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Abstract: In recent years, a great deal of attention has been devoted to the use of neural networks
in portfolio management, particularly in the prediction of stock prices. Building a more profitable
portfolio with less risk has always been a challenging task. In this study, we propose a model to
build a portfolio according to an equity-market-neutral (EMN) investment strategy. In this portfolio,
the selection of stocks comprises two steps: a prediction of the individual returns of stocks using
LSTM neural network, followed by a ranking of these stocks according to their predicted returns.
The stocks with the best predicted returns and those with the worst predicted returns constitute,
respectively, the long side and the short side of the portfolio to be built. The proposed model has two
key benefits. First, data from historical quotes and technical and fundamental indicators are used in
the LSTM network to provide good predictions. Second, the EMN strategy allows for the funding of
long-position stocks by short-sell-position stocks, thus hedging the market risk. The results show
that the built portfolios performed better compared to the benchmarks. Nonetheless, performance
slowed down during the COVID-19 pandemic.

Keywords: portfolio performance; stock prediction; stock selection; portfolio construction; long
short-term memory (LSTM); portfolio management; equity-market-neutral; investment strategy;
stock return; S&P500 index

1. Introduction

According to the market efficiency hypothesis developed by Fama (1970), it is impossi-
ble to make accurate predictions about stock prices in the future, because the current prices
of financial assets reflect all the information that is available, and thus there is no such
thing as an undervalued or overvalued stock. Nonetheless, many empirical studies have
debunked this hypothesis, and have shown that, with some methods and techniques, it is
possible to make good predictions about future stock prices. Most of these techniques use
historical stock prices and/or financial information from the issuing companies, as part
of two well-known types of stock analysis: fundamental analysis and technical analysis
(Carhart 1997).

Since the foundational work of Markowitz (1952), which established the mathematical
foundations of portfolio construction, many statistical and econometric models have been
developed in order to predict the future prices and returns of financial assets, such as the
Capital Asset Pricing Model (CAPM) in 1961, the Three Factor Model by Fama and French
(1993), the Four Factor Model by Carhart (1997), the Autoregressive Model (AR) by Yule
(1926), the Moving Average process (MA) by Wold in 1938 (Neyman 1939), the ARMA
model by Box and Jenkins (1970), the ARIMA in 1976, the ARCH by Engle (1982), and
the GARCH by Bollerslev (1986). All of these statistical models are based on assumptions
relating to data, such as normality and stationarity.

With the technological and algorithmic evolution, rapid advances in artificial intelli-
gence technologies, the development of processors with high computing capacity, large
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size disks, and digital platforms with high connectivity and automatic trading systems,
portfolio managers are increasingly turning to automatic learning techniques, or machine
learning (ML), in their investment decision. These techniques allow managers to benefit
from opportunities by predicting future stock prices and increasing prediction accuracy.
As a matter of fact, the techniques capture complex patterns in the data and provide quick
executions, allowing for large-size data processing. Additionally, these technical solutions
have revolutionized automatic trading and greatly reduced the impact of behavioral biases.

Many studies have used machine learning techniques to predict future stock prices/
returns. Among these techniques are Logistic Regression (LR), the Support Vector Machine
(SVM), Random Forest (RF), and Adaboost. Other studies have used neural networks to
predict future stock prices and returns. Neural networks perform better than classic ML
methods due to their ability to learn complex non-linear functions with significant accuracy,
and to process a wide range of data (Nafia et al. 2022).

Since the appearance of the first Perceptron, made by Frank Rosenblatt, in 1957, the
structure of neural networks has continued to evolve (Rosenblatt 1957). The Multilayer
Perceptron (MLP) is an improved version of the Perceptron. It is considered the most
simplified version of a deep neural network (DNN), and is composed of an input layer,
several hidden layers, and an output layer. Other powerful and sophisticated DNN models
have been developed over recent years, including Convolutional Neural Networks (CNN)
that process visual data such as images and videos. Recurrent Neural Networks (RNN)
have attracted a great deal of attention, especially in handling modeling problems related
to time series, such as stock prices and returns, and sequential data in general, such as
speech recognition, language modeling, and translation. Long Short-Term Memory (LSTM)
neural networks have been devised to resolve the problem of the vanishing gradient, which
is the problem encountered by RNNs when dealing with long-term data sequences. Gated
Recurrent Unit (GRU) neural networks were introduced recently; they have a similar design
to LTSMs, but with fewer parameters.

Designing a strategy to predict stock returns is nonetheless a demanding task that
involves many challenges, since financial markets are complex, unstable, and evolving
environments. Moreover, the portfolio manager not only needs to identify the model that
best predicts stock returns, but also faces the challenge of building a high-performance
portfolio by implementing a promising strategy.

