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Abstract: This study is focused on the determination of the heavy metals content in airborne par-
ticulate matter (PM) with a diameter lower than 10 µm (PM10) deposited on quartz microfiber
filters and collected in four representative selected sites of the Calabria region, southern Italy. In
particular, data on the content of Cd, Ni, and Pb in PM10 (i.e., those metals whose limit values, in
terms of concentration, are reported in the Italian Legislation) were obtained through inductively
coupled plasma mass spectrometry (ICP-MS) measurements after acid extraction with microwaves
and filtration. Results showed that the average concentration of investigated metals decreases as
Ni > Pb > Cd for all analyzed samples, and concentration values are lower than the limit values
reported in the Italian legislation in all cases. Moreover, in order to assess the health risk related to
their presence in the environment, the potential non-carcinogenic hazard for the investigated heavy
metals was evaluated by calculating the hazard index (HI) for children and adults. Results indicated
that the calculated HI values were lower than the safety limit in all cases, thus indicating a negligible
non-carcinogenic health risk. In addition, the potential carcinogenic hazard for the investigated
metals was estimated through the total cancer risk index (Risktotal). Obtained results were also lower
than the limit value for children and adults in this case, and, therefore, the carcinogenic health risk
caused by heavy metals in the analyzed PM10 samples could be considered to be unremarkable.

Keywords: airborne particulate; heavy metals; inductively coupled plasma mass spectrometry;
hazard index; total cancer risk index

1. Introduction

Airborne particulate matter (PM) consists of a broad class of chemically and physically
different elements, varying in sizes, chemical compositions, formations, sources, and con-
centrations [1,2]. Exposure to PM has a negative impact on human health, and it contributes
significantly to increases in premature deaths due to cardiovascular and respiratory dis-
eases [3,4]. PM contains sulfates, nitrates, ammonium ions, hydrogen ions, other inorganic
ions (e.g., Na+, K+, Ca2+, Mg2+, and Cl−), particle bound water, heavy metals, elemental
carbon, and organic compounds [5,6]. The major urban causes of these PM-associated
compounds are related to anthropogenic activities, such as mining, construction, industrial
emissions, road traffic (motor vehicles, railways), various combustion processes, power
plants, and domestic heating [7,8]. In particular, airborne particles with diameters lower
than 10 µm (PM10) can affect climate and reduce visibility, as they participate in many
significant atmospheric processes [9,10]. They are often harmful for health because, being
able to overcome the protective barriers present in the first portion of the respiratory system,
they can reach deeper areas [11]. The effects of PM10 are proportional to its concentrations,
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and there are no threshold values below which there is no danger to health. This is mainly
due to the presence of carcinogenic compounds embedded in the particulate matter itself,
such as heavy metals [12] (i.e., naturally occurring elements with relatively high density,
atomic number, and atomic weight [13–15]). Their multiple uses in industry, housing,
agriculture, medicine, and technology raise concerns about their possible impact on human
health and the environment [16–18]. Heavy metals such as Cd, Ni, and Pb, also present
at very low concentrations and have adverse effects on the human body, causing acute
and chronic toxicity [19]. Therefore, for the protection of the environment and to ensure
sufficiently clean air levels, heavy metals must be kept at safe levels [20]. In the last decades,
a number of studies have been carried out in order to assess the levels of heavy metals in
PM10 and their potential risks [21–28].

In view of the above, this study aims to determine the concentration of those metals
whose limit values, in PM10, are reported in the Italian Legislation (i.e., Ni, Cd, and Pb)
for four selected sampling sites spread across the entire Calabria region, southern Italy.
It is worth noting that in this paper, for the first time, the assessment of the health risk
associated with the presence of PM10 in the environment for children and adults residing
in this region was carried out. This represents the absolute novelty of the present work,
and obtained results could also be used for monitoring the elemental composition of
atmospheric particulate matter, which can contribute to better air quality management.

2. Materials and Methods
2.1. Sampling

The selected sampling points are reported in Table 1 together with their identification
code (IDs) and GPS coordinates and shown in Figure 1.

Table 1. Sampling points, together with their identification code (IDs) and GPS coordinates.

