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Abstract: With the development of urban road traffic, road noise pollution is becoming a public
concern. Controlling and reducing the harm caused by traffic noise pollution have been the hot spots
of traffic noise management research. The subjective annoyance level of traffic noise has become
one of the most important measurements for evaluating road traffic pollution. There are subjective
experimental methods and objective prediction methods to assess the annoyance level of traffic
noise: the subjective experimental method usually uses social surveys or listening experiments in
laboratories to directly assess the subjective annoyance level, which is highly reliable, but often
requires a lot of time and effort. The objective method extracts acoustic features and predicts the
annoyance level through model mapping. Combining the above two methods, this paper proposes a
deep learning model-based objective annoyance evaluation method, which directly constructs the
mapping between the noise and annoyance level based on the listening experimental results and
realizes the rapid evaluation of the noise annoyance level. The experimental results show that this
method has reduced the mean absolute error by 30% more than the regression algorithm and neural
network, while its performance is insufficient in the annoyance interval where samples are lacking.
To solve this problem, the algorithm adopts transfer learning to further improve the robustness with
a 30% mean absolute error reduction and a 5% improvement in the correlation coefficient between
the true results and predicted results. Although the model trained on college students’ data has some
limitations, it is still a useful attempt to apply deep learning to noise assessment.

Keywords: traffic noise annoyance; deep learning; transfer learning

1. Introduction

With the development of urban road traffic, traffic noise pollution has become an
increasing public concern [1], which may bring different negative effects on people’s mental
and physical health [2–4], such as hearing impairment, emotional irritability, and heart
disease. Controlling and reducing the damage caused by traffic noise pollution has been
the main focus of traffic noise management research [5–7], and the annoyance level caused
by traffic noise has become one of the important measurements for managing road traffic
pollution [8].

The current methods of noise annoyance assessment are mainly subjective and ob-
jective: subjective tests usually require social surveys or listening tests [9,10], and social
surveys are used to obtain the results of subjects’ evaluation of environmental noise an-
noyance by means of questionnaires or interviews and are generally used for long-term
annoyance assessment. Meanwhile, listening tests are generally used for short-term an-
noyance assessment [10], which requires replaying noise in a laboratory environment and
obtaining the feedback from subjects on their own perceived annoyance. The objective

Int. J. Environ. Res. Public Health 2023, 20, 5199. https://doi.org/10.3390/ijerph20065199 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20065199
https://doi.org/10.3390/ijerph20065199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0009-0000-4374-8519
https://doi.org/10.3390/ijerph20065199
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20065199?type=check_update&version=2


Int. J. Environ. Res. Public Health 2023, 20, 5199 2 of 16

method usually uses the sound pressure level as a measurement indicator [11]. In more
advanced annoyance evaluation methods, acoustic features such as loudness, roughness,
and sharpness are also applied [12–14], which are easy to implement without large-scale
subject participation but are usually less reliable than the subjective experimental approach.

Due to the development of artificial intelligence technology, many scholars have also
tried to use neural network algorithms for a noise annoyance assessment. Jesus [15] used
deep convolutional neural networks to calculate the psychoacoustic annoyance of urban
noise, using 1 s noise segments as the input and the psychoacoustic annoyance values of
noise as labels, and the model could give appropriate psychoacoustic annoyance assessment
results after a long iteration. Song [16] relied on subjective listening experiments to obtain
subjects’ perceived noise annoyance datasets and used recurrent neural networks to model
perceived noise annoyance, which required complicated features such as MFCC (Mel
Frequency Cepstral Coefficient, a kind of speech feature parameter) and noise loudness.
Luis [17] used fully connected neural networks to model the social survey results to assess
long-term noise annoyance.

This paper follows the idea of objective assessment and proposes a model for the
evaluation of road traffic noise annoyance with the deep learning model. The model is
based on the results of subjective listening experiments and directly constructs the map-
ping relationship between noise fragments and annoyance, without extracting additional
acoustic features, which can achieve a fast evaluation of noise annoyance. However,
due to the long data acquisition period of subjective listening experiments, the available
sample size is small at this stage, and problems such as over-fitting easily occur in the
training process [18]. To avoid this problem, this paper introduces transfer learning to
solve this problem. Transfer learning can be divided into homogeneous and heterogeneous
types [19,20], and homogeneous transfer learning is often used in tasks with similar data
domains, while heterogeneous transfer learning is often used in tasks with different data
domains. Since there is a great correlation between the psychoacoustic annoyance level
of noise and the perceived noise annoyance level obtained from listening experiments,
the connection between them can generally be established by logistic regression [21], and
the samples required for calculating the psychoacoustic annoyance level and listening
experiments are from the same data domain, so the feature transfer of the psychoacoustic
annoyance level dataset can be applied to the evaluation of the perceived noise annoy-
ance level. Following the transfer learning strategy [19,20], the method does not require
additional input information and keeps the computational complexity of the algorithm
unchanged. Second, compared to the way of increasing the amount of data to obtain
features, there is an objective method for calculating the psychoacoustic annoyance of
noise [21], and it is only necessary to produce the dataset with the help of a computer,
by transferring the psychoacoustic feature into the deep learning model, which does not
require large-scale listening experiments.