Even if the stocks in a “Buy and Hold” portfolio are selected meticulously, the portfolio
may still be exposed to high levels of systematic risk and be affected by market risk.
Therefore, investment strategy is paramount when building a portfolio. The “Equity-
Market-Neutral” strategy, designed and applied for the first time by Edward Thorp between
1979 and 1980, is widely used by hedge funds. It allows users to build a market-neutral
portfolio with market exposure close to zero, while generating high returns. This strategy is
an alternative to classic investment strategies that generate returns independent of market
fluctuations. It essentially relies on the portfolio manager’s ability to pick stocks. In fact,
when the market rises, the short positions’ losses are partially offset by the long positions’
gains, and when the market falls, the short positions provide a hedge against the long
positions’ losses (Jacobs and Levy 2005; Ganchev 2022).

Thanks to their ability to accurately predict time series, LSTM neural networks are
often used for stock price and return prediction. However, the utilization of LSTMs in
constructing a profitable portfolio using the EMN strategy is a topic that has seldom been
explored in the scientific literature. As a result of this gap, the following central research
question emerges: “How can an EMN portfolio that outperforms the market be constructed
using LSTM neural networks?” To answer this research question, this article proposes a
portfolio construction model based on an Equity-Market-Neutral alternative investment
strategy, where the stocks are selected according to their relative predicted performance.
Stock selection is performed in two stages: in the first stage, stocks’ returns are predicted
using LSTM neural networks with the same setting. Then, in the second stage, the stocks
are ranked according to their predicted returns. Furthermore, since the stocks used in the
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model are part of the same business line and are thus structurally connected, and since the
LSTM neural networks used to predict the future returns for these stocks have the same
setting, we expect the model to perform well in the ranking of stocks. Moreover, with a
strategy based on relative values, the accuracy of the predicted returns is not as important
as the accuracy in ranking the stocks in the securities set.

The approach of the study involves building a portfolio with two sides (two portfolios),
a long side and a short side each containing the same number of stocks, and with a net
value of zero. The long side will contain the stocks that we expect to outperform the others.
The other side, the short side, will contain the stocks expected to underperform compared
to the others. The expected performance is measured with the future predicted returns
by training the LTSM neural networks on the historical data of each stock, followed by
cross-section classification operation at each rebalancing date. To enhance the robustness
of this prediction/ranking process, we perform several iterations by changing one of the
parameters that acts on the optimization of the LTSM networks (the seed). We create
15 different versions of this prediction/ranking, and the final stock selection is decided
based on the “majority vote” principle.

This study displays robust features. First, it introduces a model using stock returns of
the “S&P500 Consumer Staples” sector to build a market-neutral portfolio in two stages:
prediction, and then selection. Second, the returns prediction is performed via LSTM neural
networks that are demonstrably robust in short- and long-term time series predictions.
Third, the model uses a decade’s worth of historical data (2010–2020): hundreds of explica-
tive variables serve as the input, most of which are technical and fundamental indicators
commonly used by portfolio management professionals. Other variables are also added
using “feature engineering” techniques. These techniques consist of using subject matter
knowledge to integrate relevant variables to input data. Fourth, the portfolio performance
is measured during a test period with the most commonly utilized performance and risk
metrics in the portfolio management domain. This study also presents a performance
analysis of two periods: a pre-COVID-19 period and an including-COVID-19 period.

The major contributions of this paper are: First, it proposes a robust method that
utilizes LSTM neural networks to build a portfolio according to EMN investment strategy
that outperforms the market. In other words, how to harness the predictive power of the
LSTM in a comprehensive framework, which encompasses the prediction and selection
of stocks, to build an equal-weight EMN portfolio with a higher risk-adjusted return than
benchmarks, namely, the sector index, and the market index. Second, this study demon-
strates how feature engineering and enriching input data with technical and fundamental
indicators, and features assessing the quality of the stocks can improve the performance of
the constructed portfolio.

The remainder of this paper is structured as follows Section 2 provides a literature
review and a brief discussion of certain related works. Section 3 offers detailed discussion
of the data and the methodology used in this research. In Section 4, the detailed results of
model performance are presented. Finally, Section 5 presents our conclusions.

2. Literature Review

Since machine learning (ML) was introduced to the finance world 40 years ago, neural
networks in different form have risen to prominence in many research areas and fields of
application, including portfolio management, scam detection, the evaluation of financial
assets and derivatives, trading algorithms, studies of blockchains and cryptocurrency,
feelings analysis and behavioral finance, and text-mining in finance. With the arrival of
recurrent neuronal networks (RNN) and their improved version, long short-term memory
(LSTM), which process time series and other sequential data, many studies have attempted
to apply these techniques to portfolio management, particularly stock price predictions.

