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Abstract: Melioidosis is an endemic infectious disease caused by Burkholderia pseudomallei bacteria,
which contaminates soil and water. To better understand the environmental changes that have con-
tributed to melioidosis outbreaks, this study used spatiotemporal analyses to clarify the distribution
pattern of melioidosis and the relationship between melioidosis morbidity rate and local environ-
mental indicators (land surface temperature, normalised difference vegetation index, normalised
difference water index) and rainfall. A retrospective study was conducted from January 2013 to
December 2022, covering data from 219 sub-districts in Northeast Thailand, with each exhibiting a
varying morbidity rate of melioidosis on a monthly basis. Spatial autocorrelation was determined
using local Moran’s I, and the relationship between the melioidosis morbidity rate and the environ-
mental indicators was evaluated using a geographically weighted Poisson regression. The results
revealed clustered spatiotemporal patterns of melioidosis morbidity rate across sub-districts, with
hotspots predominantly observed in the northern region. Furthermore, we observed a range of
coefficients for the environmental indicators, varying from negative to positive, which provided
insights into their relative contributions to melioidosis in each local area and month. These findings
highlight the presence of spatial heterogeneity driven by environmental indicators and underscore
the importance of public health offices implementing targeted monitoring and surveillance strategies
for melioidosis in different locations.

Keywords: geographically weighted Poisson regression; Google Earth engine; spatial model;
Burkholderia pseudomallei

1. Introduction

The distribution of melioidosis, a bacterial infection caused by Burkholderia pseudo-
mallei, can be examined in relation to the soil [1–3] and water resources [4]. Rainfall, soil
water surfaces, and flooding are commonly associated with an increased incidence of
melioidosis [5,6]. Melioidosis infections can be caused by the inhalation, skin abrasion,
and ingestion of B. pseudomallei [4,7]. B. pseudomallei is found in soil depths of 0–90 cm [8],
having an optimal growth temperature of 37 ◦C [9]. It can survive in soil moisture of more
than 10%, lasting for over a year at a 20% survival rate [10,11].

Changes in climate and environmental conditions lead to changes in health status,
health-related illnesses, and death [12,13]. They also influence the transmission of infec-
tious diseases such as melioidosis [14]. Epidemiology, the study of the distribution and
determinants of health status or health-related events in a given population, puts the results
of various studies to use for the protection and control of health problems. Monitoring and
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collecting environmental data over long periods can support the development and planning
of disease prevention and surveillance programmes. These require the presentation of
spatiotemporal disease occurrence. Remote sensing is used to detect and track the physical
characteristics of an area, such as land surface temperature (LST), normalised difference
vegetation index (NDVI), and normalised difference water index (NDWI), by measuring
reflected and emitted radiation from a distance. To analyse the relationship of these indices
with diseases, such as dengue, malaria, and leptospirosis, high-resolution satellite images
are assigned pixel values for each index [15–17].

Currently, studies on melioidosis disease have only been limited to field remote
sensing. Geospatial data, which are data with georeferenced coordinates to positions
on the Earth’s surface, have been utilised to monitor and investigate the risk area of
melioidosis occurrence. Several studies have conducted spatial analyses of melioidosis
distribution in the endemic regions of Australia [2,18], Thailand [19–21], and Laos [22].
Geostatistical modelling has revealed that the range distance of the spatial autocorrelation
in a quantitative B. pseudomallei count was 7.6 m [23], and the range distance between
positive B. pseudomallei samples was 90.51 m in a rice field [24]. To elucidate the conditions
in which melioidosis infections can be increased in humans, an environmentally optimal
bacterium, such as B. pseudomallei, positive can be used.

The Google Earth engine (GEE) is a cloud-based platform that revolutionises environ-
mental analyses by granting access to vast collections of satellite imagery and geospatial
data, empowering researchers to study diverse environmental factors such as land cover
changes, climate patterns, and ecosystem dynamics. Leveraging its capabilities in time-
series analysis, data visualisation, and algorithm development, the GEE facilitates the
monitoring of global-scale environmental changes over time. It can be effectively used
to study infectious diseases by integrating geospatial data and advanced analytics. For
vector-borne diseases such as malaria, dengue fever [25,26], and COVID-19 [27,28], the
platform can play a crucial role in understanding disease dynamics and improving public
health interventions. In the case of melioidosis, a study revealed the spatial distribution
pattern of melioidosis incidence using local Moran’s I and its spatial risk area using in-
dicator interpolation kriging [21]. However, this study only considered a single variable.
Furthermore, the limited information in a local area is not sufficient for understanding the
characteristics and potential of melioidosis infection in other locations. Therefore, different
environmental indicators in a local area should be utilised to reveal their relationships with
melioidosis outbreaks.