Sampling Point GPS Coordinates

ID1 39◦18′10′′ N
16◦15′05′′ E

ID2 38◦54′51′′ N
16◦35′09′′ E

ID3 38◦40′29′′ N
16◦06′08′′ E

ID4 38◦06′03′′ N
15◦38′49′′ E

PM10 samples were collected with the Environnement S.A PM 162 M (Environnement,
Poissy Cedex, France) and FAI Instruments Swam 5 and Swam 5 Dual Channel high volume
samplers (FAI Instruments, Rome, Italy), on Whatman 1851-047 47 mm quartz microfiber
filters (TISCH, Ohio, Miami, FL, USA) (Figure 2). Instruments installed at the collection
sites sampled for 24 h at a rate of 2.3 m3·h−1 [29–31]. In detail, one filters package (each
sample ID), with thirty daily quartz discs, was collected monthly for each sampling point,
for a period of one year (2016) and a total of twelve filters packages. The quartz filters,
mounted in specific holders, were stored refrigerated, in the dark, before their analysis.

At the laboratory, each filter was punched to obtain a punch of 50 mm2 section, used
for the inductively coupled plasma mass spectrometry (ICP-MS) heavy metals analysis.
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2.2. Heavy Metals Analysis

The concentration of Cd, Ni, and Pb was obtained through ICP-MS analysis using a
Thermo Scientific iCAP Qc (Thermo Scientific, Waltham, MA, USA) (Figure 3).

In detail, a quartz microfiber punch of 50 mm2 section (one for each investigated
filter), together with 2 mL of ultrapure (67%) HNO3 and 1 mL of distilled water were
directly introduced into a quartz insert and then subsequently directly introduced into a
100 mL TFM vessel. An additional quantity of liquid, 5 mL of distilled H2O and 5 mL of
H2O2 (30%), was placed directly into the 100 mL TFM vessel, around the quartz insert,
to a depth equal to the height of the liquid inside the quartz insert. Acid digestion was
performed using a Milestone microwave unit system (Milestone, Bergamo, Italy), Ethos
touch control, in three steps: 15 min at 1000 W and 200 ◦C; 10 min at 700 W and 200 ◦C;
10 min cooling [32]. After cooling, insert contents were filtered and filled up to 50 mL
with distilled H2O in a 50 mL perfluoroalkoxy-copolymer (PFA) Class A volumetric flask.
The sample introduction system consisted of a Peltier cooled (3 ◦C) baffled cyclonic spray
chamber, PFA nebulizer, and quartz torch with a 2.5 mm i.d. removable quartz injector. The
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instrument was operated in a single collision cell mode, with kinetic energy discrimination
(KED), using pure He as the collision gas. All samples were presented for analysis using a
Cetac ASX-520 (Thermo Scientific, Waltham, MA, USA). The iCAP Qc ICP-MS was operated
in a single KED mode using the following parameters: 1550 W forward power; 0.98 L/min
nebulizer gas; 0.8 L min−1 auxiliary gas; 14.0 L min−1 cool gas flow; 4.5 mL min−1 collision
cell gas He; 45 s each for sample uptake/wash time; optimized dwell times per analyte
(0.01 s); one point per peak and three repeats per sample [33].
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2.3. Health Risk Assessment

The daily exposure (D) to heavy metals via PM10 was calculated for the three main
routes of exposure: direct ingestion (Ding), inhalation (Dinh), and dermal absorption to
skin-adhered particles (Ddermal), according to the US Environmental Protection Agency
guidance [34]:

Ding = C × IngR × EF × ED
BW × AT

× CF1 (1)

Dinh = C × InhR × EF × ED
PEF × BW × AT

(2)

Ddermal = C × SA × SL × ABS × EF × ED
BW × AT

× CF1 (3)

where C (ppm) is the heavy metals concentrations in analyzed samples; IngR (mg·day−1) is
the conservative estimates of particulate ingestion rates [35]; InhR (m3·h−1) is the inhalation
rate [35]; EF (h year−1) is the exposure frequency [34]; ED (years) is the exposure dura-
tion [34]; BW (kg) is the body weight [35]; AT (days) is the averaging time [34]; PEF is the
particle emission factor (m3·kg−1) [34]; SA (cm2) is the exposed skin area [35]; SL (mg·cm−2)
is the skin adherence factor [35]; ABS is the dermal absorption factor [34]; and CF1 is the
unit conversation factor [34]. Numeric values of the above-mentioned parameters, for
adults and children, are reported in Table 2.

