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Abstract: We devise a hierarchical decision-making architecture for portfolio optimization on mul-
tiple markets. At the highest level a Deep Reinforcement Learning (DRL) agent selects among a
number of discrete actions, representing low-level agents. For the low-level agents, we use a set
of Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) models with
different hyperparameters, which all run in parallel, off-market (in a simulation). The information
on which the DRL agent decides which of the low-level agents should act next is constituted by
the stacking of the recent performances of all agents. Thus, the modelling resembles a statefull,
non-stationary, multi-arm bandit, where the performance of the individual arms changes with time
and is assumed to be dependent on the recent history. We perform experiments on the cryptocurrency
market (117 assets), on the stock market (46 assets) and on the foreign exchange market (28 pairs)
showing the excellent robustness and performance of the overall system. Moreover, we eliminate the
need for retraining and are able to deal with large testing sets successfully.

Keywords: Deep Reinforcement Learning; Hierarchical Risk Parity; Hierarchical Equal Risk Contribution;
portfolio optimization; cryptocurrencies; stocks; foreign exchange

1. Introduction

Since Modern Portfolio Theory Markowitz (1952), there have been numerous ap-
proaches to portfolio optimization. For an overview see Kolm et al. (2014).

The general problem can be stated simply as follows: at each time point t, we have
a set of N assets which increase or decrease in value in the next period t + τ, where τ is
generally referred to as the holding period or rebalancing period and is the number of
steps in which no trades are made. The value is measured in some risk-free asset, such
as cash (or in the case of cryptocurrencies, some stablecoin such as USDT). The goal is to
find a partitioning of the whole set of resources available at each step, such that the overall
portfolio value (its equivalent in cash/USDT) increases over time.

The sampling frequency of the overall time-series, i.e., the selection of the time-step,
if it represents an hour, a day or a minute, is generally chosen depending on the market
type, available resources and intuition of the researcher. We use 1 h, i.e., one hour, for all
the market types we use in our experiments (cryptocurrencies, stocks, foreign exchange)
as this seems to be a good compromise between information content and computational
resources needed to learn from such a series. Data at higher granularity (less than 1 h) is
harder to obtain (usually behind a paywall) as well, and the volatility is lower at higher
granularity, which means that generally, the overall profits will be lower for the same
number of points.

In this work we combine two sets of machine learning techniques for portfolio opti-
mization:

• The first, from the financial community, has received great praise and has been used
successfully in recent years: Hierarchical Risk Parity (HRP) De Prado (2016) and a
variation of it, Hierarchical Equal Risk Contribution (HERC) Raffinot (2018). We use
the acronym HC hereon to refer to both of these hierarchical approaches.
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• The second one is one of the most advanced machine learning techniques available
today: Deep Reinforcement Learning Mnih et al. (2015). It has been used success-
fully in many domains, from video games to robotics, and has been shown able to
learn complex tasks from scratch, without any prior knowledge of the environment.
For more details on DRL and its general applications see Li (2017), for DRL in finance
see Millea (2021); Mosavi et al. (2020).

DRL provides flexibility and adaptability at the expense of extended computation time
and large variance whereas the HC approaches provide some reliability, smaller variance
and require less computation time.

One of the major disadvantages of the DRL approach when dealing with the portfolio
optimization problem is the continuous multi-dimensional action space needed to model
the portfolio allocation weights, which is notoriously hard to explore. Since many iterations
are needed for a DRL algorithm to converge, with the duration of each iteration being
directly dependent on the state space dimensionality, it is important that the historical time
window and the number of assets fed in be reasonably small, as this would increase the
state space’s dimensionality.

The HC approach on the other hand is very fast but quite limited and strongly influ-
enced by the covariance estimation period. Some HC models can produce very different
results depending on this period.

In our work we harness the best of each approach in the following sense: (i) we use a
DRL agent for high level decision-making, with a discrete action space, thus overcoming
the continuous multi-dimensional action space exploration issue and (ii) avoid the large
variance by using as low-level agents HC models with different covariance estimation
periods which interact with the environment. Thus, the high-level DRL agent selects
among a set of low-level agents which in turn are fast HC models which give a reasonable
performance. We could say we are combining weak learners (HC models) with DRL to
obtain a strong learner (the overall system).