To this end, this study aimed to investigate the relationship of melioidosis morbidity
rate with local environmental indicators, specifically LST, NDVI, NDWI, and rainfall
using remote sensing data and geographically weighted Poisson regression (GWPR). The
objectives of this study were to (1) determine the spatiotemporal dependence of melioidosis
distribution and identify the monthly hot and cold spots and (2) classify the monthly
data of melioidosis morbidity rate and the environmental indicators over a period of 10 y.
The results of this study will be beneficial for the spatial monitoring and surveillance of
melioidosis outbreaks in local areas.

2. Data and Methods
2.1. Study Area

This study was conducted in the Ubon Ratchathani province in Northeast Thailand.
The province has an area of 15,774 km2 and covers 25 districts, which are further divided
into 219 sub-districts. It is adjacent to the borders of Cambodia and Laos and hosts three sig-
nificant rivers: Mun, Chi, and Mekong. The study area experiences three seasons: summer,
which begins in mid-February and lasts until mid-May; the rainy season, which extends
from mid-May to mid-October; and winter, which is influenced by the northeastern mon-
soon winds, beginning in mid-October and lasting until mid-February. The morbidity rate
of melioidosis in the area was obtained from the National Disease Surveillance (Report 506),
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revealing a morbidity rate of 29.18 per 100,000 people in 2019 and 25.71 per 100,000 people
in 2020 [29,30].

2.2. Conceptual Framework

This was an applied study of the spatiotemporal dynamics of provincial melioidosis
outbreaks. It shows a map of sub-district boundaries using long-term data over a 10 y
period, showing monthly outbreak periods. Spatial autocorrelation was used to determine
the spatial distribution pattern, which showed clusters, randomness, and dispersion. The
local spatial outlier and cluster revealed the location of the melioidosis hotspots in the study
area. We required the understanding of local spatial indicators to track and determine
the ones that influence melioidosis. This study used big data from satellite images at
multiple time periods and scales through the GEE platform. Data were accessed by writing
JavaScript commands and filtering the date and then reducing the map using median
values following the sub-district area. Spatial data were extracted from each sub-district
and exported as a CSV file. The data were then linked to the spatial indicators (LST,
NDVI, NDWI, and rainfall) and melioidosis according to the location of the sub-district.
GWPR analysis was used to determine the relationship between spatial indicators and the
melioidosis morbidity rate in the local area for each month, as shown in Figure 1. The
software used for analysing and visualising the spatial model were as follows: (1) spatial
autocorrelation (Moran’s I) using Geoda v.1.20.0.22, (2) GWPR using AcrGIS Pro 3.2.0, and
(3) map visualisation using R v.4.2.1 with the tmap package [31].
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2.3. Melioidosis Data

The 10 y attribute data from 1 January 2013 to 31 December 2022, which included
melioidosis case reports, were obtained from the public health office in Ubon Ratchathani.
A data frame, which is a two-dimensional data structure aligned in a tabular manner in
rows and columns, was created. The columns included the sex, age, occupation, Tambon ID
(sub-district ID), and date of melioidosis cases confirmed by a doctor at the hospital. Then,
the data were mutated, and the rows that were missing or not related to the study area were
excluded. The morbidity rate per 10,000 people was calculated by dividing the number of
melioidosis cases by the sub-district and number of people in the sub-district. Subsequently,
the attribute data were connected one-to-one to the map of the sub-district boundary using
the field Tambon ID. Geographical coordinates were based on the Universal Transverse
Mercator (UTM) system zone 48N (EPSG 32648). Human protocols were approved by The
Ubon Ratchathani University-Human Ethic Committee (ID# UBU-REC-171/2565).

2.4. Spatial Data

The GEE is a cloud-based system for processors, data storage, satellite remote sens-
ing analysis, and other environmental and climate data products. The big data of high-
resolution satellite images are freely accessible online via the JavaScript, Python, and R
computer languages. By analysing the data collected from remote sensing technologies, the
environmental indicators associated with the occurrence of a disease can be investigated
within a specific locality.

In this study, the use of spatiotemporal analyses allows for a comprehensive under-
standing of the patterns and trends in the distribution of melioidosis over time. Moreover,
the integration of spatial data enhanced our ability to explore the temporal dynamics of
this disease and its relationship with various environmental indicators, namely LST, NDVI,
NDWI, and rainfall. The application of remotely sensed data in this context provides
valuable insights into the complex interactions between melioidosis and local environ-
mental indicators that contribute to its spread. Overall, this approach enabled a detailed
examination of the spatiotemporal aspects of melioidosis distribution, which can facilitate
the identification of potential risk factors and the development of effective prevention and
control strategies. The environmental factors are shown in Table 1.

Table 1. Data satellite obtained from Google Earth engine.