Based on the experimental results of this paper, the method using deep learning has
reduced the mean absolute error of the prediction by about 30% more than traditional ma-
chine learning algorithms such as the regression algorithms and neural network; however,
the performance is still poor in the annoyance interval with few samples. The transfer
learning strategy can effectively moderate the over-fitting phenomenon, such as bad perfor-
mance in few-samples intervals, but performs well in large-samples intervals [22], which
greatly improves the robustness of the algorithm. The structure of this paper is as follows:
the first part introduces the listening experiment-related content and dataset construction;
the second part introduces the deep learning model architecture and experimental setup;
the third part gives the results and analysis; the fourth part is the discussion; the final part
is the conclusion.
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2. Subjective Listening Experiment and Dataset Construction
2.1. Listening Experiment Dataset

The audio data for the listening experiment came from two parts: one from the
SoundIdealGeneral6000 sound library [23] resampled to 48 kHz. Another part came from
the road collection, as shown in Figure 1, and the collection location was the Huangpu
Avenue in Guangzhou City, Guangdong Province. The data were collected at several
places on Huangpu Avenue in the morning and evening. The road surface was asphalt,
the continuous equivalent sound pressure level of the collected noise was concentrated
in the range of 60–65 dBA, the road traffic flow was concentrated in the range of 400 to
800 vehicles/h, the wind speed was less than 1 m/s, and the temperature was 17–25 ◦C.
In order to reduce the impact of reflected sound on recording, we had to ensure that the
recording equipment did not contain large reflectors (such as walls) within 10 m. If the
ambient sound contained too many additional sound sources, such as the sound of birds
and the sound of pedestrians, the recording needed to be stopped in time and the recording
results should not be used in the listening experiment. The acquisition equipment song
meter4 (SM4) [24] was used for road noise recording, which was about 4 m away from the
center line of the outermost lane, and the equipment was about 1.5 m high. The recorded
data were two-channel, and the sampling frequency was 48 kHz. The total recording
duration was 30 h.
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Figure 1. Recording scenes.

The recorded data were separated into 8 s clips. The average loudness of the audio
data was between 55 phon and 90 phon. Due to the lack of a motorcycle sound, whistle
road sound, road sound on rainy days, and so on, we selected the appropriate data from
the sound library. A total of 949 audio data were collected.

2.2. Listening Experiment Settings

The experiments were conducted in an audiometric room (6.78× 3.51× 2.26 (m))
with a background noise of less than 25 dBA, and the walls and floors of the audiometric
room were covered with sound-absorbing materials. The noise was passed through a
high-quality sound card (RME Fireface II) [25] for playback and then subjects perceived the
noise audio through headphones HD600 [26]. The audio playback process was written in
Python and the subjects operated the interface themselves for audio playback and scoring.
During the listening process, the audio was played at random, and each audio would be
played 3 times. A number of noises were played at random before the experiment started
so that the participant could familiarize themselves with the interface and the process. To
ensure the validity of the results, each listening session was strictly limited to 40 min and a
total of 14 rounds were conducted. To ensure an accurate assessment of noise, subjects were
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allowed to stop and rest for 2–3 min during the listening experiments. The same subject
conducted the listening experiment at the same time of the day.

The annoyance scale was based on the 11-level assessment scale of the ISO 15666:2021
standard [27], in which subjects were asked to choose a value from 0 to 10 to character-
ize their annoyance level after being exposed to noise stimuli, where 0 represented no
annoyance and 10 represented extreme annoyance.

A total of 20 subjects, 15 males and 5 females, aged between 20 and 32 years, were
invited to participate in the listening experiment. All subjects had normal hearing. The
subjects were paid for completing the experiment. The noise feature data could be used as
the algorithm input and the subjects’ post-processed annoyance values were used as the
label; this built a supervised learning dataset suitable for training algorithms. Although the
dataset was literally enough for the algorithm, there were still some issues that need to be
mentioned: (1) with the uneven distribution of subjects, the elder should be considered. Due
to the lack of annoyance data about old people, this will lead to changes in the subjective
annoyance value. (2) The number of subjects: referring to documents [28–30], 20 subjects
can basically provide feedback on the annoyance of noise data, but the more subjects, the
better [17,31–33]. (3) Limitation of laboratory playback: laboratory playback can recreate
the noise well, but it definitely did not recreate the whole of the experience. The laboratory
environment did not simulate the subject’s situation at the roadside. For a wider review
and more complete subjective assessment, a qualitative interview is essential [10,17,34,35].
(4) The recording scene was not rich enough. In this paper, the authors just recorded the
noise data on the same avenue; therefore, noise from other sites should also be taken into
consideration.