By combining these two techniques in this way, the agent is able to adapt to changing
market regimes, being able to deal well with bear but also bull sessions, thus enabling
a much larger testing period without any retraining. It actually removes the need for
retraining altogether.

Our contributions are fourfold:

• We combine DRL with HRP and HERC Raffinot (2018) (together referred to as HC—
hierarchical clustering) models, to manage the risk and combine the capabilities of
different models adaptively based on the current market conditions.

• We use HRP and HERC models with much lower covariance estimation periods than
used on other markets or than initially designed for Burggraf (2021); De Prado (2016).
We use periods as low as 30 and up to 700 h for covariance estimation. These numbers
are usually days or even months in the related literature.

• The whole system enables much larger periods for testing, without any retraining.
In the literature they usually employ retraining after short periods of testing. In our
case the testing periods (or out-of-sample as they are called in the financial community)
are as long as the training period or even longer.

• The network architecture and engineering is minimal, as we use a simple feed-forward
network with two hidden layers. This makes the whole system very easy to under-
stand and holds the promise for significant enhancements.

This works as a switching system, which allows the HC models to be switched between
each (high-level) time-step. This is useful especially for cryptocurrency markets, where
conditions are continuously changing, which HC models are not always able to capture.

Moreover, we are able to break the testing-after-training requirement, and need for
retraining, which is present throughout the financial community using DRL (Hirsa et al.
2021; Jiang and Liang 2017; Yang et al. 2020) and use much larger testing periods than
generally seen in the literature.
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We show in Figure 1a what the cumulative rate of change is for all used crypto. We
first compute the normalized return pt

pt−1
− 1 (where pt is the price at time t) at time t and

then add these all up for each asset, to get a cumulative indication of growth. We then sort
by the last value for cleaner visualisation.

In Figure 1b we show the overall architecture of our system. The integers to the bottom
left of the central rectangles denote the number of different models of each type available
as actions. Thus we have six HRP models, six HERC models and an additional action for
holding. This means that no model is selected and no trade is made.

Having multiple decision-making levels opens up a new class of trading algorithms,
flexibly combining specialised agents (this specificity can come from multiple sources,
e.g., can be risk focused or dataset driven) which work best in their representative scenarios,
based on other criteria, to maximise the overall profits. Numerous applications are possible.
In principle any asset allocation problem can be modelled in this way, assuming the
existence of good-enough low-level agents (weak learners).

This demonstrates a means of avoiding the cumbersome high-dimensional continuous
action space problem. Moreover, it scales well when adding other asset classes (assuming
each new class will need at least a few different base-models), adding only one discrete
action to the DRL agent for each new model added. In short, we can scale our system to
a very large number of assets (assuming we can partition them pertinently into different
asset classes) with minimum overhead for the DRL agent.
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Figure 1. Overview of the data (left) and system architecture (right). (a) Cumulative rate of change
of all assets in the portfolio; (b) Overview of the system architecture.

2. Related Work

An asset allocation problem tries to optimize some relation between returns and risk.
The original efficient frontier, devised by Markowitz is found by maximizing returns and
minimizing risk (the risk is generally considered to be the volatility of the portfolio). This is
given by the standard deviation of the random variable wTX where w is the vector of asset
weights and X is the matrix of asset returns. Thus the volatility is given by: σ(w) =

√
wTΣw,

with Σ the covariance of the asset returns. There are many related measures, among which
we mention the ubiquitous ones:

• minimum variance portfolio Bodnar et al. (2017); Clarke et al. (2011) aims at minimiz-
ing the variance by finding the minimum weight vector w to minimize wTΣw

• maximum diversification Choueifaty and Coignard (2008) defines a diversification

ratio D = wTσ√
wTΣw
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• the risk parity solution Maillard et al. (2010) aims at solving a fixed point problem:

wi =
σ(w)2

(Σw)i N
with N the number of assets. An alternative formulation is to find w

which minimizes
N

∑
i=1

[
wi −

σ(w)2

(Σw)i N

]2

.

• hierarchical clustering approaches in a series of relatively recent papers. Several
works have leveraged the idea of hierarchical clustering which we describe in more
detail below.