Table 2. Data for direct ingestion (Ding), inhalation (Dinh), and dermal absorption to skin-adhered
particles (Ddermal) calculation, for adults and children.

Adults Children

IngR
(mg day−1) 50 200

InhR
(m3 h−1) 2.15 1.68

EF
(h year−1) 1225

ED
(years) 70 6

BW
(kg) 80 18.60

AT
(days) 25,550 2190

PEF
(m3 kg−1) 6.80 × 108

SA
(cm2) 6840 2550

SL
(mg cm−2) 0.22 0.27

ABS 0.001

CF1 10−6

The potential non-carcinogenic risk for each heavy metal was estimated using the
hazard coefficient (HQ) [36], that, for the three main routes of exposure, was calculated as a
ratio of daily exposure (D) to a reference dose of each metal (RfD) [35]:

HQk =
Dk

RfD
(4)
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where k is ingestion, inhalation, or dermal route. The total hazard index (HI) of each heavy
metal for all routes of exposure was calculated as follows [37]:

HI = HQing + HQinh + HQdermal (5)

The carcinogenic risk for potential carcinogenic metals was calculated by multiplying
the doses by the corresponding cancer slope factor (SF) [38]:

Risk =
n

∑
k=1

Dk × SFk (6)

The carcinogenic ingestion, inhalation, and dermal SFs were provided from the In-
tegrated Risk Information System [39]. Moreover, k is the route of exposure (ingestion,
inhalation, or dermal path). The total cancer risk (Risktotal) of potential carcinogens was
calculated as the sum of the individual risk values:

Risktotal = Risking + Riskinh + Riskdermal (7)

3. Results and Discussion
3.1. Heavy Metals Concentration

The air concentration of PM10, deposited on the quartz microfiber filters collected,
was directly measured at the sampling sites by using the collecting instruments installed
there. The collected data showed seasonal trends with higher concentrations in cold
and dry periods than in warm and wet periods. The difference between warm and cold
seasons may be caused by the relatively stable energy consumption [40]. Moreover, the
average concentration of PM10 in outdoor air for the entire sampling period was about
20 µg·m−3 at all sampling sites, lower than the threshold value set by the Italian Legisla-
tion (40 µg·m−3) [41] and in good agreement with levels typical of most European cities
(range: 8.50–29.30 µg·m−3 [42]). The concentration of PM10 is markedly associated with
natural origin (soil erosion, marine and biogenic aerosols, volcanic emissions, long-distance
transport of sand) and/or anthropogenic (heating, industries, traffic, etc.) phenomena [43].

The annual average concentration of the three investigated heavy metals in the ana-
lyzed PM10 samples is reported in Table 3.

Table 3. The annual average content of the three investigated heavy metals (Cd, Ni, and Pb) in the
analyzed PM10 samples.

Sampling Point CCd
(ng·m−3)

CNi
(ng·m−3)

CPb
(µg·m−3)

ID1 0.06 ± 0.02 2.8 ± 1.1 0.003 ± 0.001

ID2 0.21 ± 0.11 4.1 ± 1.7 0.003 ± 0.002

ID3 0.08 ± 0.03 4.4 ± 2.3 0.003 ± 0.001

ID4 0.08 ± 0.03 5.2 ± 2.6 0.003 ± 0.001

It is worth noting that the annual average concentrations decrease as follows Ni > Pb > Cd,
except for the sampling site ID1, as shown in Figure 5.