In their literature review of research related to the implementation of deep learning
(DL) in finance during the last five years, Ozbayoglu et al. (2020) identified LSTM as the
predominant process in the research in terms of the number of uses. The reason for this
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is that the LSTM structure is more able to adapt to financial time series. Jiang (2021) also
conducted a literature review on the application of DL in stock prediction by studying
more than 120 research papers from 2017, 2018, and 2019. He found that RNN models,
including LSTM, are more commonly used than other models. Not only did he reveal that
LSTM is popular in financial stock predictions, but he also demonstrated its predicting
power. In their literature review of Forex and the prediction of stock prices, Hu et al. (2021)
used data from the DBLP database and Microsoft Academic between 2015 and 2021, and
found that all 27 papers that used LSTM agreed that LSTM neural networks outperform
other models, or that it is at least capable of obtaining good prediction results.

Many research articles have used LSTM neural networks in applications related to
stocks. Most of these studies apply LSTM to the prediction of stock prices with different
study characteristics, such as the learning data period, the prediction horizon, the number
of variables in the study, the frequency of the historical data used (intraday, daily, weekly,
or monthly), the nature of the used variables (OCHLV prices (Open, Close, High, Low,
and Volume), technical, fundamental, feeling analysis or macroeconomics), different hy-
perparameters, and different LSTM networks settings (Naik and Mohan 2019; Qiu et al.
2020; Ding and Qin 2020; Ghosh et al. 2019). Other research uses LSTM networks in the
prediction of index prices, since they are less volatile than stocks and constitute a set of
structurally linked stocks (in terms of sector, industry, size, etc.) (Michańków et al. 2022;
Tfaily and Fouad 2022). The application of LSTM networks is not limited to the prediction
of financial asset prices, but it is also used in the prediction of the direction of price trends.
In fact, several studies have used LSTM to predict the rise or the fall of stock prices by
transforming the regression problem to a classification problem with other metrics for
performance measurement (Patel et al. 2015; Yao et al. 2018).

However, less research has focused on portfolio construction and asset allocation
methods that use LSTM neural networks. Indeed, the real challenge for portfolio managers
is to figure out the best investment strategy for building a profitable portfolio with less
risk. The stocks need to be selected in such a way as to ensure optimal capital allocation.
Managers not only strive for accuracy in their stock price predictions in order to build their
portfolios, but also need to account for other considerations, such as the number of stocks
their portfolios must contain to diversify away idiosyncratic risk, and questions such as
how to hedge against systemic market risk, how to allocate capital among the stocks on the
portfolio to maximize its profitability, and how to fund the acquisition of long positions.

Chaweewanchon and Chaysiri (2022) proposed a hybrid model, R-CNN-BiLSTM (BiL-
STM is an improved version of LSTM), to build a mean-variance (MV) optimal portfolio
containing stocks that obtained the best predicted returns. CNN networks are used to
extract the data’s important characteristics and the BiLSTM networks are used to predict
prices. The model these authors propose is compared to other reference models that use
mean-variance optimization or equal weights to allocate capital on one side, and either
LSTM or BiLSTM to select stocks on the other side. The authors used the following met-
rics to evaluate the portfolio performance: the mean return, the standard deviation, and
the Sharpe ratio. Their experiments on the SET50 index of Thailand’s stock exchange
between 2015 and 2020 demonstrate that BiLSTM outperforms other techniques. They also
demonstrated that models that use “robust” inputs (i.e., those undergoing raw prices trans-
formations) outperform those that directly use closing prices. This study also concluded
that portfolios built with the support of LSTM or BiLSTM models outperform portfolios
where stocks are randomly selected.

Sen et al. (2021) built portfolios containing five stocks each from the seven sectors
that are part of the National Stock Exchange (NSE) in India. To achieve this, they used the
OCHLV historical prices of the chosen stocks for the previous five years (from 2016 to 2020)
to train the LSTM neural networks, and implemented a test period from 1 January to 1 June
2021. Two portfolios were built for each sector: a minimum risk portfolio and an optimal
risk portfolio, according to Markowitz minimum variance optimization. LSTM networks
were used to predict stock prices that were then used to calculate portfolios returns. The
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results demonstrated that LSTM performed well when the actual returns were compared
to the predicted returns.