The initial Critical Line Algorithm (CLA) devised by Markowitz is a quadratic opti-
mization problem with inequality constraints. The CLA guarantees finding the solution
in a specific number of iterations. It also bypasses the Karush–Kuhn–Tucker conditions
admirably. Even though it is a remarkable algorithm is has some downsides:

• (i) if the return predictions deviate by even a small amount from the actual returns
then the allocation changes drastically Michaud and Michaud (2007);

• (ii) it requires the inversion of the covariance-matrix, which can be ill-conditioned and
thus the inversion is susceptible to numerical errors;

• (iii) correlated investments indicate the need for diversification but this correlation is
exactly what makes the solutions unstable (this is known as the Markowitz curse).

For more details, we refer the curious reader to De Prado (2016). Some solutions were
developed to deal with the above issues. In one solution, the prediction of the returns was
dropped altogether, which leads to risk parity approaches Jurczenko (2015). Numerical
stability of the matrix inversion procedure has also been improved through other techniques
such as shrinking Ledoit and Wolf (2003). For more details about the instabilities mentioned
above see Kolm et al. (2014). Other approaches have been explored in the literature, such
as incorporating prior beliefs Black and Litterman (1992) and even online reinforcement
learning was used Moody and Saffell (1998).

More recently, a new set of simple and elegant techniques was introduced De Prado
(2016), where clustering is employed, unveiling a hierarchical structure in the correlations
and allowing resources to be allocated depending on this hierarchy. In this case, there is no
need for a matrix inversion, thus avoiding the instabilities associated with it. Following
this initial algorithm, other techniques making use of hierarchical clustering have been
developed (HERC Raffinot (2018), HCAA Raffinot (2017)).

2.1. Hierarchical Risk Parity

Next, we will describe in some detail the initial algorithm given in De Prado (2016)
and will show at each step the visualisation corresponding to our own data on the cryp-
tocurrency market. Given a set of N assets, each of length T, we have a N × T matrix of
assets. There are three main steps:

• 1. Computing the dendrogram using hierarchical tree clustering algorithm by using a
distance matrix of the asset correlations.

– First we compute the correlation among assets, which produces an N × N matrix
we call ρ.

– Then, we convert this to a distance matrix through

D(i, j) =
√

0.5× (1− ρ(i, j)).

– We next devise a new distance matrix D̂ which is actually a similarity matrix. It
is computed as follows:

D̂(i, j) =

√√√√ N

∑
k=1

(D(k, i)− D(k, j))2.
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– We then start to form clusters as follows:

U = argmini,jD̂(i, j).

This gives us two indices r1 and c1, which are the row and column indices in D̂. We
combine the assets given by the respective indices to obtain the first cluster U[1].
For more details on the procedure please see the original paper De Prado (2016).

– We now delete the newly formed cluster assets row and column from the matrix
(r1 and c1) and replace them with a single one. Computing distances between
this new cluster and the remaining assets can be performed by multiple different
criteria, as is the general case with clustering, either single-linkage, average-
linkage, etc.

– We repeat the last two steps until we have only one cluster. So we can see this
is an agglomerative clustering algorithm. We show its dendrogram (graphical
depiction of the hierarchical clustering) on our crypto data in Figure 2.
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Figure 2. Dendrogram of the hierarchical clustering of the crypto assets.

• 2. Doing matrix seriation. This procedure rearranges data in such a way that larger
covariances are closer to the diagonal and that similar values are near. This results in
a quasi-diagonal covariance matrix. We show this process on our own crypto dataset
Figure 3.
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Figure 3. Original correlation distance matrix (left) and after matrix seriation or quasi-diagonalization
(right).

• 3. Recursive bisection. This is the final step which actually assigns weights to the
assets using the previous clustering. Looking at the hierarchical tree structure:

– We first set all weights to 1.
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– Next, starting from the root, for each cluster we use the following weights to
compute the volatilities:

wi =
diag(Vi)

−1

trace(diag(Vi)−1)
.

This uses the fact that for a diagonal covariance matrix, the inverse-variance
allocations are optimal.

– Then for the two branches of each node (a node corresponds to a cluster) we
compute the variance: σ1 = wT

1 V1w1 and σ2 = wT
2 V2w2.

– Finally, we rescale the weights as wi = αiwi with α1 = 1− σ1
σ1+σ2

and α2 = 1− α1

Most HC models evaluated in the literature look at much larger time periods, and are
often used for the analysis of the long-term asset behavior. We show that shorter periods
can be used successfully and the overall system performance can be enhanced by adaptively
selecting among them.

