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Abstract: The knee is an essential part of our body, and identifying its injuries is crucial since it
can significantly affect quality of life. To date, the preferred way of evaluating knee injuries is
through magnetic resonance imaging (MRI), which is an effective imaging technique that accurately
identifies injuries. The issue with this method is that the high amount of detail that comes with MRIs is
challenging to interpret and time consuming for radiologists to analyze. The issue becomes even more
concerning when radiologists are required to analyze a significant number of MRIs in a short period.
For this purpose, automated tools may become helpful to radiologists assisting them in the evaluation
of these images. Machine learning methods, in being able to extract meaningful information from
data, such as images or any other type of data, are promising for modeling the complex patterns
of knee MRI and relating it to its interpretation. In this study, using a real-life imaging protocol, a
machine-learning model based on convolutional neural networks used for detecting medial meniscus
tears, bone marrow edema, and general abnormalities on knee MRI exams is presented. Furthermore,
the model’s effectiveness in terms of accuracy, sensitivity, and specificity is evaluated. Based on
this evaluation protocol, the explored models reach a maximum accuracy of 83.7%, a maximum
sensitivity of 82.2%, and a maximum specificity of 87.99% for meniscus tears. For bone marrow
edema, a maximum accuracy of 81.3%, a maximum sensitivity of 93.3%, and a maximum specificity
of 78.6% is reached. Finally, for general abnormalities, the explored models reach 83.7%, 90.0% and
84.2% of maximum accuracy, sensitivity and specificity, respectively.

Keywords: knee MRI; machine learning; MRI; radiology; automated analysis

1. Introduction

The knee is a complex joint crucial in supporting the body and allowing for a range of
movements essential for daily living activities. Unfortunately, knee injuries are common
and can significantly impact a person’s quality of life [1,2]. One of the most frequently
diagnosed knee injuries is meniscus tears, which can result from traumatic injury or
degenerative changes due to age or overuse and cause ongoing knee pain, swelling, and
stiffness, leading to a decline in functionality [3,4]. According to the literature, the incidence
of meniscus tears is estimated to be 60–70 per 100,000 individuals per year, with a higher
incidence among males in all age groups, ranging from 2.5:1 to 4:1 [5]. Moreover, in the
United States, meniscus tears are the most frequent intra-articular knee injury [6]. They are
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the leading cause of orthopedic surgical procedures. Another common knee abnormality is
bone marrow edema (BME), which causes ongoing pain and affects medial-aged men and
young women, with a higher incidence in men. BME is often a migratory phenomenon and
can occur bilaterally in over 40% of patients [7–9]. Based on the crucial role of knee structure
on people’s functional activity, both medial meniscus and BME, and other symptomatic
knee pathologies in general, can significantly impact a person’s quality of life in terms of
mobility. For this reason, identifying knee injuries as early as possible is crucial to prevent
their progression into severe conditions. Due to its high accuracy, magnetic resonance
imaging (MRI) is currently the gold standard for assessing knee disorders, including
meniscus tears, BME, and other injuries. Furthermore, the negative predictive value of
Knee MRI is nearly 100% for structures such as meniscus tears and BME, and very high for
traumatic meniscal and cruciate tears. Based on this property of high negative predictive
value, MRI it can serve as a non-invasive method to filter out healthy patients who do not
need surgical interventions with high accuracy [10]. However, MRIs come with much detail,
making their interpretation time consuming and prone to errors, even among experienced
radiologists. The issue becomes even more concerning when radiologists have to deal with
a huge number of MRIs in a short period. In this regard, according to Kim and Mansfield
in their retrospective study [11], radiologists tend to make errors in 30% of cases when
evaluating MRIs, and 66% of these errors are of a musculoskeletal nature. To this end, as
the field of radiology advances and demands for precision increase, there is a growing need
for automation to improve efficiency and reduce errors in evaluating injuries.