2.3. Listening Experiment Results

In the listening experiment, each noise sample was played three times at random. If
the difference in annoyance given by the same subject for any two of the three evaluations
of the same noise sample was 2 or more, the evaluation sample would be regarded as
misjudged and needed to be removed. If the number of one subject’s misjudged samples
reached 30% or more of the total sample size, the experimental results of that subject needed
to be removed.

After removing the invalid data, the results of the three scoring sessions of the noisy
samples were averaged as the subject’s perceived annoyance with the noise samples. If the
number of perceived annoyance assessments for a noise sample was less than 14, the noise
sample needed to be excluded.

After eliminating the invalid samples, the mean annoyance (MA) of the noise samples
was calculated as the model label. In this paper, we selected the amplitude spectrum as the
model input. The amplitude spectrum can directly provide feedback on the characteristic
information of the noise; it included the amplitude value of the noise at different frequen-
cies. To obtain the amplitude spectrum, we should conduct an STFT (short time Fourier
transform, a method to determine the frequency and phase of a sine wave in the local area
of a time-varying signal) on noise first, and then calculate the modulus of STFT results to
obtain the amplitude spectrum. The process of STFT as a nonlinear transformation and
formula is as follows:

STFT(t, f) =
∫ +∞

−∞

[
x(τ)w(τ − t)e−j2πfτ

]
dτ (1)

where w[ ] is the window function, x[ ] is the noise signal, t is the time index, τ is the interval
with time t, and f is the frequency index. The output of STFT is a complex number, and
then the amplitude spectrum is calculated by the STFT results of the noise signal, where
the STFT window is the hamming window, the window length is 512, and the jump length
is 256. The calculation of the amplitude spectrum is shown as follows:

Amplitude =
2
√

R(STFT(t, f))2 + I(STFT(t, f))2 (2)
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where R is the real part of STFT(t, f) and I means the imaginary part of STFT(t, f). The
function of the hamming window is as follows, where N is the window length minus 1:

w[n] = 0.54− 0.46 cos(2π
n
N
), 0 ≤ n ≤ N (3)

Due to calculating the mean value of annoyance, the annoyance value is no longer an
integer type, so this paper divided the annoyance range [0–10] into different annoyance
intervals with an interval size of 1.949 samples obtained, and the distribution of the samples
is shown in Table 1. The level of annoyance caused by traffic noise is usually high; therefore,
few samples fall in the [0,3) interval and the most noise samples fall in [3,9).

Table 1. Results after post-processing and annoyance distribution of listening experiment. Adopting
the 11-level assessment scale [27], in this paper, the range of annoyance is (0,10).

Annoyance Interval The Number of Noise Samples

[0,1) 0
[1,2) 1
[2,3) 17
[3,4) 72
[4,5) 95
[5,6) 239
[6,7) 266
[7,8) 186
[8,9) 72
[9,10) 1
Total 949

2.4. Extended Dataset

Deep learning is a data-driven approach; therefore, training on a small dataset can lead
to over-fitting. To avoid the bad effects of inadequate listening experimental samples on the
deep learning model, this paper used transfer learning to extract the features of numerous
samples. Due to the correlation between the psychoacoustic annoyance level of noise and
the perceived noise annoyance [22], we built a psychoacoustic annoyance dataset to realize
the feature transferring. The extended data sources were the same as in Section 2.1. After
excluding the raw data used in the listening experiments, the remaining noise data were
cropped into 8 s clips and sampled at 48 kHz. The cropped data were normalized to the
full scale to produce noise data; the mean psychoacoustic annoyance was calculated by
the loudness, sharpness, roughness, and fluctuation of the two channels as labels [22] to
construct the psychoacoustic annoyance dataset; and a total of 17,025 data were obtained.
An STFT was performed on the noise, and the amplitude spectrum was calculated as the
model input, where the window was the hamming window, the STFT window length was
512, and the jump length was 256. The distribution of the data samples is shown in Table 2.
The samples should be evenly distributed in each interval as far as possible, where the
psychoacoustic annoyance interval meant the psychoacoustic annoyance value in different
intervals, and the numbers meant the amount of samples in the corresponding interval.
The psychoacoustic value was the continuous value, and the most data fell in (0,90].

Table 2. The distribution of psychoacoustic annoyance data. Calculated by the Zwicker method [21];
in this paper, the range of psychoacoustic annoyance is (0,100).

Psychoacoustic Annoyance Interval The Number of Noise Samples

[0,10] 544
(11,20] 1994
(20,30] 3412
(30,40] 2494
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Table 2. Cont.