2.2. Deep Reinforcement Learning

In a different line of work, DRL has been applied with some degree of success in
many markets Betancourt and Chen (2021); Jiang and Liang (2017); Zejnullahu et al. (2022);
Zhang et al. (2020). One of the major differences between the two approaches, is the period
at which they are evaluated on, with HRP and related approaches tackling much larger
out-of-sample sets. Most DRL algorithms used in trading are generally trained for a long
time and then their performance is evaluated for a short test time. This evaluation period
needs to come immediately after the training period. The latter is thought to be required
due to the nature of the market and the limitations of the agent which cannot generalize to
many different dynamics. Another shortcoming of the DRL approach is that it generally
requires a continuous action space, which is notoriously hard to explore.

The new DRL techniques applied on the portfolio management problem seemed to be
reinventing the wheel, with some approaches even incorporating covariance estimation.
Most of them used some of the existing theory but none of the existing practical models.
The models coming from the financial community and DRL seemed to be mutually exclu-
sive, despite tackling the same issue. You could either use one or the other. This is where
we try to bridge the gap, by employing these more traditional HC models from the financial
community, as a starting point and adding the DRL flexibility on top of them, we avoid
its large computational requirements, large variance and instability. Our DRL works on a
small number of state dimensions, the recent performance of all models. As for actions it
selects among available models, 12 + 1 (hold) possible discrete actions.

In our work we overcome these limitations, leveraging a fast (much faster than DRL)
and well-received algorithm (HRP) to be able to use a single agent without need for
retraining and we use a discrete action space where each action corresponds to selecting
one of the HRP and HERC models’ weights assignments.

2.3. Model-Based RL

Model-based RL assumes the existence of some abstract simulation of the world, either
devised by the engineer, or learned by a machine learning algorithm. This simulation is
then used to generate rewards and/or observations for the agent, which allows it to learn
from experiences (which are now embedded in the simulation) without interacting with the
real environment. Some advantages and constraints of having a model-based RL agent are:

• The interaction with the real environment might be risky, inducing large costs some-
times. Thus having a zero-cost alternative is desirable.

• Having an accurate enough model of the world is necessary for the agent to learn and
behave well in the real environment.

• The model is not necessarily a perfect representation of the real world, but it is close
enough to be useful.
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There are not many published articles using model-based DRL on trading, but there
are some: Wei et al. (2019); Yu et al. (2019). However, all of them deal with prediction of
the future, and not with the actual trading. We incorporate in our system, a different type
of model, a decision-making model, in which we already have a dozen working trading
models which we then select from using our DRL agent. Moreover, since the market state is
the same independent of the actions taken by the agent, we can compute the performance
of many decision-making models in parallel.

3. System Architecture

We use a high-level DRL agent (Proximal Policy Optimization Schulman et al. (2017)
—PPO) which selects the next model to act on the market, based on its recent performance.

PPO is a policy optimization DRL algorithm which uses an approximation to a more
analytical trust-region policy optimization Schulman et al. (2015). In general it has good
properties throughout a range of tasks and reaches some solution in a reasonable amount
of time. It is better behaved, in our experience, more stable than other DRL algorithms1.

We wanted to combine the flexibility of DRL with the efficiency and robustness of
HC approaches. The motivation behind this is to harness the strengths of DRL, while
overcoming its drawbacks: high-dimensional continuous action space, large state space
and large variance in performance. The whole system is designed to adaptively deal with
switching market regimes while avoiding the need for retraining, and it does so successfully
as seen in the next section.

We first run the low-level models, the 12 HC models on the market to obtain their
performance on the full dataset (Figure 4). We see that the performance is worse than the
buy-and-hold strategy for most HC models. We save these models’ performances to a file
(to avoid computing it every time they are requested by the DRL agent in the training
phase) and load them up in each RL experiment. These performances of all models will
function as state information for the DRL agent, indexed by the step we are at in the dataset.
We also tried adding the returns of all assets, or using only the returns as a state but that
produced a worse performance than just using the recent performance of all models.

By having multiple HRP and HERC models with different hyperparameters (see the
whole set of hyperparameters in Table 1, we vary the covariance estimation period, as it is
significantly influencing performance), we ensure that our pool of decision making models
is diverse. Thus, we account for different market regimes, and we remove the need for
having the testing period right after the training period. This dependency on the recent
past is now incorporated in the recent performance of the individual HC models (which is
fed as a state to the PPO agent), thus allowing for much larger testing periods. We show
good performance on the crypto market for as much as 13 months without any retraining
(with training on 13 months as well). For details of the datasets used and train-test splits
see Table 2.