To serve such a purpose, machine learning algorithms recently emerged as a promising
discipline that can help build automated tools to assist radiologists in their activity [12].
Machine learning is a multidisciplinary field used in many application domains, such
as computer vision [13], natural language processing [14], and medical domains [15],
that converts images [10] into structured and semi-structured data [15], using algorithms
that automatically improve from experience. It is often considered a subfield of artificial
intelligence, which builds mathematical models and learns generalization patterns from
data, which are then used to make predictions on unobserved instances [16,17]. Based on
these properties of machine learning, many works in the literature addressed the use of such
algorithms for medical imaging in many applications, such as skin cancer classification [18],
diabetic retinography [19], lung noodle detection [20], etc. Besides these applications,
machine learning models made their way into knee MRI imaging. In [10], the authors
propose a method based on learning algorithms to diagnose several knee injuries using
MRIs. Specifically, they rely on convolutional neural networks [21] (CNN), which are
machine learning algorithms used to analyze and extract information from images, to
model and extract meaningful patterns from knee MRIs that can relate to the type of injury.
Additionally, in [22], three-dimensional CNNs were developed to detect the regions of
interest within MRI studies and grade abnormalities in the cartilage, bone marrow, menisci,
and anterior cruciate ligament (ACL). Inspired by these works, this study proposes a
machine learning algorithm capable of using learning to identify knee pathologies from
MRIs. The pathologies considered are medial meniscus tear, BME, and general abnormality
(any kind of lesion or fracture out of those present in the data used for the study) of the knee.
In the proposed approach, in a departure from other works, a feature fusion pre-processing
step is employed in order to enhance the level of information provided via each MRI and
ease the learning process of the model. Additionally, a series of experiments are conducted
on a private cohort of 564 patients to evaluate the model capability as an automated tool in
terms of accuracy, specificity, and sensitivity. It is worth mentioning that to the best of our
knowledge, this is the first work in literature that uses a real-life imaging protocol for MRI,
meaning that the dataset contains multiple types of MRI images per examination according
to the evaluation protocols used by radiologists at the specific institute from which the data
are obtained. Finally, the possibility of such tools assisting radiologists in a clinical setting
based on the produced results is discussed.

To summarize, the main contributions of this study are as following:
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1. A machine learning model based on CNNs used to classify knee injuries from MRI
is proposed;

2. To the best of our knowledge, this is the first work to propose the use of a pre-
processing phase to extend the channels of each MRI slice and create an enhanced
version of the image useful for identifying knee injuries;

3. Extensive experiments are conducted on a private dataset obtained following real-life
imaging protocols, achieving remarkable results.

2. Materials and Methods
2.1. Data Pre-Processing

The original MRI series were stored in Digital Imaging and Communication in
Medicine (DICOM) [23] with shapes s × h × w, where s is the number of slices in the
DICOM series, while h and w are the height and width of each image slice in the spatial
dimension. To have uniform shapes (required by machine learning models), each image
was reshaped to s× 224× 224 using Python programming language version 3.8 (Python
Software Foundation, Wilmington, DE, USA) and libraries such as pydicom and Monai.

One common issue that arises when working with images is the varying pixel intensity.
In order to deal with this issue, a pixel normalization policy was adopted. Firstly, with the
help of 4 expert clinicians, an intensity range of interest for each knee injury present in this
work was identified, and all of the pixels with values outside the intensity range were set
to 0. Next, the mean pixel intensity and standard deviation from the entire training set was
extracted and used to normalize the pixels of each MRI series according to:

z =
x− −x

σ
(1)

where z is the normalized value, x represents the unnormalized pixels,
−
x is the mean pixel

intensity value, and σ is the standard deviation of the pixel intensity.
MRI images usually come in a grayscale format, meaning that each slice had one

color channel representing the gray intensity that defined the details regarding the dif-
ferent structures comprising the knee. Inspired by [24], this work used a feature fusion
mechanism that further combined three different representations of each MRI slice along
the color channel dimension to enhance the amount of information. Specifically, local
binary pattern [25] (LBP) and discrete wavelet transform [26] (DWT) were used to create
two alternative representations of each slice, introducing a wide variety of features that
characterize different knee structures. Afterward, these representations, together with the
original slice, were stacked together to form an image of shape s× 3× 224× 224, where 3
is the number of channels. The operation is illustrated in Figure 1.
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2.2. Proposed Method