Psychoacoustic Annoyance Interval The Number of Noise Samples

(40,50] 2727
(50,60] 1832
(60,70] 2377
(70,80] 1356
(80,90] 280

(90,100] 9
total 17,025

3. Research Method

Common approaches to transfer learning in deep learning are overall parameter
optimization based on pre-trained models [36,37] and partial parameter fine-tuning based
on pre-trained models [38–40]. Overall parameter optimization based on pre-trained
models refers to the initial training of the model parameters in an additional data domain
to obtain a pre-trained model, followed by a secondary training of the overall parameters
of the model in the data domain required for this task. Fine-tuning, on the other hand,
involves the secondary training of only some of the parameters within the data domain
required for this task, with the other parameters fixed. In this paper, we first use the
psychoacoustic annoyance dataset for pre-training. The amplitude spectrum of the noise is
used as the input and the psychoacoustic annoyance level of the noise is used as a label for
the initial optimization of the model parameters. The final road traffic noise annoyance
assessment model is obtained by using the listening experiment dataset to optimize the
overall parameters and some parameters of the pre-trained model, respectively.

3.1. Model Architecture

With the development of deep learning, a large number of researchers have tried to
use deep learning on their own tasks, and many researchers have successfully applied
deep learning algorithms in many of the fields such as image segmentation [41], speech
enhancement [42], hearing aids [43], traffic prediction [44], and so on. In this process,
many classic deep learning model architectures have been gradually created, among
which the most widely used and effective model is UNet [45]: almost all of the tasks
achieved good results by using UNet architecture or modifying the UNet architecture
according to the requirements of the tasks [41,44,45]. The model extracts deep features of
the data by adding a convolutional downsampling module [41] to the basic convolutional
neural network [46] and recovers the dimensionality of the data through a convolutional
upsampling [41] module.

In this paper, we use UNet as the basic model and the reasons are as follows: (1) UNet
and its variant’s version have been used in many research areas with good results, and it can
provide ideas for our research [41,44,45,47]. (2) UNet is a kind of deep convolutional neural
network [46], and the convolutional operation [46] is commonly used in the deep learning
model. By using the convolutional operation, maxpooling operation, and activate function,
the network can implement nonlinear transformations to obtain the feature map. (3) UNet
is a mature deep learning network architecture. Compared with other model structures,
the structure of UNet is relatively simple, it has more online open source information, and
it is easy to reproduce [48]. In this paper, by modifying the structure according to the task
requirement, we enable an end-to-end evaluation of traffic noise based on the deep learning
model. The model does not need to recover the output dimension of the data but only
needs to use the convolutional downsampling module for the feature extraction of road
noise to obtain the feature map. The feature fusion module will fuse the extracted features
and then use the fully connected layer network [46] as a decoder to output the final result.
The model architecture is shown in Figure 2.
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3.1.1. Encoder

The encoder uses a two-dimensional convolution operation with a convolution kernel
of 1× 1 to expand the input information to eight dimensions to establish proper feature
mapping paths in the high-dimensional space of feature learning. The input is noted as x
and the shape is (B, 1, F, E), where B is the number of samples in the same batch, F is the
length of each input data, and E is the width of each input data. The output of the encoder
is as follows:

xencode = x ∗W + b (4)

where W denotes the convolution filter weights and b is the bias, the ∗ represents a
convolution and the convolution operation is denoted as Conv2d(.) in the next description.
The shape of the output is (B, 8, F, E).

3.1.2. Convolutional Downsampling Module

The convolutional downsampling module realizes the downsampling function of
information through a two-dimensional convolution operation and maximum pooling
operation to facilitate the acquisition of detailed information of data. The convolutional
downsampling will output the feature extraction result and downsampling result, the
operation process of the left and right channel is the same, but the convolutional param-
eters are not shared: by taking one of the ways as an example, you can note the output
of i− th convolutional downsampling module is Outi. The input to the convolutional
downsampling module is denoted as Xin, and the shape is (B, Cin, F, E). The output of the
convolutional downsampling module is as follows:

Convout1 = σ(Conv2d(Xin)) (5)

where the σ(.) denotes the LeakyReLU operation to scale the value range into (−∞, 1).

Convout2 = σ(Conv2d(Convout1)) (6)

Outi = MaxPool2d(Convout2) (7)
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The shape of Outi is (B, Cout, F/2, E/2), and the step of maximum pooling is (2,2).

3.1.3. Feature Fusion Module

The feature information obtained through convolutional downsampling interacts with
other features through the concatenating operation, and the fusion of the two-feature
information is realized through the feature fusion module to provide input for the decoder.
The input of the left path is noted as Lout and the input of the right path is noted as Rout
where ⊕ denotes the concatenating operation in the channel dimension. The output is
as follows:

TempOut = Conv2d(Lout⊕ Rout) (8)

MixOut = Conv2d(Conv2d(Conv2d(Tempout))) (9)

3.1.4. Decoder

The output after the feature fusion module is sent to the decoder to calculate the final
result. To better correspond the model output to the annoyance value, unlike the previous
use of fully connected operations to map features from high to low dimensions, this paper
performs separate dimensional reduction operations in different dimensions to take into
account the different feature dimensions. The final output of the model is as follows:

FreqOut = σ(Linear1(Out)) (10)

FinalOut = Linear2(FreqOut) (11)

3.2. Model Parameter Setting and Optimization

As shown in Figure 2, the number of channels of the model is set as follows: C1 = 32,
C2 = 64, C3 = 32, and C4 = 8. The numbers of output channels of the feature fusion module
are 16, 8, and 1, respectively. The hidden nodes of the linear layer of the decoder are 16 and
93, respectively, and the detailed settings of the model are shown in Table 3. The batch size
is set to 5 and the epoch is set to 100. The pre-train stage and the secondary optimization
stage both use the model output, and the mean square error of the true labels is used as the
loss function, and the optimizer is Adam [49] with an initial learning rate of 1× 10−3. A
cosine update strategy is chosen to dynamically adjust the learning rate, and the cut-off
size of the learning rate is 1× 10−7.

Table 3. The detailed settings of the model. The left input and the right input will share the same
network structure within Encoder, ConvBlock1, ConvBlock2, ConvBlock3, and ConvBlock4, but the
weights are not shared.

Network Layer Input Size Output Size Kernel Stride Padding

Encoder Conv2d 1 × 1499 × 257 8 × 1499 × 257 (1,1) (1,1) (0,0)

ConvBlock1
Conv2d + LeakyReLU 8 × 1499 × 257 32 × 1499 × 257 (3,3) (1,1) (1,1)
Conv2d + LeakyReLU 32 × 1499 × 257 32 × 1499 × 257 (3,3) (1,1) (1,1)

Maxpooling2d 32 × 1499 × 257 32 × 749 × 128 (2,2) (2,2) (0,0)

ConvBlock2
Conv2d + LeakyReLU 32 × 749 × 128 64 × 749 × 128 (3,3) (1,1) (1,1)
Conv2d + LeakyReLU 64 × 749 × 128 64 × 749 × 128 (3,3) (1,1) (1,1)

Maxpooling2d 64 × 749 × 128 64 × 374 × 64 (2,2) (2,2) (0,0)

ConvBlock3
Conv2d + LeakyReLU 64 × 374 × 64 32 × 374 × 64 (3,3) (1,1) (1,1)
Conv2d + LeakyReLU 32 × 374 × 64 32 × 374 × 64 (3,3) (1,1) (1,1)

Maxpooling2d 32 × 374 × 64 32 × 187 × 32 (2,2) (2,2) (0,0)

CovBlock4
Conv2d + LeakyReLU 32 × 187 × 32 8 × 187 × 32 (3,3) (1,1) (1,1)
Conv2d + LeakyReLU 8 × 187 × 32 8 × 187 × 32 (3,3) (1,1) (1,1)

Maxpooling2d 8 × 187 × 32 8 × 93 × 16 (2,2) (2,2) (0,0)

Concat Concat (8 × 93 × 16,8 ×
93 × 16) 16 × 93 × 16 None None None
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Table 3. Cont.

Network Layer Input Size Output Size Kernel Stride Padding

FeatureMixBlock
Conv2d 16 × 93 × 16 16 × 93 × 16 (3,3) (1,1) (1,1)
Conv2d 16 × 93 × 16 8 × 93 × 16 (3,3) (1,1) (1,1)
Conv2d 8 × 93 × 16 1 × 93 × 16 (3,3) (1,1) (1,1)

Decoder
Linear1 + LeakyReLU 1 × 93 × 16 1 × 93 × 1 16 None None

Squeeze 1 × 93 × 1 1 × 93 None None None
Linear2 1 × 93 1 × 1 93 None None

If the model does not decrease in loss value after 10 iterations of updates, the training
is withdrawn early. The model parameter with the lowest loss in the validation set is saved
as the final training result.

4. Experimental Results and Analysis
4.1. Pre-Training Stage
4.1.1. Pre-Training Dataset Setup

Generally, for machine learning and deep learning datasets, the number of training
sets is 70–80% of the total samples, and the number of samples in the validation and test
sets is 20–30% of the total samples [50,51]. Take the MNIST [52], for example, which is a
common dataset in machine learning as well as deep learning: this dataset has a training
set of 55,000 (78% of total samples), a validation set of 5000 (8% of total samples), and a
test set of 10,000 (14% of total samples). If the samples in the training set are not sufficient,
it will lead to an over-fitting phenomenon [53], and if the samples in the training set are
overdose, it is difficult to measure the ability of the model to handle unknown samples
in the future. At the pre-train stage, the model parameters will be initially optimized on
the psychoacoustic dataset (Section 2.4, Table 2), the total samples are 17,025, 12,910 (75%
of the total samples) data are used for training, 1600 (10% of the total samples) data for
validation, and 2515 (15% of the total samples) data for testing. The model which has the
best performance on the validation set will be saved as the pre-trained model.