The data we chose were the most recent free data we found available at the time of the
respective experiments. We tried to split the data similarly even if they had different sizes
for each market, trying to keep a large testing set for each, to avoid cherry-picking, which
can happen for small testing sets. We considered the fact that we ended up with different
periods and different sizes for each market as beneficial for the overall robustness of
sampling and evaluation of our system. The crypto data were taken from https://binance.
com/ (accessed on 2 June 2022) through the python API, the forex data were taken from
https://data.forexsb.com/ (accessed on 29 September 2022), while the stocks data were
taken from https://www.alphavantage.co/ (accessed on 5 February 2022). The individual
assets were selected based on how much valid data were available for each asset. We chose
the assets with the fewest missing points. See the full list of assets in Table 3.

Both the train and test periods start with an offset of 700 h, the maximum covariance
estimation period among the HC decision making models. This means that no training or
testing takes place in this interval.

https://binance.com/
https://binance.com/
https://data.forexsb.com/
https://www.alphavantage.co/
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Table 1. Hyperparameters for the HRP and HERC models.

Hyperparameter—Model HRP HERC

Risk measure CDaR CDaR

Codependence Pearson Pearson

Linkage average average

Max clusters - 10

Optimal leaf order True True

Table 2. Training and testing splits.

Market Training Set Testing Set

Crypto 22 March 2020 04:00–13 May 2021
14:00 13 May 2021 15:00–1 June 2022 03:00

Stocks 17 September 2019 15:30–16
December 2020 12:30

16 December 2020 13:30–4 February
2022 15:30

Forex 11 December 2020 01:00–30
September 2021 23:00

10 January 2021 00:00–28 September
2022 06:00

1 
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Figure 4. Performance of individual HRP and HERC models. (a) HRP on crypto market (117 coins);
(b) HERC on crypto market (117 coins); (c) HRP on stock market (46 stocks); (d) HERC on stock
market (46 stocks); (e) HRP on forex (28 pairs); (f) HERC on forex (28 pairs).
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Table 3. List of assets used on each market.

Cryptocurrencies Stocks Forex

ADABUSD LINKBUSD AAPL AUDCAD
ADATUSD LINKUSDT ABT AUDCHF
ADAUSDT LSKUSDT ACN AUDJPY
ALGOUSDT LTCBUSD ADBE AUDNZD
ANKRUSDT LTCUSDT AMD AUDUSD
ARPAUSDT LTOUSDT AMZN CADCHF
ATOMBUSD MATICUSDT ASML CADJPY
ATOMUSDT MFTUSDT AVGO CHFJPY
BANDUSDT MITHUSDT BABA EURAUD
BATBUSD MTLUSDT BAC EURCAD
BATUSDT NEOBUSD BHP EURCHF
BCHBUSD NEOUSDT COST EURGBP
BCHUSDT NKNUSDT CRM EURJPY
BEAMUSDT NULSUSDT CSCO EURNZD
BNBBUSD OGNUSDT CVX EURUSD
BNBTUSD OMGUSDT DIS GBPAUD
BNBUSDT ONEUSDT GOOG GBPCAD
BNTBUSD ONGUSDT HD GBPCHF
BNTUSDT ONTBUSD INTC GBPJPY
BTCBUSD ONTUSDT JNJ GBPNZD
BTCTUSD PERLUSDT JPM GBPUSD
BTCUSDT QTUMBUSD KO NZDCAD
BTSUSDT QTUMUSDT MA NZDCHF
BUSDUSDT RENUSDT MCD NZDJPY
CELRUSDT RLCUSDT MS NZDUSD
CHZUSDT RVNBUSD MSFT USDCAD
COSUSDT RVNUSDT NFLX USDCHF
CTXCUSDT STXUSDT NKE USDJPY
CVCUSDT TCTUSDT NVDA
DASHBUSD TFUELUSDT NVS
DASHUSDT THETAUSDT ORCL
DENTUSDT TOMOUSDT PEP
DOCKUSDT TROYUSDT PFE
DOGEUSDT TRXBUSD PG
DUSKUSDT TRXTUSD PM
ENJBUSD TRXUSDT QCOM
ENJUSDT TUSDUSDT TM
EOSBUSD USDCUSDT TMO
EOSUSDT VETBUSD TSLA
ETCBUSD VETUSDT TSM
ETCUSDT VITEUSDT UNH
ETHBUSD WANUSDT UPS
ETHTUSD WAVESBUSD V
ETHUSDT WAVESUSDT VZ
EURBUSD WINUSDT WMT
EURUSDT WRXUSDT XOM
FETUSDT XLMBUSD
FTMUSDT XLMUSDT
FTTUSDT XMRUSDT
FUNUSDT XRPBUSD
GTOUSDT XRPTUSD
HBARUSDT XRPUSDT
HOTUSDT XTZBUSD
ICXBUSD XTZUSDT
ICXUSDT ZECUSDT
IOSTUSDT ZILUSDT
IOTAUSDT ZRXUSDT
IOTXUSDT KEYUSDT
KAVAUSDT
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3.1. Performance of Individual HRP Models