Zhang and Tan (2018) proposed a new model for stock selection, referred to as “Deep
Stock Ranker”, to build a stock portfolio. Their model uses LSTM networks to predict future
returns rankings based on the OCHLV historical daily raw prices of all the stocks listed
in the Chinese market A-Share between 2006 and 2017. The authors built two portfolios:
a portfolio with an equally weighted selection strategy of the top 100 stocks according to
the obtained ranking, and another portfolio consisting of all the stocks in a score-weighted
fashion, i.e., with the weight of each stock being proportional to a score given according
to the stock’s position in the obtained ranking. The performance of these two portfolios
was compared to the performance of other portfolios generated using other models and
techniques. It was measured during a three-year test period (from 2015 to 2017) using the
following metrics: the information coefficient (IC), active return (AR), and information
ratio (IR). The authors found that the portfolio using the equally weighted selection with
raw price data outperformed the other portfolios.

Touzani and Douzi (2021) proposed a trading strategy for some stocks in the Moroccan
stock exchange using LSTM and GRU in the short term and the long term. To overcome
the liquidity problem, the small number of listed stocks (76 stocks), and the low volume
negotiated in the Moroccan market, the authors trained the model on data from the S&P500
index and the CAC40 index in the French stock exchange. Validation and other processes
were performed on data from the Moroccan stock exchange. The trading strategy involved
buying or selling a stock depending on how a function of the predicted price and the actual
price compare to a certain calibrated threshold. Finally, two stocks were chosen to construct
a portfolio and assess its performance during a test period from March 2019 to March 2021.
Their results showed that the portfolio they built generated an annual return of 27.13%, and
thus outperformed all the utilized benchmarks, except for the “Software and IT services”
index, which achieved a high return during the COVID-19 period.

Liu et al. (2017) presented a trading strategy based on a hybrid model combining CNN
and LSTM. CNN was used to select stocks and LSTM was used to manage the timing of
opening or closing a position as part of a long-short strategy. To achieve this, the authors
used OCHLV prices and returns data related to stocks in the Chinese Exchange. The training
period ran from 2007 to 2013, and the test period from January 2014 to March 2017. They
found that their strategy was more profitable than the benchmark and a simple momentum-
based strategy (which stipulates that the stocks that performed best in the last three to
twelve months will continue to perform well for the next few months, and that the reverse is
also true).

Hou et al. (2020) proposed a hybrid LSTM-DNN model by integrating 18 monthly
returns in LSTM and 19 fundamental variables in DNN to build a portfolio with a long–
short strategy. The authors tested the model on 1398 stocks listed on NYSE, AMEX, and
NASDAQ from 1977 to 2018. The portfolio was rebalanced in each period by buying the
stocks with the highest predicted returns in the top decile and selling those in the lowest
decile of the predicted returns ranking. To assess the model’s performance, two metrics
were used: the average monthly return and the Sharpe ratio. The results demonstrated that
this model outperformed other OLS and DNN reference models.

Cipiloglu Yildiz and Yildiz (2022) used LSTM to predict the prices of stocks in the
Turkish BIST30 using monthly OCHLV data from May 2000 to June 2019. They calculated
the predicted returns to infer price trends. Portfolios were built using stocks with predicted
returns above a certain threshold. Among the five methods used for weighting, equal
weighting and minimum variance were used. The metrics used to evaluate the portfolios’
performance were the Sharpe ratio, maximum drawdown, and conditional VaR. The results
show that portfolios using LSTM outperformed the other portfolios and the benchmarks.

Yi et al. (2022) proposed a model named “IntelliPortfolio”, which is geared toward
building a portfolio within the framework of Enhanced Index Tracking (EIT). The portfolio
is constructed in two steps: the first step involves stock selection using principal component
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analysis (PCA) and the k-means clustering algorithm, and the second step comprises weight
calculation using LSTM neural networks. Testing was performed on daily prices and some
fundamental indicators of five stock exchange indexes from 2009 to 2018. The model was
tested with four performance indicators (the tracking error, excess return, information ratio,
and Sharpe Ratio) over the last 60 days of the sample. The model was compared to five
existing models in the literature and the results show that it outperformed them.

This literature review can be summarized in the following Table 1:

Table 1. Summary of the literature review.

Autor Method and Strategy Performance Metrics Variables Conclusion

Chaweewanchon and
Chaysiri (2022)

Hybrid model
R-CNN-BiLSTM.

CNN for feature extraction.
BiLSTM for stock prediction,

and Markowitz
mean-variance model for

optimal portfolio
construction.

Mean return.
Standard deviation.

Sharpe ratio.
Close price

Their model is more
accurate than
benchmarks.

Portfolios built with the
LSTM or BiLSTM

models outperform
portfolios where stocks
are randomly selected.