MRIs are represented as sequences where each element can be seen as a 2D image
that contains a set of intensities characterizing different structures of the knee. Like normal
images, the set of intensities contains important structural and local information that is
essential for modeling the different patterns that can identify injuries present in different
parts of the knee. To be able to extract such information, according to the literature, CNN-
based algorithms are often used. These algorithms are designed to extract local and global
information for images that serve a given task [21]. We noted that this property of CNNs
could be used to model the patterns of the knee present in MRIs. Indeed, the model
proposed in this work, which was named KNet, was based on CNNs. Specifically inspired
by MRNet [10], it employed a version of CNN, which was named AlexNet [27], as the
main building block used to extract the features that characterize the knee from MRI, as
illustrated in Figure 2. To better understand the working cycle of the model, we supposed
that an input MRI of shape s× 3× 224× 224 was given to the networks. Firstly, the network
iterated over the input along the slice dimension to extract features at the slice level using
AlexNet and produce feature vectors of shape s× 256× 7× 7 for each slice. To proceed,
the model used an average pooling function that first downsampled the feature vector of
each slice into a global feature vector at slice level of dimensionality s× 256, and then a
linear transformation was used to produce a weighted downsampling mechanism, which
represents a final global feature vector of shape 256 that, in turn, represents a low-level
representation of the entire MRI. The low-level representation was then used from the
classification head to produce an output that can be 0 or 1. The former value represented
an intact knee, while the latter value represented an injured knee based on the injury being
analyzed from the network. Additionally, to optimize the model, the weighted binary
cross-entropy loss function was used. The mathematical formulation of the weighted
function was as follows:

LWCE = −αiYilog
(
Ŷi

)
− (1−Yi)log

(
1− Ŷi

)
, (2)

where αi is the weighting factor for the i − th example for 0 ≤ i < N with N being the
number of samples, Yi is the ground truth label for the i− th sample, and Ŷi is the predicted
value for the i− th sample.
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Figure 2. Illustration of single stream KNet architecture.

The current model representrf a network that could process a single MRI slice at a
time. As in real-life scenarios, radiologists usually produce multiple MRIs of different
orientations and types for the knee, our KNet could be extended to simultaneously take as
inputs up to three MRIs of the same patient. We named this architecture multi-stream KNet
and illustrate it in Figure 3. Specifically, MS-KNet uses three separated KNet branches that
are fused together through an averaging operation before moving to the classification head.
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2.3. Dataset

Reports of knee MRI exams performed at Fisiocard Medical Center in Rome between
January 2014 and October 2022 were manually reviewed to curate a dataset of knee MRI ex-
aminations. The dataset contained 401 (71.1%) abnormal exams, with 177 (31.3%) meniscus
tears, (28.7%) bone edema, and 114 (20.2%) other abnormalities, such as ACL, Baker’s cyst,
collateral ligaments, etc. Meniscus tears and bone edema occurred concurrently in 52 (9.2%)
exams. We noted that patients with more exams were taken into consideration only when
the exams belonged to different knees. Hence, at most, two exams per patient were used.
Additionally, an important exclusion criterion from the dataset regarded previous interven-
tions on the knee. Patients with previous surgical interventions (i.e., ACL reconstruction,
partial meniscectomy, etc.) were excluded from the study due to the small number of
cases, which is a prohibitive factor when it comes to building machine learning models.
Furthermore, the interobserver rate on the evaluation of the cases by the radiologists was
very low, consisting of only three cases. Those cases were categorically excluded from the
study. Examinations were performed using Esaote scanners with a standard knee MRI
coil and a routine non-contrast knee MRI protocol that included the following sequences:
coronal hybrid (T1 and T2), sagittal T1 and T2, and axial T2 weighting for all exams. The
number of image slices in each sequence ranged from 14 to 56.

For the purpose of conducting systematic experimentation in evaluating the proposed
method, the dataset was further split into a training set of 466 exams (430 patients) and a test
set of 98 exams (98 patients), following a random sampling approach constrained to assign
a balanced number of normal and abnormal patients in the test set. In addition, all MRI
types were used to train the model and conduct an ablation study to find the combination
of three MRI types that gave the best result for each abnormality (meniscus tear and bone
edema). More specifically, a combination of sagittal T1, sagittal T2, and coronal hybrid was
used for meniscus tears detection. For bone edema, the same combination also produced
better results, while for general abnormalities, a combination of axial T2, coronal hybrid,
and sagittal T1 produced the best result. The overall statistics regarding the datasets are
reported in Table 1.
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Table 1. Statistical data regarding used dataset.