We run multiple HRP models with different parameters in parallel since the problem
setup allows this without any issues. See the results on the full datasets in Figure 4.

After we receive the prices for all assets for the current timestep, compute each model’s
respective profits if allowed to trade on the real market. We assume there is some sort of
smoothness in model performance, which recent history being indicative of the immediate
future, so we are feeding the recent T steps of the model performance (actually its rate Pt

Pt−1
,

to make it independent of the value magnitude).
We use the riskfolio library2 to acquire the HRP and HERC solution, with the Con-

ditional Drawdown at Risk (CDaR) as the risk measure to optimize the portfolio. CDaR
is a measure similar to Conditional Variance at Risk (CVar, Uryasev (2000)), but which
uses the drawdown instead of the variance of the assets. For more details on this measure
see Goldberg and Mahmoud (2017).

In Figure 4 we show the performance of the individual HC models on all three markets.
We vary the covariance estimation period, the parameter which influences significantly the
portfolio selection at each step. HERC models are less correlated with other HERC models,
with HRP models being highly correlated with other HRP models, however the HRP and
HERC models are not correlated. The idea is to have more heterogeneous models such that
the DRL agent can choose a better performing model when the performance of the current
selection goes down.

In Figure 5 we can see the mean performance of the discrete DRL agent on each market
(blue) with the black bars representing the sample standard deviation from 30 samples.
We report the result of the best configuration of the hyperparameters. See Table 4 for the
full list of hyperparameters used for PPO. The orange bars represent the performance
of the continuous DRL agent, when we have 12 continuous actions, one value for each
low-level agent. This should enable arbitrary policy learning, combining the best of each
agent at each step, while still reducing the dimensionality of the action-space significantly.
However, even if this showed better than random mean performance and much lower
standard deviation (a much desired trait for a DRL agent), the performance was quite poor
compared to the discrete agent. The green bars represent the performance of a random
high-level policy, where only the DRL agent is replaced with a random policy, while the
low-level agents remain the same. This is to directly compare the performance of a DRL
policy with a random policy. The red bars represent a base policy which considers investing
at the beginning of the evaluation period the same amount of cash (or USDT) in each of the
available assets and holding them until the end of the evaluation period.

Table 4. Hyperparameters for the PPO model.

Hyperparameter—Model PPO

Learning rate grid_search([0.0001, 0.001, 0.01])

Value function clip grid_search([1, 10, 100])

Gradient clip grid_search([0.1, 1, 10])

Network [1024, 512]

Activation function ReLU

KL coeff 0.2

Clip parameter 0.3

Uses generalized advantage estimation True
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Figure 5. Portfolio value by market.

3.2. Rewards

For RL we used the RLlib library3. Aside from the classical reward given to a portfolio
optimization agent, we add a hold reward, to incentivize the agent to hold when all the
assets are going down. The reward at time t is given by:

rewardt =
m

∑
i=1

qi
t pi

t −
m

∑
i=1

qi
t−τ pi

t−τ (1)

where τ is the number of low-level steps corresponding to a high-level step (we take this
as 5), qi

t is the quantity of asset i at time t, pi
t is the price of asset i at time t, and qi

t−1 is the
quantity of asset i at time t− 1. The quantity of asset i is always positive and is related to
the weights wt

i of the portfolio at time t through the overall previous portfolio value, and is
given by:

qi
t = wi

t ·
∑m

j=1 qj
t−τ pj

t−τ

pi
t−τ

(2)

The reward for holding is given to the agent only when all assets have gone down and
the recent action was hold. This is given by:

rewardhold =
m

∑
i=1

(
1−

pi
t−τ

pi
t

)
(3)

3.3. Combining the Models

We can also combine the models weighted by some real value (so M continuous
outputs, with M the number of models) which is the output of the DRL agent. The previous
case is just a simplified version of this, where one of the outputs is 1 and the rest are all 0.