ID Data Satellite Data Full Name Resolution

1 LST MODIS
MOD11A1.006 Terra Land Surface
Temperature and Emissivity Daily

Global 1 km
1 km

2 NDVI MODIS MOD13Q1.006 Terra Vegetation Indices
16-Day 250 m

3 NDWI MODIS MODIS Terra Daily NDWI 463.313 m

4 Rainfall CHIRPS
PENTAD

Climate Hazards Group InfraRed
Precipitation with Station Data 5566 m

2.4.1. LST

The MOD11A1.006 product of the Moderate Resolution Imaging Spectroradiometer
(MODIS) dataset provides daily global information on terrestrial LST and emissivity. Oper-
ated on the Terra satellite, this product has a high spatial resolution of 1 km. Emissivity
information is particularly valuable for correcting temperature values based on the charac-
teristics of different land surface types. Overall, the MOD11A1.006 product is a valuable
resource for understanding the daily LST variations on a global scale.
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2.4.2. Vegetation

The NDVI was acquired from the MOD13Q1 V.6 product, providing 16 d surface re-
flectance data for vegetation in the red (ρRED) and near-infrared (ρNIR) channels at a resolu-
tion of 250 m. NDVI is calculated using the formula: NDVI = (ρNIR − ρRED)/(ρNIR + ρRED).
The contrast between the RED and NIR responses serves as a sensitive indicator of vegeta-
tion abundance, with maximum differences observed over areas with a full canopy and
minimal contrast over regions lacking vegetation. In areas with low to medium vegetation
density, the contrast results from changes in both the RED and NIR channels, whereas
in areas with high vegetation density, the increase in contrast is primarily attributed to
changes in the NIR channel as the RED band becomes saturated owing to chlorophyll
absorption [32].

2.4.3. Soil Moisture

The NDWI is a satellite-derived metric from the ρNIR and Short-wave Infrared
(ρSWIR) channels, designed for the estimation of water content within internal leaf struc-
tures. Employing the MOD09GA V.6 data, updated daily at a resolution of 463.313 m by
MODIS and subjected to cloud cover masking, the NDWI is computed using the formula:
NDWI = (ρNIR − ρSWIR)/(ρNIR + ρSWIR) [33,34]. The SWIR channel captures alterations
associated with vegetation water content and spongy mesophyll structure, whereas the
NIR channel responds to leaf internal structure and dry matter content, excluding consid-
erations for water content [34]. Through the amalgamation of NIR with SWIR, the index
efficiently eliminated variations induced by leaf structure and dry matter, yielding a more
precise evaluation of vegetation water content. The resultant NDWI product, expressed as
a dimensionless value within the range of −1 to +1, not only signifies leaf water content
but also provides valuable insights into the vegetation type and cover.

2.4.4. Rainfall

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data is a
quasi-global (50 S–50 N), land-only rainfall dataset characterised by diverse spatiotemporal
resolutions. Operating at a resolution of 5566 m, the data contain amalgamated infor-
mation from various sources, including ground station measurements and satellite data.
An extension of a previously established climatology dataset, CHIRPS, leverages satellite
information to fill data gaps in areas that lack ground station data. The dataset was con-
structed by integrating daily and monthly infrared cold cloud duration (CCD) precipitation
estimates using an innovative blending procedure to incorporate the spatial correlation
structure of the CCD. Acknowledging its utility on a global scale [35], the CHIRPS has
been instrumental in assessing and monitoring precipitation patterns. Notably, CHIRPS
has been employed to evaluate rainfall in various regions of Thailand [36–38].

2.5. Data Preparation and Pre-Processing

Remotely sensed data were meticulously selected and filtered based on the geographi-
cal area and date, employing the capabilities of a JavaScript API. Satellite data collection
involved clipping and extension procedures aligned with district boundaries (Figure 2).
Monthly median descriptive statistics were applied to reduce the pixel values within each
tambon boundary. For rainfall data obtained from the CHIRPS product, the images were
resampled to a 1000 m resolution. Subsequently, data comprising the four environmental
indicators were exported into a CSV file. This comprehensive dataset covered 219 adminis-
trative boundaries within Ubon Ratchathani. To establish spatial relationships, attribute
data were connected using sub-district codes, linking melioidosis morbidity rate to environ-
mental parameters. This method facilitated the creation of spatial data, enabling a nuanced
exploration of the interplay between melioidosis and the chosen environmental indicators.
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2.6. Spatial Statistics
2.6.1. Spatial Autocorrelation

Spatial autocorrelation, which examines the similarity among observation values at
different locations, reveals distribution patterns, such as clustering, dispersion, and random
distribution. In our investigation of the melioidosis morbidity rate, we utilised the global
Moran’s I statistic with queen contiguity-based weights, signifying a shared boundary edge
between spatial units. Neighbouring relationships are assigned values of 1 or 0. Moran’s
I ranges from −1 to 1, where positive values denote clustering, negative values indicate
dispersion, and 0 suggests a random distribution. The statistical significance was set at a
pseudo p < 0.05.