Statistics Training Set Testing Set

Number of exams 466 98
Number of patients 430 98

Number of female patients 205 (46.9%) 21 (21.4%)
Mean age 46.1 39.8

Number with abnormality 335 (71.9%) 66 (67.3%)
Number with meniscus tears 127 (27.3%) 50 (51.0%)

Number with bone edema 132 (28.3%) 30 (30.6%)
Number with bone edema

and meniscus tears 38 (8.2%) 14 (14.3%)

3. Results
3.1. Evaluation Protocol

The proposed machine learning algorithm follows a paradigm named supervised
learning [28]; therefore, the model needs to have a ground truth label associated with each
MRI image in input. To this end, reference standard labels for each patient were obtained on
the internal dataset set from the majority vote of three (musculoskeletal) MSK radiologists
from the same clinic from the dataset was acquired. The MSK radiologists had access to
all DICOM series, the original report and clinical history, and follow-up exams during
interpretation. All readers participating in the study used a clinical picture archiving and
communication system (PACS) environment, and evaluation was performed on the clinical
DICOM images presented on a range of 3–12 mega pixels medical-grade display using a
type Nio Fusion 12MP MDNC-12130 with a minimum luminance of 300 cd/m2, maximum
luminance of 1200 cd/m2, pixel size of 0.2, and native resolution of 4200 × 2800 pixels.
Exams were sorted in reverse chronological order. Each exam was assigned a binary label
for the presence or absence of each of the diseases taken into consideration. Definitions for
labels were as follows:

• Meniscus: intact (normal, without degenerative notes, not broken but with degener-
ative notes) or tear (broken, radial, longitudinal, or fracture lines present in at least
three slices or morphologic deformity);

• Bone Edema: intact (normal bone, not inflamed) or inflamed (signal hyperintensity in
T2 stir, inflamed bone following direct trauma or sprain);

• Abnormality: intact (if both meniscus and bone edema are intact, and no other fractures
are present in the knee) or abnormal (if any fracture is present)

The learning algorithms then used these labels as ground truth target variables during
the learning process, as well as to measure the performance during validation.

3.2. Performance Metrics

To assess the performance of our model, we decided to use three very common
metrics in medical image classification problems, namely accuracy, sensitivity, and speci-
ficity [10,22]. The reason behind choosing these three metrics stands on their properties.
Starting with accuracy, it is a measure of the performance of machine learning models used
for classification. Its interpretation is straightforward and shows the rate of predictions
performed that are correctly calculated as the number of correct predictions over the total
number of predictions.

The drawback of accuracy as a measure of performance is that it is context invariant,
and its interpretation is the same for every classification problem. Since, in medicine, it
is very important to interpret the results, metrics such as sensitivity and specificity are
commonly used. Sensitivity, also known as the true positive rate, measures the ability
of a model to yield a positive result for a subject that has that disease; in other words, it
can be interpreted as the probability of the model predicting that the knee has a fracture
given that the knee is fractured. On the other hand, specificity, which is defined as the true
negative rate, measures the ability of a model to yield a negative result for a subject that
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does not have a fracture, and contrary to sensitivity, it shows the probability that the model
predicts a negative, given that the patient’s knee does not have any kind of fractures. Both
sensitivity and specificity are very important for measuring the performance of a model
and its interpretation. Usually, when there is a threshold different from 0.5 involved in
separating the labels 0 and 1, one can use it to increase the specificity or sensitivity of the
model based on the final goal of the application and present an inverse correlation between
the specificity and sensitivity, meaning that if one is increased, the other is automatically
decreased. In our case, this inverse correlation does not hold since we use a threshold
of 0.5.