Sen et al. (2021)

LSTM to predict price and
build: Minimum Risk

Portfolios and optimal Risk
Portfolios

Return.
Volatility. OCHLV LSTM is very accurate

Zhang and Tan (2018)

Deep Stock Ranker using
LSTM for Stock Selection

(select top M stocks
according to the predict

stocks’ future return ranking
score)

Information coefficient.
Active return.

Information ratio.
OCHLV

The equally weighted
portfolio, based on

their model and using
raw data, perform well

compared to
benchmarks.

Touzani and Douzi
(2021)

LSTM for short term and
GRU for medium term close

price prediction.
Buy or sell stock depending

on the prediction.

Global return.
Winerate ratio.

Annualized return.
Close price.

Their approach allows
selecting profitable

stocks and the creation
of portfolio that
outperform all

benchmarks except IT
index.

Liu et al. (2017)

Hybrid model: CNN for
stock selection and LSTM for
a timing strategy to buy, hold

or sell stocks.

Annualized rate of
return.

Maximum retracement.

OCHLV prices
and returns

Their strategy is more
profitable than the

benchmark

Hou et al. (2020)

Hybrid model: LSTM-DNN
to build a portfolio with a

long-short strategy (buying
stocks in the top decile of the

predicted returns ranking
and selling those in the

bottom decile)

Average monthly
return. Sharpe ratio.

18 monthly
returns in LSTM

and 19
fundamental

variables in DNN

Their model has
outperformed other
comparative models

(OLS and DNN)

Cipiloglu Yildiz and
Yildiz (2022)

LSTM to predict close price
for calculation of portfolio

weights.

Mean annualized
return.

Volatility.
Sharpe ratio.

Maximum drawdown.
cVaR.

OCHLV LSTM outperformed
the benchmarks.

The literature offers many studies focused on the prediction of prices and the direction
of change or stocks returns, but the integration of predictions in portfolio construction is
a research subject that has not yet been adequately explored. Furthermore, research that
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uses predictions as part of equity-market-neutral (EMN) alternative investment strategies
is quite rare. Hence, it would be beneficial to have a comprehensive framework combining
prediction, stock selection, and capital allocation to build a portfolio with an EMN strategy
and offer a detailed performance analysis.

Based on the previous literature review, it is evident that LSTM neural networks
outperform other methodologies in comparative model studies. Furthermore, in portfolio
management research, portfolios constructed using LSTM networks outperform their
benchmarks. Therefore, to answer the previously stated research question, the following
research hypotheses are formulated:

Hypothesis 1. A portfolio constructed based on the EMN investment strategy, which utilizes
LSTM neural networks to forecast returns, outperforms both benchmarks: sector index and market
index. The performance is measured in terms of risk-adjusted returns, expressed by metrics such as
Sharpe ratio, Sortino ratio, Treynor ratio, Omega ratio, and Calmar Ratio.

Hypothesis 2. Within a portfolio built according to an EMN investment strategy that utilizes
LSTM neural networks, enriching input data enhances the portfolio’s performance in terms of risk-
adjusted returns. The enrichment of input data is achieved by integrating fundamental indicator
ratios of the stocks relative to those of their sector (stock to sector fundamental indicators) and by
adding scoring variables (Scores and Piotroski) that assess the financial health of a stock by assigning
a score to the company based on its fundamental indicators.

3. Data and Methodology

In this empirical study, we propose a stock prediction and selection model to construct
an EMN portfolio. The model predicts the weekly returns of stocks in the “S&P 500
Consumer Staples” (CS) sector using LSTM neural networks to construct a robust portfolio
that is rebalanced weekly in three distinct configurations. The literature boasts many
models that predict stock price or the direction of its trend; however, in our model, we
predict the stock return, not the stock price. This decision was made based on the fact that
price series are not stationary, while returns are stationary.

For these purposes, ten years of historical data for all stocks in the CS sector were used
to train and test the model. This dataset is composed of a set of OCHLV price variables, and
a set of calculated technical and fundamental indicators. Each week, stocks were classified
into five quintiles based on their predicted returns; the two extreme quintiles, quintile 1
and quintile 5, constituted candidate stocks for building the long and short portfolios, that
is, the two sides of the robust EMN strategy portfolio. In such an alternative strategy, the
accuracy of the predicted return value for the stock itself is not relevant. Rather, it is the
accuracy of the stock’s ranking in the set of stocks composing the study universe at a given
date (cross section) that matters most.

After generating the set of candidate stocks for each of the long and short sides of the
portfolio through 15 different prediction repetitions, the final selection of the stocks of the
robust portfolio was undertaken according to the majority voting technique, which was
applied to the candidate stocks through all the repetitions performed.