The utilisation of Local Moran’s I in our study allowed for the identification of hotspots,
cold spots, and spatial outliers by evaluating neighbouring relationships, providing insights
into zones with either high or low morbidity rates and their spatial connections. Cluster
and outlier detection, employing four autocorrelation types, was complemented by the
Local Indicators of Spatial Association technique, which further scrutinised spatial patterns,
emphasising districts with similar morbidity rates surrounded by similar districts. Positive
values assigned to features with high or low values among neighbours, along with the
assessment of dissimilarity with neighbouring I values using negative values, contributed
to a comprehensive understanding of the spatial dynamics. The incorporation of z-scores
and p-values aided in evaluating the null hypothesis for significance and determining the
output feature class for spatial dependency. This holistic approach provided a nuanced
examination of the spatial distribution of the morbidity rate of melioidosis in various zones.
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2.6.2. Global Poisson Regression (GPR)

A GPR model was used to examine the overall relationship between the morbidity rate
of melioidosis and the environmental indicators in the study area. Before integrating the
variables into the equation for GPR (Equation (1)), multicollinearity among the predictors
was analysed to evaluate their independence. This analysis employed the variance inflation
factor (VIF); values below 7.5 indicated non-multicollinearity and were consequently
included in the model.

ln(yi) = ln(β0) +
p

∑
k=1

βkXki (1)

where ln(y i) is the expected value of melioidosis morbidity rate in the tambon I, β0 is the
global intercept, Xki is the kth explanatory variable, and βk is the parameter estimating the
explanatory variables.

2.6.3. Local Poisson Regression

The GWPR is a spatial statistical technique used in the analysis of spatially distributed
count data, where the outcome variable represents the number of events or occurrences
in a given area. This method is an extension of the traditional Poisson regression, which
considers the spatial heterogeneity of the data. The GWPR method was employed to ad-
dress spatial relationships and instability issues, specifically concerning count and ordinary
data. Utilising an analytical framework derived from the GWR model [39], the GWPR
extends its application to investigate the correlation between disease occurrence and spatial
variability. This model, a form of conditional kernel regression, utilises spatial weighting
functions to estimate locally varying coefficients within the Poisson regression parameters.
This approach allowed the creation of local surface maps illustrating spatial fluctuations in
the relationship between the monthly melioidosis morbidity rate and localised distribution
across the tambons. Consequently, this methodology facilitated the identification and
in-depth exploration of locations that exhibited correlated relationships with the spatial
indicators of LST, NDVI, NDWI, and rainfall. The GWPR model was formulated using
Equation (2).

ln(yi(ui, vi)) = ln(β0(ui, vi)) +
p

∑
k=1

βk(ui, vi)Xki (2)

where Y represents the expected value of the melioidosis morbidity rate at the coordinate
location, (ui, vi) denotes the two-dimensional coordinates of the ith tambon, and β0 and
βk represent the locally estimated intercept and the effect of variable k for location i,
respectively.

The coefficients β̂(ui, vi) were calculated using Equation (3) through spatial weighting.
They were weighted by distance based on observations in nearby tambons, with data from
tambons closer to the point being weighted by fixed and adaptive kernels. The optimal
distance influenced the observed location, which was determined by the size of the nearest
spatial unit.

β̂(ui, vi) =
(

xTw(ui, vi)x
)−1

xT w(ui, vi)Y (3)

where w is an n-by-n geographical weight matrix of the sub-districts.

wij = f (x) =


[

1 − (
∥ui−vj∥

Gi
)

2]2

,
∥∥ui − vj

∥∥ < Gi

0 , otherwise
(4)

where wij is the spatial geographical weight,
∥∥ui − vj

∥∥ represents the Euclidean distance
between the tambon i and j, and Gi represents the adaptive bandwidth size.

In the fixed kernel type, the data were weighted by a measure of the distance from the
calibration location, considering data limitations. In the adaptive kernel type, the number
of neighbouring tambons was optimised for each geographical region. Generally, Gaussian
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and bi-square kernel functions are used to produce a weight scheme when defining spatial
units. We opted for a bi-square function with an adaptive kernel to estimate the spatial
weights in the GWPR model based on the suggestions from previous research [39–41]. The
optimal bandwidth was determined by lower AICc values, indicating the best model fit.
Therefore, the AICc was also used to evaluate the model performance and compare the
goodness-of-fit measurements between GPR and GWPR. Additionally, we considered the
percentage of deviance explained as a measure of how well the model fit, indicating whether
the explanatory variables can explain the relationship with the melioidosis morbidity
rate. Subsequently, the residuals of the GWPR regression model were assessed for spatial
correlations among adjacent tambons using Moran’s I. If the spatial autocorrelation value
was close to 0, the null hypothesis was accepted, indicating a perfectly random spatial
pattern with a significance level of 0.05.