In this manner we can construct arbitrary policies, driven by the DRL agent. We can
vary the discretization factor, allowing just a few discrete values for each model. This can be
defined as d = how many values can the weight take between 0 and 1. If the answer is 2, we are in
the previous case, where only one model acts at any point. However, if d > 2 then we can
have multiple models acting at the same time, with different weights. If d is ∞ then each
weight is continuous. We test this version of the system as well, with a continuous-output
DDPG Lillicrap et al. (2015) agent in place of the previous discrete-output PPO agent.

Despite training the DDPG agent for 10,000 iterations, it has not learned enough to
produce any meaningful results. We omit the results, but we give the formulation here.
The poor performance might be because of an insufficient hyperparameter search (see
Table 5 for hyperparameters used, and check the RLlib source for the full default set4).
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Table 5. Hyperparameters for the DDPG model.

Hyperparameter—Model DDPG

Actor learning rate grid_search([1 × 10−3, 1 × 10−4, 1 × 10−5] )

Critic learning rate grid_search([1 × 10−3, 1 × 10−4, 1 × 10−5])

Network for actor and critic [1024, 512]

Activation function ReLU

Target network update frequency grid_search([10, 100, 1000])

We also tried a continuous version of the PPO agent, which shows marginally im-
proved performance. Originally PPO was designed as a discrete action space algorithm,
but in RLlib it can be used with continuous action spaces as well, by using a Gaussian
distribution as the action distribution. We use the same hyperparameters as in the discrete
case. Each model is given a weight ai (with i from 1 to M, in our case M = 12) and the
portfolio is constructed as follows. First we weigh the asset weights of the respective
model by the model weight, which is one element of the output vector, or action, from the
DDPG/PPO agent:

w̄i = ai ·wi (4)

Then we sum up to weights for each asset, for all models:

w̄j =
M

∑
i=1

w̄j
i for j = 1, . . . , N where N is the number of assets (5)

Finally, we normalize the weights to sum up to 1:

ŵj =
w̄j

∑N
j=1 w̄j

(6)

Normally, if the action components ai sum up to one then there is no need for the last
normalization, however in RLlib they do have strange bounds sometimes.

4. Results

We show good performance on the crypto market for over a year without any retrain-
ing and in an extremely bear market. We start with an initial portfolio of USDT/USD 1000
and thus ending for example with USDT 2000 means we have gained 100%.

Since our base models are quite good already, it would be unfair to compare the results
of our system (PPO + HC models) with a purely random policy. Thus we replace the PPO
agent selecting among the HC models, with a random policy. We use this as a base-model
comparison to our PPO agent.

We see in Figure 5 that the variances of both the PPO and random policies are similar
for the crypto market (30 samples for each), and that the PPO agent clearly performs better
than the random policy on all three markets.

We can attribute the large performance variance due to the fact that we are making
decisions at a higher level, among models, and for multiple timesteps. The second baseline
in Figure 5 is the buy-and-hold strategy for all assets. The strategy assumes an equal weight
attribution for all assets. We see that a random policy at the high-level performs much
better than the equal buy-and-hold strategy, at least for the crypto market.

We also see the different magnitudes of gains on different markets, with forex being
the least profitable and having the smallest standard deviation. That is due to the nature of
the time-series which has very low volatility compared to the crypto and stock market.

The performance is also clearly better than the individual HC models, which shows
that our PPO agent managed to learn when to switch between models.
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We chose such a large testing set to include both types of market conditions, bull
and bear. However, to make sure we deal with widely different market conditions, we
switch the training and testing sets. By doing so, we clearly brake the testing-after-training
condition usually seen in the community. We show in Figure 6 the results on the stock and
crypto markets for our system when the testing set is chronologically before the training set.
In this case the crypto market has a very strong bull trend, but our system manages to obtain
a significantly higher mean performance (30× vs. 50×). The y axis is on a logarithmic scale
for better visualisation. In the stock market our system performs significantly better, even
though the market trend is not strongly bullish.