Moreover, in all analyzed samples, metal concentrations are lower than the limit values
(i.e., 5 ng·m−3 for Cd, 20 ng·m−3 for Ni, and 0.5 µg·m−3 for Pb) reported by the Italian
Legislation [41], thus excluding the presence of these heavy metals as pollutants in the
analyzed PM10 samples.
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3.2. Health Risk Assessment

In order to evaluate the impact of heavy metals in PM10 on the health of children
and adults, the hazard index and the total cancer risk index were estimated. In particular,
Table 4 reports the obtained results for HI, together with reference doses (RfD) and hazard
coefficients (HQk), for each sampling point.

Obtained results show that, for children, the total hazard index is 4.1 × 10−11, 5 × 10−11,
4.5 × 10−11, and 4.6 × 10−11 for the sampling points ID1, ID2, ID3, and ID4, respectively.
All these values are less than the safety limit, HI < 1 [38], thus indicating a negligible
non-carcinogenic risk due to the presence of the investigated heavy metals in the analyzed
PM10 samples. Notably, the highest value for the total hazard coefficient was obtained
for the ingestion pathway (3.9 × 10−11, 4.7 × 10−11, 4.3 × 10−11, and 4.4 × 10−11 for the
sampling points ID1, ID2, ID3, and ID4, respectively). Therefore, the ingestion pathway rep-
resents the highest risk, followed by dermal contact (1.6 × 10−12, 3.4 × 10−12, 1.8 × 10−12,
and 1.9 × 10−12 as total hazard coefficients for the sampling points ID1, ID2, ID3, and
ID4, respectively), while the inhalation pathway represents the lowest risk (total hazard
coefficients of 1.1 × 10−15, 1.5 × 10−15, 1.5 × 10−15, and 1.7 × 10−15 for the sampling points
ID1, ID2, ID3, and ID4, respectively). Finally, Pb represented the highest contribution to the
total HI value for children among the investigated heavy metals.

For adults, the total HI was 3.1 × 10−12, 4.5 × 10−12, 3.4 × 10−12, and 3.5 × 10−12

for the sampling points ID1, ID2, ID3, and ID4, respectively. These results are similar to
those obtained for children, as the dominant exposure pathway was ingestion (total hazard
coefficients equal to 2.3 × 10−12, 2.7 × 10−12, 2.5 × 10−12, and 2.6 × 10−12 for the sampling
points ID1, ID2, ID3, and ID4, respectively). Total HQ values for dermal contact were lower
(7.9 × 10−13, 1.8 × 10−12, 9.4 × 10−13, and 9.5 × 10−13 for the sampling points ID1, ID2,
ID3, and ID4, respectively), and total HQ values were very low for inhalation (3.3 × 10−16,
4.4 × 10−16, 4.4 × 10−16, and 4.9 × 10−16 for the sampling points ID1, ID2, ID3, and ID4,
respectively).

With reference to the carcinogenic risk to human health through exposure to heavy
metals in the analyzed PM10 samples, it was calculated for both children and adults and
summarized in Table 5.

Notably, the obtained results for the total cancer risk index are lower than the threshold
limit of 1 × 10−4 in all cases (i.e., 9.3 × 10−14, 1.4 × 10−13, 1.4 × 10−13, and 1.7 × 10−13

for the sampling points ID1, ID2, ID3, and ID4, respectively, for children, and 5.4 × 10−15,
7.9 × 10−15, 8.4 × 10−15, and 1 × 10−14 for the sampling points ID1, ID2, ID3, and ID4,
respectively, for adults) [38]. Given the above, the carcinogenic risk caused by Cd, Ni, and
Pb in the PM10 samples can be considered to be negligible. Finally, similar to HI values,
the total cancer risk index for children is higher than that for adults.
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Table 4. The hazard index (HI), together with reference doses (RfD) and hazard coefficients (HQk), for each sampling point.