3. Results
3.1. Melioidosis Morbidity Rate

Between 2013 and 2022, a comprehensive analysis of melioidosis cases, which to-
talled 4871, was conducted. Gender classification revealed 3262 cases among males and
1609 among females. Predominantly, those affected were farmers (1943), followed by hired
individuals (258). The monthly morbidity rates exhibited distinctive patterns, with Jan-
uary recording the highest rate, followed by August and September (Figure 3a). A closer
examination of the monthly trends in the morbidity rate of melioidosis from January to
December revealed that January had the highest morbidity rate, which gradually decreased
until April. Conversely, morbidity rates increased from June to August, followed by a
gradual decline until December. These findings provide valuable insights into the seasonal
dynamics of melioidosis over a specified period.
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As shown in Figure 3b, among the annual melioidosis rates between 2013 and 2022,
2022 recorded the highest rate, followed by 2017 and 2021, whereas 2019 marked the lowest
rate. Notably, melioidosis rates exhibited a rapid increase from 2013 to 2017, averaging
4.96. Subsequently, a substantial decline occurred from 2017 to 2019, which represented the
lowest rate in the decade. However, the morbidity rate experienced a notable resurgence,
reaching 37.49 in 2022.

3.2. Spatial Autocorrelation

Table 2 illustrates the global Moran’s I values depicting the spatial autocorrelation
pattern of the monthly melioidosis morbidity rate from 2013 to 2022, highlighting the spatial
distribution clustering in the study area. January exhibited the highest spatial correlation.
In contrast, the correlation gradually decreased from February to June, followed by a
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general upward trend, reaching 0.257 in December. The Local Moran’s I results pinpointed
the spatial clusters, indicating the hot and cold spots of melioidosis morbidity rate.

Table 2. Global Moran’s I of melioidosis morbidity rate per month.

Monthly Moran’s I Mean S.D. z-Value Pseudo p-Value

January 0.462 –0.004 0.039 11.673 0.002
February 0.317 –0.007 0.040 8.021 0.002
March 0.162 –0.004 0.039 4.178 0.004
April 0.187 –0.007 0.042 4.639 0.002
May 0.068 –0.008 0.038 1.990 0.042
June 0.076 –0.005 0.042 1.913 0.034
July 0.246 –0.006 0.038 6.570 0.002
August 0.351 –0.0003 0.040 8.780 0.002
September 0.253 –0.004 0.040 6.390 0.002
October 0.244 –0.003 0.040 6.083 0.002
November 0.187 –0.006 0.038 4.994 0.002
December 0.257 –0.001 0.039 6.610 0.002

S.D.: Standard Division. pseudo p < 0.05.

Spatial hotspots emerged predominantly in the northern part of the study area. The
most prevalent spatial cluster (high–high) occurred in January and February, encompassing
29 tambons, followed by August with 23 tambons, and March and October with 20 tambons
each. Notably, hotspots in May and June were scattered across the central and northern
regions (Figure 4).

3.3. GPR Model

The GPR model associated with cover area represented the intercepts and coefficients
of explanatory variables at a statistical significance of p ≤ 0.05 (Table S1). All explanatory
variables were selected for the regression analysis because all values ignored multicollinear-
ity when the VIF was <5. The results of the parameters in the GPR model are listed in
Table S1. The statistically significant (p ≤ 0.05) months related to the morbidity rate of
melioidosis were August, July, and January. In August, all explanatory variables affected
the melioidosis morbidity rate; the intercept and NDVI were negatively significant, whereas
LST, NDWI, and rainfall were positively significant. Additionally, LST was not significant
in January, whereas the other variables were significant at p ≤ 0.05. In July, rainfall was
excluded from the model.

3.4. Local Poisson Regression

The summary of the descriptive statistics (minimum, median, and maximum) of
the coefficients were based on the GWPR model results (Table S1). Table 3 shows the
median coefficients representing the estimated impact of environmental indicators on the
response variable, which is likely related to the occurrence of melioidosis. A negative
intercept coefficient suggests a baseline reduction in the expected count. A positive LST
coefficient indicates that higher temperatures were associated with the increase in the
expected count of the response variable. A positive NDVI coefficient implies that areas
with higher vegetation density corresponded to higher expected counts. A negative NDWI
coefficient suggests a negative association between the water index and response variable.
A positive rainfall coefficient indicates that increased precipitation was linked to higher
expected counts. The values of these coefficients provide insight into the spatially varying
relationships between environmental indicators and health-related outcomes, offering a
nuanced understanding of the geographical complexities involved in the study. In addition,
GWPR calibrated the association between the melioidosis morbidity rate and LST, NDVI,
NDWI, and rainfall for individual tambons.
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Table 3. Median of generalised geographically weighted Poisson regression (GWPR) coefficient
estimates per month.