To measure the model’s performance, two types of evaluations were undertaken: a first
evaluation of the statistical model’s performance according to the errors in the prediction
of future returns versus realized returns namely, MSE and MAE. Then, a second evaluation
of the financial performance of the robust portfolios was performed.

A comparison of the model evaluations was made according to the following four
levels (Figure 1):

• The category of explanatory variables introduced into the model, i.e., a basket of “basic
variables” versus “all variables”.
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• The size of the look-back period considered in LSTM to predict future weekly returns.
Two sizes are to be compared: a window of the past three observations versus a
window of the past four observations.

• The number of stocks selected for the two sides of the robust portfolio, i.e., six stocks
in each side versus seven stocks.

• The financial performance during the test period, namely, the pre-COVID-19 period
versus the whole period including the COVID-19 crisis period.
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3.1. Data Preparation
3.1.1. Data Acquisition

Several research papers use historical market data of OCHLV stocks because they
are more accessible than other stock data (Zhang and Tan 2018; Liu et al. 2017; Cipiloglu
Yildiz and Yildiz 2022). Other research papers use technical indicators, such as simple
moving averages, exponential moving averages, the relative strength index (RSI), daily,
weekly, or monthly returns, and historical volatilities (Lanbouri and Achchab 2019). Other
studies use fundamental indicators calculated based on financial statements, such as ratios
of profitability, operational efficiency, solvency, growth, and debt (Yi et al. 2022).

This study combines different categories of data. Specifically, we used the stocks in the
Consumer Staples (CS) sector of the US S&P 500 index according to the second level of the
GICS classification (Global Industry Classification Standard). This sector index was chosen
because it is part of a defensive sector, where firms produce or market basic goods and
services that are always in demand. Theoretically, these stocks are more stable compared to
stocks in other sectors, and they are equally impacted by financial or economic crises.

The basic data used in this study comprise stock and sector index market data and are
taken directly from the Bloomberg data provider; meanwhile, the variables used are the
result of calculations and transformations performed on these basic data.

To avoid survival bias, we listed all the stocks of the chosen sector index from January
2010 until December 2020. The number of active stocks at each time step during the
study period varies between 30 and 45 stocks depending on the missing data (Table A1
in Appendix B). We then extracted the historical market data and the fundamental data
generated during the whole study period. In addition, to avoid anachronistic bias and
futuristic data use, and to ensure that the data reflected the true dates when the information
was available, we associated the fundamental data with their release dates and not the
dates recorded in the financial statement reports.

Given that financial statements are produced quarterly, and in order to be able to
associate stock market data with fundamental data on a daily basis, we replicated the
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fundamental data for each stock over the entire period between two successive release
dates. Furthermore, we combined by date the obtained data with the sector index data
to obtain a mixture of three types of data: stock market data, stock fundamental data,
and sector index data. From the daily data obtained, we calculated technical indicators,
fundamental indicators, price multiples, stock-to-sector indicators, and sector indicators
(Figure 2). Finally, we extracted weekly observations from this large daily database to
form our final dataset. This approach had many upsides: we reduced redundancy and
the computation time, and our data weekly frequency was in line with the portfolio
rebalancing frequency.
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3.1.2. Calculating the Indicators

We applied “features engineering” to enrich our database with other derived variables
that helped to improve the prediction process. With the raw data downloaded directly
from the external data provider, we created new variables through performing some
transformations. Furthermore, based on our experience and knowledge of the financial
domain, we derived analytical representations by calculating a wide range of financial
indicators (or approximations thereof) that are commonly used in the finance domain.

A major component of this study is to form a portfolio based on the EMN strategy
by selecting the right stocks from the “S&P500 Consumer Staples” sector. It involved
comparative selection between the stocks belonging to this sector in order to choose the
best ones according to the selection criteria of the adopted strategy. Therefore, to capture
the disparity of stocks and to be able to compare them within their sector, we calculated
indicators relative to the sector (stock to sector indicators). To do this, we calculated the
same indicators for both the stocks and the sector before calculating the ratio.

The process of preparing the explanatory variables taken from the model (Figure 3)
begins with the direct download of the 57 “raw variables”: 34 stocks variables and 23 sector
variables. These variables form the basis for the calculation of all other variables for both
stocks (Table A2) and the sector (Table A3). After downloading the raw variables, a set of
“intermediate indicators” was calculated both for the stocks (Table A4) and for the sector
(Table A5), which were used in the calculation of our 173 final variables (Table A6).
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In order to compare the different models using different baskets of variables, and to
study the impact of adding “stock to sector fundamental indicators”, “Piotroski indicators”,
and “Scores” on the model’s performance, we generated two baskets of variables: the first
basket contained all 173 of the final variables calculated, and the second basket contained
128 so-called “basic” variables, i.e., all the final variables except for those in the three
categories of “stock to sector fundamental indicators”, “Piotroski Indicators”, and “Scores”
(Figure 3). It should be noted that the number of variables varies from one stock to another,
depending on the missing data.