4.1.2. Pre-Training Model Results

The psychoacoustic annoyance ranges from 0 to 100, and the model output will
multiply a number to suit the range. In this paper, the best number is 80 according to the
training experience. The complexity of the pre-training model is measured by the number
of floating point operations, and it is 5.7 GMac. The number of hyperparameters is 0.203 M.
The model with the lowest loss in the validation set is selected as the pre-training model.
In this paper, we select mean absolute error (MAE) as an evaluation standard. The MAE
can visually provide feedback on the average error between the predicted result and the
real result, the evaluation weight for each error is equal, it is less affected by anomaly
samples [54], and it suits evaluating the overall performance of the model. The formula of
MAE is as follows:

MAE =
1
N

N

∑
i=1
|xi − yi| (12)

where N is the number of all samples, xi is the predicted value of the i− th sample, and yi
is the label of i− th sample. The MAE of the pre-training model ranges from 0 to 100. The
error in the training set, validation set, and test set are 3.35, 4.03, and 3.25, respectively.

4.2. Formal Training Stage
4.2.1. Formal Training Dataset Setup

At the formal training stage, based on the pre-trained model, the model parameters
will be optimized on the listening experiment dataset (Section 2.3, Table 1). The 949 data
from the listening experiment are divided into 669 (70% of the total samples), 70 (7% of
the total samples), and 210 (23% of the total samples) for training, validation, and testing,
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respectively. To avoid analysis errors due to the small amount of test data, this paper
chooses the best model in the validation and analysis of the performance on the mixed
set (mix test data with validation data). The distribution of the mixed dataset is shown in
Table 4. In this mixed set, no value falls in [0,2) and [9,10).

Table 4. The distribution of mixed set. It is used to evaluate the performance of all algorithms for the
assessment of road noise annoyance The data format is the same as Table 1.

Annoyance Interval The Number of Noise Samples

[2,3) 3
[3,4) 21
[4,5) 28
[5,6) 81
[6,7) 68
[7,8) 53
[8,9) 26
Total 280

4.2.2. Formal Training Results and Comparison

This section performs a secondary optimization of the overall parameters and the
model’s decoder parameters, respectively. The two methods will be denoted as total-
tuning and fine-tuning. The training dataset is the listening experiment dataset with the
total. Due to the different value ranges, in the secondary optimization, the model output
will multiply eight by the empirical to suit the range. To compare the performance of
the algorithms, artificial neural networks [17], linear regression [17], Lasso regression,
and Ridge regression [16], and directly trained models, denoted as direct, are used as
comparison algorithms. Different from the algorithms based on deep learning, the machine
learning algorithm includes an artificial neural network, and regression algorithms should
conduct feature engineering first. In this paper, the input information is the amplitude
spectrum, and we use a principal component analysis (PCA) to achieve feature dimension
reduction and then input the post-processed feature vectors. The PCA obtains the first
28 principal eigenvalues, and a total of 56 features (left channel and right channel) are
obtained. The artificial neural network has nonlinear fitting capabilities; in this paper, the
built artificial neural network consists of five linear fully connected layers and the output
of each layer is activated by LeakyReLU. The regression algorithms are common analysis
methods [16,17,50]. It is difficult to directly figure out the relationship of post-processing
features, so this paper uses linear regression, Lasso regression, and Ridge regression as
the basic comparison algorithms to evaluate the noise annoyance. The MAE is chosen to
measure the error between the evaluation results and true results. Pearson’s correlation
coefficient (Formula (13), denoted as PCC) [54], and Spearman’s correlation coefficient
(Formula (14), denoted as SCC) [54] are chosen to measure the correlation between the
evaluation results of the model and the true results.

PCC =
cov(x, y)
σxσy

(13)

where x, y are two different arrays, cov(., .) is the covariance matrix, σx is the standard
deviation of x, and σy is the standard deviation of y.

SCC =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1 (xi − x)2. ∑N
i=1 (yi − y)2

(14)

where x, y are two different arrays, N is the total number of each array, x is the mean value
of x, and y is the mean value of y.
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Figure 3 shows the MAE changes of deep learning-based methods during algorithm
training. The initial error of the direct method is greater than fine-tuning and total-tuning,
and this may be affected by transfer learning. Fine-tuning and total-tuning perceive the
characteristics of psychoacoustic annoyance in advance, and the error of fine-tuning and
total-tuning in each iteration is always less than direct.
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Figure 3. The changes of MAE in deep learning-based model training. (a) is the process of fine-tuning;
(b) shows the variation of MAE in total-tuning training; (c) shows the MAE changes of direct.

The evaluation accuracy of each type of algorithm on different annoyance intervals
is shown in Tables 5 and 6 and demonstrates a comparison of the overall evaluation
performance of the three strategies.

Table 5. Comparison of algorithms on different annoyance intervals from different annoyance
intervals. Bold indicates the best score in each interval. The range of MAE is [0,10].