Monthly Intercept LST NDVI NDWI Rainfall

January –4.546 0.135 1.82 –2.329 0.077
February –2.289 0.046 –0.055 1.34 0.16
March 2.804 –0.082 –0.193 –6.077 –0.025
April 1.762 –0.054 –3.555 –6.519 0.005
May –0.546 0.004 –1.581 –10.219 –0.003
June –2.625 0.073 3.209 4.1483 –0.001
July 5.14 –0.11 –3.195 31.425 0.0008
August –2.808 0.045 0.72 34.014 0.003
September 2.068 0.033 0.705 –8.659 –0.003
October –2.948 0.056 6.686 1.9126 –0.006
November 1.991 –0.018 –0.823 4.952 –0.023
December 6.755 –0.208 0.088 –10.567 0.130
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3.5. Local Percent Deviance

Figure 5 shows the local percentage of the deviance-explained map that represents a
potential relationship and fit accuracy of the explanatory variables that drive the changes
in the melioidosis morbidity rate. The spatial distribution of the percent deviance varies
over time and space every month, which was inherently grouped by the Jenks natural
breaks classification. The red colour on the map indicates a higher value of local percentage
deviance, showing a clear pattern of spatial variation. The maximum local accuracy ranges
were 0.600–0.658 in January, September, and December, respectively, with the highest
obtained in December. In December, the risk areas were mostly located in the western
region (29 tambons). In January, a trend of directional influence from the west to the
central region was observed, while that in September was found in the southeastern region.
However, for most of the northern region, the local accuracy ranges were 0.352–0.444 in
July, and 0.239–0.338 in November.
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3.6. Comparison between GPR and GWPR

The goodness-of-fit measures for both the GPR and GWPR models are presented in
Table 4, revealing that the GWPR model exhibits a smaller AICc value than the GPR model.
Conversely, the GWPR model exhibited a higher percentage of deviance than the GPR
model. The global percentage of deviance ranged from 0.231 to 0.526, with the highest value
observed in January. The residuals of the GWPR model were not statistically significant at
a p ≤ 0.05, indicating a perfectly random spatial pattern. These findings suggest that the
GWPR is a suitable method for elucidating the relationship between the morbidity rate of
melioidosis and environmental indicators.

Table 4. Measures of goodness-of-fit and Moran’s I statistics for residuals of GWPR per month.

Monthly
GPR GWPR

Moran’s I z-Score p-Value
AICc Deviance AICc Deviance

January 1197.00 0.144 432.808 0.526 0.008 0.318 0.374
February 924.00 0.157 403.175 0.395 –0.056 –1.275 0.898
March 859.00 0.053 430.776 0.231 –0.019 –0.373 0.645
April 828.00 0.025 431.394 0.280 –0.035 –0.753 0.774
May 850.00 0.037 436.957 0.145 –0.025 –0.520 0.698
June 952.00 0.018 441.450 0.299 –0.104 –2.435 0.992
July 974.00 0.204 406.892 0.325 –0.072 –1.656 0.951
August 1087.00 0.121 421.122 0.416 –0.048 –1.071 0.858
September 1075.00 0.087 439.833 0.442 –0.092 –2.154 0.984
October 899.00 0.132 408.941 0.378 –0.047 –1.059 0.855
November 837.00 0.022 418.079 0.275 –0.035 –0.747 0.772
December 751.00 0.156 402.712 0.422 0.014 0.475 0.317

AICc: Akaike information criterion. Deviance: percentage of deviance.

4. Discussion

Melioidosis remains an endemic disease in the study area, with cases reported through-
out the 10 y study period. Hantrakun et al. [42] found in their study on the clinical epi-
demiology of 7126 melioidosis patients in 60 hospitals in Thailand from 2012 to 2015 that
the Ubon Ratchathani province exhibits a high incidence rate, designating it as a high-risk
area. Figure 3 further confirms the occurrence of melioidosis outbreaks, demonstrating that
the monthly and annual occurrences of the disease vary, thereby affecting the susceptibility
of individuals to melioidosis each month. Given that B. pseudomallei, the causative agent of
melioidosis, is found in both soil and water, individuals in at-risk populations are more
susceptible to infection. Therefore, melioidosis is a significant public health concern that
necessitates continuous monitoring, surveillance, and prevention efforts to mitigate its
incidence in rural areas.