The final variables taken from the model were classified into five categories:

• Technical indicators: this category of indicators includes stock market data without
transformations, OCHLV and Market Capitalization, returns, volatilities, ratio of re-
turns to volatilities, simple moving averages (SMA), exponential moving averages
(EMA), prices relative to simple and exponential moving averages, momentum, the
14-day relative strength index (RSI), the 5-day RSI moving average, 14-day stochas-
tic oscillators (slow and fast), the Williams 14-day indicator (%R), and On Balance
Volume (OBV).

• Fundamental indicators: most of the fundamental indicators used in our model are
ratios between the fundamental indicators of the stocks and the same indicators calcu-
lated on the sector data (“stock to sector fundamental indicators”). Other indicators
are calculated differently, such as the “Piotroski indicators” and the “Scores”. The
“Piotroski” indicators are binary indicators assigned to the stock at a given time if
certain fundamental indicators satisfy certain criteria (0 if the criterion is satisfied, 1
otherwise). Thus, a total Piotroski score is the sum of all the calculated indicators
(Piotroski 2000). Inspired by Piotroski’s indicators, we established “Scores” that can
takes the values 0, 1, or 2, which are attributed to the stock at a given time according
to the value of certain financial ratios. These ratios are compared to threshold set
beforehand. For instance, if the value of the ratio is less than that of the small threshold,
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the score will be set at 0, and if the value of the ratio is situated between the small and
the big thresholds, the score will equal 1. Otherwise, the score will take the value of 2.
Thus, the total score of a group of financial ratios is the sum of the constituent scores.

• Hybrid indicators: these are indicators calculated based on both technical and fun-
damental indicators. This category of indicators consists mainly of price multiples
(price-earnings ratio, price-to-book ratio, price-to-sales ratio, etc.)

• Stock to sector indicators: most of the final variables used in the model fall into this
category of indicators. A stock-to-sector indicator is a ratio of a stock indicator and
a sector indicator. For instance, close to sector, open to sector, price-to-sell to sector,
price-to-book to sector, stock returns to sector, volatilities relative to sector, simple
moving averages relative to sector, exponential moving averages relative to sector,
momentum relative to sector, or price-to-moving average ratios relative to sector.

• Sector-specific indicators: in this category, we considered only the five-day sector
return, since other indicators in the sector are already included in the calculation of
the other variables.

3.1.3. Cleaning and Standardization of Data

After calculating all the indicators and building our final variables, we performed
separate pre-processing of the weekly data of all variables of each stock (Figure 4). We
removed the variables that had more than a third of their values missing, and we imputed
the other missing values by the values that precede them according to their chronological
order. When there was no doner (preceding value) for the imputation, the whole record
was deleted. The deletion of data rows usually occurred at the beginning of the stock data
histories that have no preceding values to be imputed. This situation mainly occurred with
stocks that appeared during the study period and that have no previous history, as some
indicators require a data history to calculate the early values. This explains the existence of
empty observations at the beginning of the histories of certain stocks for some indicators,
such as simple and exponential moving averages.
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Once the data for each stock were cleaned, they were standardized for all variables of
the dataset of each stock separately. Standardization is a data normalization technique that
allows for the direct comparison of scores by taking out the units of measurement. All the
standardized explanatory variables are on the same measurement scale, which improves
the performance and training stability of the model and ensures the rapid convergence of
its parameters during the optimization operation.

3.2. LSTM Neural Networks

Long short-term memory (LSTM) neural networks are an improved version of recur-
rent neural networks (RNN). They are widely used in time series machine learning, and
more specifically in the prediction of financial stock prices. They were initially proposed by
Hochreiter and Schmidhuber (1997), and later improved by Gers et al. (2000). LSTM neural
networks were introduced to solve the vanishing gradient problem, which RNN suffered
with long term data sequences, by integrating a memory cell and other functions together
in structures known as “gates”. LSTM networks can store a sequence of data via their
memory cell, which stores the flow of information carried from one cell to another through
the time sequence. Within each unit of the network, the “gates” control the information
that is added to this memory.