Annoyance
Intervals

MAE
Artificial Neural

Network Linear Lasso Ridge Direct Total-Tuning Fine-Tuning

[2,3) 3.22 2.86 3.01 2.89 1.63 0.77 0.77
[3,4) 2.61 1.76 1.95 1.83 0.96 0.41 0.36
[4,5) 1.66 1.00 1.10 1.01 0.41 0.41 0.32
[5,6) 0.79 0.32 0.32 0.31 0.42 0.39 0.48
[6,7) 0.26 0.55 0.52 0.56 0.57 0.40 0.43
[7,8) 0.76 0.91 0.98 0.99 0.63 0.54 0.53
[8,9) 1.71 1.69 1.77 1.82 0.66 0.49 0.43

Mean
error 0.99 0.82 0.84 0.85 0.57 0.45 0.46

Table 6. Evaluation of algorithms’ prediction results with true results from entire dataset. Bold
indicates the best score in each case. The range of MAE is [0,10].

Algorithms Mean Error PCC SCC

Artificial Neural Network 0.99 0.46 0.47
Linear Regression 0.82 0.58 0.69
Lasso Regression 0.84 0.54 0.67
Ridge Regression 0.85 0.54 0.67

Direct 0.57 0.87 0.87
Total-tuning 0.45 0.92 0.91
Fine-tuning 0.46 0.93 0.92

A comparison of the evaluated performance of each algorithm on different annoyance
intervals is shown in Table 5. In terms of the entire mixed dataset, compared to the mean
absolute error of regression algorithms and the neural network, the mean error of direct is
just 0.57, and the direct reduces the mean error by about 30%. Generally, the deep learning
model performs best overall. In the annoyance intervals [2,5) and [6,9), total-tuning, fine-
tuning, and direct obtain better results than all types of regression algorithms and artificial
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neural network algorithms. While in the interval [5,6), regression algorithms have the
smallest evaluation error, which is better than direct, total-tuning, and fine-tuning, and
within the interval [6,7), artificial neural networks have the most accurate assessment with
an error of 0.26. The main reason for this phenomenon is the uneven distribution of the
number of samples in different intervals. Both regression algorithms and artificial neural
network algorithms prioritize learning the features present in the majority of samples.
However, taking into account the information regarding the features of a small number
of samples becomes challenging, leading to a significant error when evaluating small
sample intervals. Although the accuracy of evaluation in larger sample intervals is high,
the overall performance remains unsatisfactory, resulting in a severe over-fitting issue.
Direct, total-tuning, and fine-tuning are algorithms that use deep learning models with
strong feature-learning capabilities and perform better than regression and artificial neural
network algorithms, but there are differences in the results due to the different training
methods. Although direct methods have a significant improvement in the interval [2,3)
compared to regression algorithms and artificial neural networks, total-tuning and fine-
tuning use transfer learning to further reduce the evaluation error and outperform the direct
method in all annoyance intervals. In terms of the difference between the maximum and
minimum assessment errors for the different annoyance intervals, direct is 1.21 (maximum
is interval [2,3), minimum is interval [4,5)), while fine-tuning and total-tuning are 0.45 and
0.38, respectively, and the algorithm using transfer learning greatly improves the robustness
of the assessment.

Table 6 shows the MAE, PCC, and SCC results in the mixed dataset (data shown in
Table 3). Total-tuning has the smallest evaluation error, but it is close to that of fine-tuning.
On the other hand, compared to the MAE of direct, the fine-tuning is 0.45. Fine-tuning
reduces this error by about 30%, and the evaluation results obtained by optimizing with the
fine-tuning strategy have the largest correlation with the true results. The Pearson correla-
tion coefficient and the Spearman correlation coefficient reach 0.93 and 0.92, compared to
the Direct, they improve by about 6% and 5% respectively, which show that the algorithm
trained by transfer learning has a larger overall improvement than direct training.