Because reliance solely on case report data for disease monitoring and surveillance
may be insufficient, operations must incorporate spatial data to inform decisions and pre-
vention plans. Spatial autocorrelation analysis using global Moran’s I revealed a clustering
pattern in the monthly distribution of the melioidosis prevalence. Local spatial correlation
analysis using hotspot analysis facilitated the identification of areas with high and low pa-
tient numbers, distinguishing between low- and high-risk regions. For instance (Figure 4),
a study identified 29 tambons (high–high) as hotspots in January and February, wherein
closely clustered locations formed a high-risk group. Conversely, tambons initially deemed
low–high may transition into high-risk areas because of their proximity to high-risk groups.
Notably, the high-risk group was primarily clustered in the northern region, consistent with
the findings of Wongbutdee et al. [21], who identified a significantly elevated incidence
of melioidosis in northern Ubon Ratchathani during 2016–2020. Clustering of melioidosis
cases suggests heightened exposure to B. pseudomallei in these areas [43]. Furthermore,
B. pseudomallei has been isolated from the environment near patient residences in Northeast
Thailand [44], indicating a correlation between the presence of melioidosis cases and B. pseu-
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domallei in the surrounding environment. Thus, environmental factors likely contribute to
the growth or persistence of B. pseudomallei in the soil and water, leading to the occurrence
of melioidosis.

This study utilised satellite image data, specifically LST, NDVI, NDWI, and rainfall,
to identify the environmental indicators influencing melioidosis occurrence. The analysis
was conducted at a local scale, leveraging proximity-based data analysis, which enhanced
predictive accuracy. This approach, employed through the GWPR model, outperformed
the GPR model, as indicated by smaller AICc values and higher deviances (Table 4).
However, the two models serve different purposes. While the GPR model elucidates
global-level indicators influencing melioidosis development, the GWPR model highlights
local relationships. Analysis of the explanatory variables in August and November, as
well as in September and October, demonstrated a strong association between rainfall and
melioidosis morbidity rate. Although previous studies have identified this relationship
in numerous countries [5,45–48], it is not significant in Thailand [49]. The GPR model
revealed significant associations between rainfall and melioidosis morbidity rate in certain
months (e.g., January and August), but not in other months (March, April, May, and June)
(Table S1).

The GPR model can inform policies for the prevention and control of melioidosis at
a provincial level. However, its effectiveness is limited owing to variations in local envi-
ronmental conditions such as temperature, humidity, rainfall, and vegetation. Therefore,
satellite image data were also employed to facilitate the surface analysis of land cover,
leveraging the ability of satellite images captured using the MODIS platform to monitor
environmental changes over time. The GEE is a powerful tool for accessing large geospatial
datasets, enabling the analysis and visualisation of geospatial image data in time series,
which is instrumental in disease outbreak monitoring and our research, even though only a
few studies have been conducted on melioidosis.

The GWPR model utilises the distance weighting of neighbouring locations to estimate
the values at the points of interest. The adaptive kernel bandwidth yields a better-fitting
model than the fixed kernel employed in this study. The kernel size is determined by the
number of observations, with the distance adapted to the density of the nearest neigh-
bours, resulting in a non-uniform spatial weighting shape. This assertion is supported
by several previous studies [50–52]. The results demonstrate the percentage deviance,
explaining the potential relationship between environmental indicators and the morbidity
rate of melioidosis in each tambon. Consequently, the coefficients of the best-fitting model
indicated the presence of non-stationarity, as evidenced by the different spatial patterns
in the local coefficients of each independent variable. Notably, several local coefficients of
LST, NDWI, and rainfall were negative, whereas the local coefficient of NDVI was positive
(Figures S1–S12). Overall, the contribution of LST showed a negative correlation with the
melioidosis morbidity rate despite the association of B. pseudomallei contamination in soil
and water with temperature. B. pseudomallei exhibited its highest growth rate at 37 ◦C,
with modest reductions observed at 30 ◦C, 40 ◦C, and 42 ◦C, and a more pronounced delay
at 25 ◦C [53]. Global warming, characterised by the gradual and persistent increase in
the Earth’s atmospheric temperature due to the greenhouse effect, which in turn impacts
extreme weather events such as floods and droughts. The sustained rise in temperature
may contribute to the adaptation or tolerance of B. pseudomallei to stressful environments.
Moreover, studies have shown that higher maximum temperatures are associated with
an increased risk of melioidosis [46]. The shifting climate has a significant impact on the
environment, directly influencing human health and contributing to the rising incidence
of melioidosis in regions such as Brazil, as well as parts of Asia, including Thailand and
India [54]. Furthermore, factors such as rainfall, humidity, and maximum wind speed have
been found to be significantly associated with melioidosis in countries like Singapore, Laos,
and Cambodia [5,6].