3.3. Model Performance

The model was trained on the training dataset of knee MRI scans and used to perform
three distinct tasks: abnormality detection, meniscus tears detection, and bone edema
detection. The model results are promising, with an accuracy of 83.7% for abnormality
detection, 83.7% for meniscus tears, and 81.3% for bone edema detection. The sensitivity of
the model was high for abnormality detection (90%) and bone edema detection (93.3%),
while it was lower for meniscus tears detection (75%), meaning that the model is very good
at identifying positive cases for the tasks of abnormality and bone edema detection. On the
other hand, the specificity of the model was high for meniscus tears detection (92%), but it
was lower for bone edema detection (65.2%) and abnormality detection (73.7%), meaning
that the model is very good at identifying negative cases for the task of meniscus tears
detection. From the results, we can notice that the model performs quite effectively for all
the tasks, but there is a disbalance between sensitivity and specificity. The reason behind
this phenomenon is that the disproportional distribution of negative and positive cases is
also limited by the low availability of training data. However, these results indicate that
the model has the potential to be a valuable tool for medical professionals in the analysis of
knee MRI scans, even when trained with a small cohort of patients. The overall results are
shown in Table 2.

Table 2. Best model results for Abnormality, Meniscus tears and Bone edema.

Task Accuracy Sensitivity Specificity

Abnormality 83.7% 90% 73.3%
Meniscus tears 83.7% 75% 92%

Bone edema 81.3% 93.3% 65.2%

3.4. Ablation Study

The evaluation of a machine learning model involves multiple performance metrics;
thus, the best model is determined based on the metrics of interest. To create a better
evaluation, we conducted an ablation study by testing different types of inputs. If accu-
racy is the primary metric, the models listed in Table 2 are the top performers, and for
abnormality detection, it uses axial T2, coronal hybrid, and sagittal T1 sequences as inputs,
while for meniscus tears and bone edema, the best performing model takes coronal hybrid,
sagittal T1, and sagittal T2 sequences as inputs. However, if specificity or sensitivity is
the focus, the results are different. In terms of specificity, the best performing model for
abnormality detection only uses the axial T2 sequence as input (84.2%), while for meniscus
tears, the best model remains the same, and for bone edema, the model with the highest
specificity only uses the axial T2 sequence as input (78.6%). When it comes to sensitivity,
the best performing models for abnormality and bone edema detection are the same as
those reported in Table 2, which also produce the highest accuracy, while for meniscus
tears, the model with the highest sensitivity uses the combination of Axial T2, sagittal T1,
and sagittal T2 as inputs (82.8%). Lastly, if a balanced model with a small gap between
accuracy, sensitivity, and specificity is desired, the best performing models may differ, and
the most balanced model for all tasks is obtained from the combination of axial T2, sagittal
T1, and sagittal T2 as inputs. The ablation study also checks if the model truly benefits
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from multiple input images or if it can perform similarly with just one sequence as input.
As seen from Table 3, using multiple sequences as inputs improves the overall performance
of the model in most cases; however, it is worth noting that the model still achieves good
performance, even with just one input sequence.

Table 3. Ablation study on different input combinations to model.

Abnormality Meniscus Tears Bone Edema

Input Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

Coronal hybrid 79.5% 85.2% 73.9% 73.4% 62.5% 80.0% 79.5% 85.2% 73.9%
Axial T2 75.5% 66.8% 84.2% 79.5% 70.8% 83.7% 75.5% 71.4% 78.6%

Sagittal T1 77.6% 76.9% 78.7% 77.6% 68.2% 85.5% 77.6% 80.8% 73.9%
Sagittal T2 77.6% 76.9% 78.7% 75.5% 67.5% 83.7% 77.6% 80.8% 73.9%

Coronal hybrid and sagittal (T1 and T2) 81.6% 86.7% 73.7% 83.7% 75.5% 92.0% 81.6% 93.3% 65.2%
Axial T2, coronal hybrid, and sagittal T1 83.7% 90% 73.7% 79.9% 70.5% 87.99% 79.9% 85.2% 73.9%

Axial T2 and Sagittal (T1 and T2) 79.5% 80.3% 78.7% 81.7% 82.8% 80.8% 77.6% 78.3% 75.6%