Sampling Point Metal
RfD (ppm Per Day) Children Adults

Ing Inhal Dermal HQing HQinh HQder HI HQing HQinh HQder HI

ID1

Cd 1 × 10−3 1 × 10−3 1 × 10−5 2.2 × 10−12 2.7 × 10−17 7.6 × 10−13 3 × 10−12 1.3 × 10−13 8.1 × 10−18 3.9 × 10−13 5.1 × 10−13

Ni 2 × 10−2 2 × 10−3 5.4 × 10−3 5.1 × 10−12 6.3 × 10−16 6.5 × 10−14 5.1 × 10−12 2.9 × 10−13 1.9 × 10−16 3.3 × 10−14 3.3 × 10−13

Pb 3.5 × 10−3 3 × 10−3 5.25 × 10−4 3.2 × 10−11 4.6 × 10−16 7.3 × 10−13 3.3 × 10−11 1.9 × 10−12 1.4 × 10−16 3.7 × 10−13 2.2 × 10−12

Σ - - - 3.9 × 10−11 1.1 × 10−15 1.6 × 10−12 4.1 × 10−11 2.3 × 10−12 3.3 × 10−16 7.9 × 10−13 3.1 × 10−12

ID2

Cd 1 × 10−3 1 × 10−3 1 × 10−5 7.6 × 10−12 9.4 × 10−17 2.6 × 10−12 1 × 10−11 4.4 × 10−13 2.8 × 10−17 1.3 × 10−12 1.8 × 10−12

Ni 2 × 10−2 2 × 10−3 5.4 × 10−3 7.4 × 10−12 9.2 × 10−16 9.5 × 10−14 7.5 × 10−12 4.3 × 10−13 2.7 × 10−16 4.8 × 10−14 4.8 × 10−13

Pb 3.5 × 10−3 3 × 10−3 5.25 × 10−4 3.2 × 10−11 4.6 × 10−16 7.3 × 10−13 3.3 × 10−11 1.9 × 10−12 1.4 × 10−16 3.7 × 10−13 2.2 × 10−12

Σ - - - 4.7 × 10−11 1.5 × 10−15 3.4 × 10−12 5 × 10−11 2.7 × 10−12 4.4 × 10−16 1.8 × 10−12 4.5 × 10−12

ID3

Cd 1 × 10−3 1 × 10−3 1 × 10−5 2.9 × 10−12 3.6 × 10−17 1 × 10−12 3.9 × 10−12 1.7 × 10−13 1.1 × 10−17 5.1 × 10−13 6.8 × 10−13

Ni 2 × 10−2 2 × 10−3 5.4 × 10−3 7.9 × 10−12 9.8 × 10−16 1 × 10−13 8 × 10−12 4.6 × 10−13 2.9 × 10−16 5.1 × 10−14 5.1 × 10−13

Pb 3.5 × 10−3 3 × 10−3 5.25 × 10−4 3.2 × 10−11 4.6 × 10−16 7.3 × 10−13 3.3 × 10−11 1.9 × 10−12 1.4 × 10−16 3.7 × 10−13 2.2 × 10−12

Σ - - - 4.3 × 10−11 1.5 × 10−15 1.8 × 10−12 4.5 × 10−11 2.5 × 10−12 4.4 × 10−16 9.4 × 10−13 3.4 × 10−12

ID4

Cd 1 × 10−3 1 × 10−3 1 × 10−5 2.9 × 10−12 3.6 × 10−17 1 × 10−12 3.9 × 10−12 1.7 × 10−13 1.1 × 10−17 5.1 × 10−13 6.8 × 10−13

Ni 2 × 10−2 2 × 10−3 5.4 × 10−3 9.4 × 10−12 1.2 × 10−15 1.2 × 10−13 9.5 × 10−12 5.5 × 10−13 3.5 × 10−16 6.1 × 10−14 6.1 × 10−13

Pb 3.5 × 10−3 3 × 10−3 5.25 × 10−4 3.2 × 10−11 4.6 × 10−16 7.3 × 10−13 3.3 × 10−11 1.9 × 10−12 1.4 × 10−16 3.7 × 10−13 2.2 × 10−12

Σ - - - 4.4 × 10−11 1.7 × 10−15 1.9 × 10−12 4.6 × 10−11 2.6 × 10−12 4.9 × 10−16 9.5 × 10−13 3.5 × 10−12
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Table 5. The cancer slope and risk factors calculated for children and adults, for each sampling point.