5. Discussion

In this paper, a deep learning-based objective assessment method for road traffic noise
annoyance is proposed. Different from [16] and [17], this method does not need subjects’
personal information or additional acoustic features. By inputting the amplitude spectrum,
this assessment method can rapidly evaluate the annoyance level of road noise. To train
the model, twenty subjects (fifteen males and five females, aged between 20 and 32 years)
were paid for joining in a listening experiment. From the perspective of algorithm training,
the amplitude spectrums of noises are input data, and subjects’ annoyance scores are used
as the label. This builds a supervised learning dataset suitable for training algorithms,
and the results of the different algorithms show the feasibility of training on this dataset.
However, it should be noted that the 20 subjects can basically provide feedback on the
annoyance of noise data [28–30], but the more subjects join in the listening experiment, the
more the results would be closer to the real world [31–33]. The distribution of subjects is
equally important: lacking the old’s subjective results, this approach may fail in the elderly
population. The college students are mainly young people, and they often have normal
hearing ability. They can perceive traffic noise in the full frequency band; however, as
people get older, they often suffer from hearing loss [55,56], and their ability to perceive a
certain frequency of noise will decline. In other words, these people cannot perceive traffic
noise in the full frequency band. This direct difference in perception can lead to a bias in
final judgment. Some researchers [57] investigated the effect of age on speech perception
in noisy environments. The researchers compared the performance of college students to
that of older adults. They found that college students had better speech perception in noise
than older adults. The study [58] also found that college students had greater sensitivity
to high-frequency sounds compared to older adults, which may be related to age-related
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hearing loss. Meanwhile, considering the hearing differences between men and women [59],
men tend to lose their ability to hear at a higher-frequency level and women mostly lose
their hearing in the lower-level frequencies. The noise with energy concentrated on high
frequency may make women feel more upset and the low-frequency noise often make men
feel uncomfortable. In addition, it is difficult to reproduce the complete experience by
recreating noise in a laboratory environment; therefore, for a more accurate evaluation, a
qualitative interview is needed.

This paper adopts three strategies to train the deep learning network, one of which is
directly trained on the listening experiment dataset with better performance than commonly
used machine learning algorithms. The other two, called total-tuning and fine-tuning,
respectively, are pre-trained on the psychoacoustic dataset first and then trained on the
listening experiment dataset, where total-tuning will optimize all parameters and fine-
tuning just optimizes the parameter of the decoder: this is common in transfer learning
to solve the problem of an insufficient dataset and model over-fitting [36–38]. The results
show that the transfer learning does enhance the performance with the evaluated error
reduction and an improvement of the correlation between model outputs and true results.
It should be noted that the dataset in this paper is collected from adults aged 20 to 32
with fifteen males and five females; therefore, the assessment results of the model may be
biased in the female population and may give invalid references in the elder population. In
this case, the results of the objective evaluation such as psychoacoustic annoyance would
be more reliable. Further, the deep learning based algorithm proposed in this paper is a
feasible solution for assessing the noise annoyance level; however, the assessment results
of characteristic populations are unclear. In order to evaluate characteristic populations,
their annoyance data need to be collected and used to train algorithms. Compared with the
current work, the next research will concentrate on the performance of deep learning models
in assessing the annoyance of populations with different characteristics. In the following
research, the authors will follow the next steps to conduct the research. (1) Determining
the subjects’ acoustic environment: focusing on the road near the residential area and
recording noise information at multiple locations. (2) Quantifying the personal information
of subjects: by quantifying subjects’ personal information (such as age, gender, education,
and so on), it can clarify the characteristics of different subjects. (3) Subjective experiments,
including listening experiments and questionnaire interviews, are used to obtain the
evaluation of subjects’ annoyance. (4) Analyzing subjective experimental data: identifying
the annoyance level of people with different characteristics. (5) Training assessment models
based on subjects’ characteristics information: it should be noted that the input data would
include the subject’s personal information and the feature of the noise. By inputting the
subjects’ personal information and noise data, the model could predict the annoyance of the
characteristic population in a specific environment. In addition, for some extreme cases, the
available subjects are small; therefore, in order to evaluate the annoyance induced by road
noise accurately and quickly, it still needs the joint efforts of researchers in related fields.

6. Conclusions

This paper proposes a deep learning-based objective assessment method for road
traffic noise annoyance that can achieve a rapid assessment of road traffic noise annoyance
using the amplitude spectrum of traffic noise without incorporating subjects’ personal
information or additional acoustic features. To obtain the dataset required for training the
model, the authors conduct listening experiments to gather reliable raw data, from which
abnormal samples are removed to construct a dataset of the perceived annoyance of road
traffic noise.

To evaluate the reliability of the algorithms, artificial neural networks, linear regression
based on a principal component analysis, Ridge regression, and Lasso regression are used
for comparison. The experimental results show that the evaluation results obtained using
deep learning models produce optimal results for the mean absolute error, Pearson’s
correlation coefficient, and Spearman’s correlation coefficient. However, in terms of the
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prediction accuracy in different annoyance intervals, the difference between the maximum
and minimum evaluation errors in different intervals for the directly trained model is
1.21, which is less robust. To address this issue, the paper introduces transfer learning to
optimize the algorithm through a computer-generated psychoacoustic annoyance degree
dataset, preliminary optimization of model parameters to obtain a pre-trained model, and
secondary optimization of overall parameters and some parameters on the perceptual noise
annoyance degree dataset.

The experimental results show that the model with partial parameter optimization
shows a significant improvement in each measure and its accuracy for annoyance intervals
with a small sample size has significantly improved. Last but not the least, this study is
only conducted for college students, which may lead to certain limitations in the final
performance, but this method is still a useful attempt to combine deep learning with
noise evaluation. The evaluation results obtained by the deep learning model can be an
effective evaluation reference for urban planning, noise management, and relevant noise
policy formulation.
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