4. Discussion

The objective of this study was to create and assess a machine learning model for
categorizing knee MRI pathologies and compare its performance with that of clinical
experts on real-life MRI imaging protocols. The findings showed that a deep learning
approach could achieve a high level of accuracy in clinical classification tasks on knee MRIs,
with performance accuracy rates of 83% for abnormality detection, 83.7% for meniscus tear
detection, and 81.3% for BME. The model achieved high specificity in detecting meniscus
tears on the internal validation set, indicating that it could be potentially effective in ruling
out meniscus tears if used in the clinical workflow. However, more data may be required to
improve the model’s capability for diagnosing the other two injuries. The approach also
showed promise in aiding radiologists in evaluating knee MRIs, as the deep learning model
can provide suggestions in a matter of seconds, in contrast to human experts, who require
a significant amount of time to analyze MRIs [10]. The study’s results also suggest that
deep learning represents a potential group of algorithms that can be employed to generate
rapid automated pathology classifications for advanced MSK MRI. An automated deep
learning model for knee MRI diagnosis has the potential to improve clinical practice in a
number of ways. For example, the model could be used to prioritize diagnostic worklists by
automatically moving abnormal exams ahead of normal exams in the image interpretation
workflow [29]. This approach could lead to quicker preliminary feedback for patients
whose exams come back as normal. Additionally, providing rapid results to the ordering
clinician could improve disposition in other areas of the healthcare system [30]. In this study,
radiologists reported that the use of the automated model improved their performance in
detecting abnormalities in the knee in terms of time needed to identify the injury, especially
for meniscus tears, given the high specificity of the results. However, for cases when the
model predicted an incorrect result, the radiologist required extra amount of time to define
the exact knee injury if present. This finding suggests that the model could potentially
help reduce unnecessary additional testing if trained with the proper amount of data to
reach higher levels of accuracy. Automated abnormality prediction could also help general
radiologists or even non-radiologist clinicians (orthopedic surgeons) interpret medical
imaging for patients at the point of care, rather than waiting for specialized radiologist
interpretation [10]. This innovation could aid in efficient interpretation, reduce errors, and
help standardize the quality of diagnoses when MSK specialist radiologists are not readily
available. Our results provide early support for a future where automated models may
play a significant role in assisting clinicians and healthcare systems.

One challenge in utilizing machine learning for medical imaging involves assem-
bling large datasets that encompass a diverse array of abnormalities that can appear on
a particular imaging exam, ensuring the proper training of an accurate classifier [31–33].
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By training the model to recognize the range of what constitutes a normal exam for a
specific population, it would theoretically be capable of detecting any abnormality, even
exceedingly rare ones. Indeed, this need for more data to train a robust classification model
represents the main limitation of this study. Our experimental cohort was composed of
564 examinations, of which 466 were used for training, with three MRI types each input
into the model. Even though 466 is not a small number, in terms of learning algorithms, it
is far from the optimal number. However, the fact that examinations were obtained from
the same institution with evaluations performed by the same group of radiologists makes
this number of exams more significant in extracting preliminary conclusions regarding the
usability of such models in clinical settings. At the same time, the lack of exams from other
institutions and clinicians lowers the variance in data in terms of images and evaluations,
which is a limiting factor for generalizing machine learning models in terms of diagnosing
knee MRI. Based on this rationale, further studies are necessary to provide bigger datasets
that also enable the use of bigger and better models for medical imaging, which could mark
new breakthroughs in assisted medicine.

In conclusion, this work proposes a novel machine learning model that combines the
power of feature extraction algorithms to enhance the amount of information contained
in each MRI sequence elements, as well as the power of machine learning models that
are capable of extracting complex patterns from the data and modeling the characteristic
distribution of the knee as presented in a MRI. The proposed model is applied to real-life
imaging protocols and achieves high performance in terms of accuracy, sensitivity, and
specificity. Even though is an early-stage study and we definitely require future works to
improve the quality of the model and the quantity of the data, the provided results suggests
that machine learning models can be effective potential assistants to radiologists in their
day-to-day activities, helping in the diagnosis and interpretation process of knee MRIs.

5. Conclusions

In conclusion, this study explored the application of machine learning techniques in
the identification of knee pathologies, such as medial meniscus tears and bone marrow
edema, from MRI scans. The results demonstrate that machine learning algorithms have
the potential to serve as valuable assistants to radiologists in evaluating MRIs, providing
an efficient means of diagnosing knee pathologies. With further improvements in the
algorithms, incorporation of larger datasets, and refinement of the model, machine learning-
based approaches can enhance the diagnostic accuracy and efficiency in the field of knee
imaging, ultimately leading to improved patient care and outcomes. Further research and
collaboration between medical professionals and data scientists are warranted to optimize
and validate the proposed method for routine clinical use.
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