Crypto Stocks

104

Fin
al

 P
or

tfo
lio

 V
al

ue
 (l

og
)

Portfolio Value by Market
PPO
Random
Equal Buy and Hold

Figure 6. Portfolio value by market.

5. Discussion

From evaluating our system without any retraining on large testing sets, which go
through different regimes of the market, we can reliably say that our system works in more
market conditions. Even seminal works such as Deng et al. (2016); Jiang et al. (2017) use
a few very small isolated testing sets (50 days) with retraining in between. Some do use
larger testing sets of 1–2 years, but with larger training sets (3 and up to 9 times) as well Li
et al. (2019); Théate and Ernst (2021). Only in Zhang et al. (2020) we see truly large testing
sets with a similar size as the training set, but on a different set of assets (a mix of futures),
and they still use retraining. We also used different markets and different dataset sizes,
adding to the robustness of the evaluation.

We thus add to the body of evidence that the market switches between different
dynamics/regimes and having an explicit adaptive mechanism which deals with this
switching is highly fruitful. A system with more decision-making layers can include
additional useful information at selected layers, thus enabling structured processing of
news data or macroeconomic indicators in a more meaningful way. The Ukraine–Russia
conflict and the pandemic are such examples of macro-events which would clearly benefit
a trading system if incorporated soundly.

6. Conclusions

We combined two of the newest and most performant ML techniques in a hierarchical
decision-making system, with a DRL agent working as a high-level agent and selecting
between a set of heterogeneous low-level HC agents to effectively act on the trading
environment, i.e., assign weights to a portfolio of assets.

We showed that the DRL agent is able to learn when to switch between the low-level
models, and that the performance is better than the individual models. We also showed
that the performance is better than a random policy, which is a good baseline for the
performance of the high level of decision making since the low levels supposedly have
reasonable performance, thus a random high-level agent will surely perform better than a
purely random agent.
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Moreover, we were able to avoid retraining altogether, and increase the size of the
testing set significantly, making it as large as the training set. All our results were obtained
by using a default neural network with just two layers.

We also attempted to use a continuous action space for the DRL agent and combined
ideal weights from each HC model, but this did not work well, or we were not able to find
a good hyperparameter configuration for the DDPG agent.

Future work should try to find better hyperparameters, including the architecture
of the network. One natural way to extend the current system is to add another level of
decision-making and data aggregation, to deal with multiple markets in the same time.
More data sources should also be useful, such as social media sentiments, and could be
incorporated easily into the system, at selected levels.

The downside of an increasingly hierarchical system is the number of hyperparameters
one has to choose from. The more individual agents, the more parameters we have,
in addition to the ones used for their interaction. Joint training is prohibitive with a large
number of levels, thus a mechanism for pretraining at each level is essential.

However, a hierarchical architecture shows the promise of having specialized and
heterogeneous agents which can be selected alternatively to improve the overall system
performance. Thus, a more thorough search for base models should be useful, with maybe
some constraint which produces complementary models. Different decompositions of the
strategy space should be also informative of the underlying market dynamics.

We devised a new architecture leveraging the flexibility of DRL and the reliability and
efficiency of HC models. We avoided the notoriously hard to explore multi-dimensional
action space generally used in the DRL trading literature, by having HC models which do
the asset allocation and the DRL agent selects which seems to be the best one (based on
recent performance) to act in the real environment. The applications are numerous, with the
system being quite flexible and open to further research. One could use various different
base models or use different reward functions (or combination thereof) for the DRL. One
could even include a human in the loop as an additional low-level agent. Moreover, adding
or removing assets does not require DRL retraining since the HC models deal with the
actual asset allocation.
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Notes
1 https://huggingface.co/blog/deep-rl-ppo (accessed on 20 June 2022).
2 https://riskfolio-lib.readthedocs.io/en/latest/index.html (accessed on 20 June 2022).
3 https://docs.ray.io/en/latest/rllib/index.html (accessed on 20 June 2022).
4 https://github.com/ray-project/ray/blob/master/rllib/algorithms/ddpg/ddpg.py (accessed on 20 June 2022).
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