Sampling Point Metal SFing SFinhal
Children Adults

Risking Riskinh Risktotal Risking Riskinh Risktotal

ID1

Cd - 6.3 - 1.7 × 10−19 1.7 × 10−19 - 5.1 × 10−20 5.1 × 10−20

Ni 0.91 8.4 × 10−1 9.2 × 10−14 1.1 × 10−18 9.2 × 10−14 5.4 × 10−15 3.1 × 10−19 5.4 × 10−15

Pb 8.5 × 10−3 4.2 × 10−2 9.5 × 10−16 5.8 × 10−20 9.5 × 10−16 5.5 × 10−17 1.7 × 10−20 5.5 × 10−17

Σ - - 9.3 × 10−14 1.3 × 10−18 9.3 × 10−14 5.4 × 10−15 3.8 × 10−19 5.4 × 10−15

ID2

Cd - 6.3 - 5.9 × 10−19 5.9 × 10−19 - 1.8 × 10−19 1.8 × 10−19

Ni 0.91 8.4 × 10−1 1.3 × 10−13 1.5 × 10−18 1.3 × 10−13 7.8 × 10−15 4.6 × 10−19 7.8 × 10−15

Pb 8.5 × 10−3 4.2 × 10−2 9.5 × 10−16 5.8 × 10−20 9.5 × 10−16 5.5 × 10−17 1.7 × 10−20 5.5 × 10−17

Σ - - 1.4 × 10−13 2.2 × 10−18 1.4 × 10−13 7.9 × 10−15 6.5 × 10−19 7.9 × 10−15

ID3

Cd - 6.3 - 2.3 × 10−19 2.3 × 10−19 - 6.8 × 10−20 6.8 × 10−20

Ni 0.91 8.4 × 10−1 1.4 × 10−13 1.6 × 10−18 1.4 × 10−13 8.4 × 10−15 4.9 × 10−19 8.4 × 10−15

Pb 8.5 × 10−3 4.2 × 10−2 9.5 × 10−16 5.8 × 10−20 9.5 × 10−16 5.5 × 10−17 1.7 × 10−20 5.5 × 10−17

Σ - - 1.4 × 10−13 1.9 × 10−18 1.4 × 10−13 8.4 × 10−15 5.7 × 10−19 8.4 × 10−15

ID4

Cd - 6.3 - 2.3 × 10−19 2.3 × 10−19 - 6.8 × 10−20 6.8 × 10−20

Ni 0.91 8.4 × 10−1 1.7 × 10−13 2.0 × 10−18 1.7 × 10−13 9.9 × 10−15 5.8 × 10−19 9.9 × 10−15

Pb 8.5 × 10−3 4.2 × 10−2 9.5 × 10−16 5.8 × 10−20 9.5 × 10−16 5.5 × 10−17 1.7 × 10−20 5.5 × 10−17

Σ - - 1.7 × 10−13 2.2 × 10−18 1.7 × 10−13 1 × 10−14 6.7 × 10−19 1 × 10−14
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4. Conclusions

This paper reported the quantitative analysis results of heavy metals content in air-
borne particulate matter (PM) with a diameter lower than 10 µm (PM10) for four selected
sampling sites covering the entire Calabria region, southern Italy. Obtained results show
the following: (i) the annual average concentration of the investigated heavy metals in
the PM10 samples decreases in the order Ni > Pb > Cd and (ii) concentration values are
lower than the limit values reported in the Italian legislation in all cases, thus excluding the
presence of Cd, Ni, and Pb as pollutants in the analyzed samples.

Moreover, the health risk was assessed through the calculation of the hazard index
and the calculation of the total cancer risk index, for potential non-carcinogenic and car-
cinogenic risks, respectively, and, notably, both indices were lower than the safety limits,
thus indicating negligible health risks.

Finally, this study had some limitations associated with the limited number of sam-
pling points and tested heavy metals. Therefore, the following will be conducted in the near
future: (i) an increase in the number of sampling sites in order to have a denser network
more representative of the entire region and (ii) the inclusion of a larger number of metals,
based on specific identified sources in the area under study, together with an attempt to re-
late the carcinogenic potential of the most significant concentrations of heavy metals to the
population exposed, after determining the extent of pollution from the investigated metals.
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