The NDVI product of the MODIS vegetation indices, produced at 16 d intervals,
facilitates consistent spatiotemporal comparisons of vegetation canopy greenness, which is
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a composite property of the leaf area, chlorophyll content, and canopy structure. During
the summer period (mid-February to mid-May), few areas had vegetation cover, primarily
dominated by dense paddy fields in the irrigation zones. However, previous studies have
identified B. pseudomallei activity in soil paddy fields during the dry season [24] and in
uncultivated lands [23]. In the rainy season, vegetation cover is increased, comprising
paddy fields, grasslands, and forests, which B. pseudomallei has been detected in [55–57].
Notably, studies have shown no significant differences in B. pseudomallei activity between
paddy fields and other land use types [57].

Heavy rainfall influences soil moisture and flooding, creating favourable conditions
for the presence of B. pseudomallei in watershed areas [2,58,59]. NDWI and rainfall exhibited
varying coefficients each month, aiding in understanding the spatial distribution of the
melioidosis morbidity rate at the local level. The use of satellite imagery enables rapid
data acquisition and coverage of large areas, particularly in regions with differing rainfall
patterns across tambons. Evaluation of rainfall from CHIRPS involves comparison with
gauge observations before application, given its approximately 5 km resolution and large
scale [35]. Consequently, the GWPR model assisted in weighting the parameter values
for neighbouring observations to generate location-specific estimates. Our study revealed
a negative coefficient for rainfall, with nearly half of the associated melioidosis cases
displaying high deviance percentages. Nonetheless, an association between melioidosis
and rainfall has been reported in various countries, such as Australia [45,46], Taiwan [47],
Malaysia [48], and Singapore [5]. Additionally, Shaharudin et al. [60] reported a 1% detec-
tion rate of B. pseudomallei in soil, indicating a potential risk of melioidosis among flood
victims in Kelantan, Malaysia.

In the present study, we utilised environmental indicators derived from remotely
sensed data to investigate their spatial relationships with the morbidity rate of melioidosis,
which differs in spatial heterogeneity in each local area. We employed boxplots to highlight
measures of the central tendency of the explanatory variables (Figure 6), identifying outliers
in each month and suggesting potential data non-stationarity. This observation indicated
an inconsistency in the trend of the monthly melioidosis morbidity rate over the decade,
with cases occurring every month.
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However, this study has several limitations. First, the resolution of the satellite im-
agery of environmental indicators may have affected the scale or resolution of the study
area. Therefore, future considerations should incorporate higher-resolution or optimal-
scale input data layers, such as Landsat, SPOT, and Sentinel. Second, our retrospective
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spatiotemporal design may have led to an underestimation of melioidosis cases within the
province. Strengthening our study will involve predicting at-risk areas and forecasting
melioidosis cases. Finally, while the GWPR model offers moderate reliability, it remains
incomplete, similar to other spatial models. Addressing these challenges would involve
validating the model performance through training data generation and testing data for
validation and accuracy assessment for further research or implementation in public health.
Additionally, we suggest further research that includes explanatory factors such as demo-
graphic and socioeconomic data, soil texture analysis, and health survey data. Furthermore,
investigating the relationship between environmental indicators and bacterial presence
in soil and water as well as analysing spatiotemporal data using time-series models will
provide valuable insights for future studies.

5. Conclusions

This study conducted spatiotemporal analyses of the melioidosis morbidity rate in an
endemic area of Ubon Ratchathani over a 10 y period and categorised them into monthly
occurrences. The distribution pattern of melioidosis morbidity rate indicated clustering,
with hotspots predominantly observed in the northern region. The GPR model proved suit-
able for studying relationships at the global level and aiding in monitoring and prevention
efforts at the provincial level. Meanwhile, the GWPR model was employed to estimate
local geographical relationships by utilising nearby location weights to estimate the points
of interest, yielding results superior to those of the GPR model. Our findings elucidate the
relationship between environmental indicators and the morbidity rate of local melioidosis
as indicated by the local percentage of deviance, which assesses the explanatory power
of the model in terms of melioidosis occurrence. Although the coefficients for each factor
varied from negative to positive, they effectively explained the relative contributions of
the LST, NDVI, NDWI, and rainfall to the morbidity rate of melioidosis in each local area.
Furthermore, the GWPR model revealed spatial heterogeneity attributable to differences in
land surface characteristics and geography across various areas. Consequently, our findings
offer valuable insights to guide the delineation of area boundaries when planning melioi-
dosis monitoring and surveillance efforts. Moreover, the methodology employed in this
study can be applied to other locations within Thailand and neighbouring countries, given
their shared tropical climate characteristics. Furthermore, the utilisation of remotely sensed
data, accessible through platforms such as GEE, offers a cost-effective and widely available
resource. However, it is imperative to ensure the continuous updating and calibration of
information to maintain accuracy, particularly in diverse local contexts.
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