograms per cubic meter air (ng/m?):
PM; 5 (nug/ m3) = pm25_adj_wp = Relative humidity corrected PM; 5.

Washington Park (WP) IDEM monitor data and other data:

Temp C = wp_avg_Temp_C = Temperature in Celsius.

Precip cm = WP_avg_precip_cum_cm = Precipitation in centimeters.

Windspeed kmh = wp_avg_wndspd_kmh_new = Windspeed in kilometer per hour.
Day = day = consists of seven categories for the days of the week.

Month group = paper_mth_grp_rank *

* This variable consists of the following groups:

Month group 1 = Fall 1 (Nov 2018): paper_mth_grp_rank = “1”.

Month group 2 =Winter (Dec 2018-Jan 2019): paper_mth_grp_rank:= “2”.

Month group 3 = Spring (Mar 2019-May 2019): paper_mth_grp_rank:= “3".

Month group 4 = Summer (June 2019-August 2019): paper_mth_grp_rank:= “4".
Month group 5 = Fall 2 (September 2019-October 2019): paper_mth_grp_rank:= “5”.

American Community Survey 5-year 2018, at census tract level:

Hispanic Latino % = pop_pct_hispanic_latino = percent of Hispanic and Latino population.
Black One Race % = pop_pct_onerace_black = percent of black one race population.
White only % = pop_pct_whitealone = percent white only population.

Median HH Inc = med_hh_inc = median household income.

Median Rent = median_rent = median rent.

Pop25 + LT high school % = plus25LTHS_ovr25pop = % 25+ population with less than

high school.

Pop25 + Some College_Assoc % = plus25_somecollege_assoc= % 25+ population with

some college and an associate’s degree.

Pop25+ Grad_Prof Degree % = plus25_graduate_prof_deg = % 25+ population with a

graduate or a professional degree.
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Indianapolis land use data from open data portal by census tract:

Heavy Industry % = HeavyInd_pct = percentage of heavy industrial parcels.
Measurements (GIS software) in the census tract:

Hwy Length km = hwy_length_km = highway length in kilometers.

Road Length km = rd_length_km = road length in kilometers.

Tree Canopy % = canopy_pct_ct_km = tree canopy percentage.

Appendix B

This appendix contains R code with some explanation for the analysis run for this
study in R-Studio.

Meteorology Conversions
d3 <- d1[, :=" (wp_avg_wndspd_kmh_new=WP_wind_spd*1.6090, WP_avg_precip_
cum_cm=WP_precip_cum*2.54,wp_avg_Temp_C=((wp_avg_temp-32)*5/9))]

Logistic regression equation and R-Studio model

Logistic model equation: Log odds(of days when PM; 5 exceeds WHO limit) = « +

B1(precipitation accumulation)+ 32(windspeed)+ 33(month group)+ f4(day of the week)

summary (mod20 <- glm(whol_pm?25_adj wp_ge25 ~ WP_avg_precip
_cum_cm+wp_avg_wndspd_kmh_new

+wp_avg_Temp_C+paper_mth_grp_rank+day,

family=binomial(link="logit"”),

na.action=na.omit, data=d?2)) # in paper 9/22/22

exp(mod20$coefficients[-1])

Table 6

Following is an example of what was run in R-Studio for each of the 25 sensors in the study:
d1[, sen_13:= as.factor(ifelse(Sensor == “13’,’1", '2"))]

t_sen13 <- d1[,table(sen_13,who_adj_GE25)]

colnames(t_sen13)<- ¢(“GE25”,”Other”)

rownames(t_sen13)<- c(“Sen13”, “Other”)

chi_13 <- chisq.test(t_sen13)

fisher.test(t_sen13, conf.int = T, conf.level = 0.95)

Section 3.5

Code for Correlation:
cor.test(acs4$pm_adj_25Sen_11mt,acs4$canopy_pct_ct_km, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$HeavyInd_pct, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$hwy_length_km, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$rd_length_km, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25LTHS_ovr25pop, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25_somecollege_assoc, method=c(“pearson”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25_graduate_prof_deg, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$pop_pct_hispanic_latino, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$pop_pct_whitealone, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$med_hh_inc, method=c(“spearman”))
cor.test(acs4$pm_adj_25Sen_11mt,acs4$median_rent, method=c(“pearson”))

Correlation plot (using library(corrplot)) in R-Studio:
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Table 8

Code for Regression:

mod1 <- Im(pm_adj_25Sen_11mth ~ canopy_pct_ct_km

+HeavyInd_pct

+hwy_length_km +rd_length_km
+plus25LTHS_ovr25pop+plus25_somecollege_assoc+plus25_graduate_prof_deg
+pop_pct_hispanic_latino

+pop_pct_onerace_black+pop_pct_whitealone
+med_hh_inc+median_rent,data=acs4)

mod2 <- Im(pm_adj_25Sen_11mth ~ canopy_pct_ct_km

+HeavylInd_pct

+hwy_length_km +rd_length_km
+plus25LTHS_ovr25pop+plus25_somecollege_assoc+plus25_graduate_prof_deg
+pop_pct_hispanic_latino

+pop_pct_whitealone

+med_hh_inc+median_rent,data=acs4)

mod3 <- Im(pm_adj_25Sen_11mth ~ canopy_pct_ct_km

+HeavyInd_pct

+hwy_length_km
+plus25LTHS_ovr25pop+plus25_somecollege_assoc+plus25_graduate_prof_deg
+pop_pct_hispanic_latino

+pop_pct_whitealone

+med_hh_inc+median_rent,data=acs4)
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