Int. J. Financial Stud. 2023, 11, 57 12 of 48

As shown in Figures 5 and 6, an LSTM unit is composed of a memory cell and three
main gates: a forget gate, an input gate, and an output gate. These gates act as valves
that control the information to be added to or ignored by the memory cell at each step of
the sequence. Indeed, the “forgetting gate” receives the current value of the inputs x(t)
combined with the output of the previous state of unit h(t− 1) and puts them into a sigmoid
activation function, producing a value between 0 and 1 according to Formula (1), where W f
and U f are the weights, and b f is the bias of the forgetting gate. The “forget gate” decides
which information to keep and which to forget from the previous state. The extreme value
0 means “ignore everything” and the extreme value 1 means “keep everything”.

ft = σ(W f .xt + U f .ht−1 + b f ) (1)

and σ(x) =
1

1 + e−x
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Figure 6. The different steps in an LSTM unit (Olah 2015). (a) Forget gate. (b) Input gate. (c) Cell
state. (d) Output gate.
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Next, the input gate uses the combined input between x(t) and h(t − 1) to determine
two components: what information to update in the memory cell and what new candidate
information to add to it. The first component is computed via a sigmoid function according
to Formula (2), and the second component is calculated via a hyperbolic tangent function
according to Formula (3), where W and U are the weights and b is the biases of the input
gate and the memory cell.

it = σ(Wi.xt + Ui.ht−1 + bi) (2)

c̃t = tanh(Wc.xt + Uc.ht−1 + bc) (3)

and tanh(x) =
ex − e−x

ex + e−x

Once the outputs of both the forget gate and input gate are calculated, the state of
the memory cell is updated by multiplying the output value of the forget gate ft by the
previous state of the memory itself Ct−1. A decision is then made as to what information
can be forgotten and what information needs to be updated or added via the multiplication
of the result of the input gate it and c̃t, according to Formula (4).

ct = ft ∗ ct−1 + it ∗ c̃t (4)

The output gate decides the amount of information to be fed to the output: first, it
calculates this amount using the new inputs x(t) combined with the output of the previous
state of unit h(t − 1), according to Formula (5). Second, it regulates this resulting amount
using the current state of the memory cell according to Formula (6), where W, U, and b are,
respectively, the weights and bias of the output gate:

ot = σ(Wo.xt + Uo.ht−1 + bo) (5)

ht = ot ∗ tanh(ct) (6)

According to these formulas, the output of a state depends on the previous output of
the unit and the current state of the memory cell, which in turn depends on the previous
output of the unit and the previous state of the memory cell. This sequence makes LSTM
networks powerful by providing them with the ability to hold information in a long-term
memory (Qiu et al. 2020).

3.3. Prediction of Stock Returns
3.3.1. Training Set and Testing Set

To compare the predicted performance of the stocks in this study, we set the same
training period and the same test period for all stocks. For this reason, we divided the study
period into two segments: the first segment constituted the sample for training (60% of
the period) and the second segment constituted the sample for testing (40% of the period).
Thus, for each stock, we formed a training sample over the period from 8 January 2010
to 12 August 2016, totaling 330 weekly observations, and a test sample over the period
from 19 August 2016 to 18 December 2020, totaling 222 weekly observations. However,
some stocks did not cover the entirety of the training and testing periods. Furthermore,
to avoid under-training the model, which can lead to bad predictions due to insufficient
training data, we set up a filter that excludes stocks with a training sample size of less than
100 observations (about two years).
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3.3.2. LSTM Structure and Setup

In the present work, we chose LSTM neural networks to predict the future return
of each stock composing the studied sectorial index (S&P500 Consumer Staples index).
We used the Python language for the scripts, and the Keras library with Tensorflow as
the backend for the LSTM networks. Additionally, the SQL-Server was used for data
organization and indicator calculations.

Before passing the processed data to the LSTM network, it was transformed into a
supervised problem by associating each entry of the data with a target value equal to the
future return (a later week’s return). Furthermore, the weekly return series serves both
as an explanatory variable due to its historical values already observed at a given date
“t”, and as a target variable when we consider the later values to be predicted at the same
date “t”. Thus, we transformed the data to a three-dimensional format, adapted to the
format expected by the multivariate LSTM input layer (in terms of the data sample size,
the look-back period size, and the number of explanatory variables). We experimented
with two types of LSTM network configurations: the first one had a look-back period w = 3
and, for the second, w = 4. For example, a size of w = 3 means that data from the first three
weeks are used to predict the performance of the fourth week. This process was repeated by
shifting the window one week in advance for all records, both for the training and testing
datasets. During training and predicting, the data are not randomized, as the order of the
time sequence is important in the case of time series.

As shown in Figure 7, the input layer passes data to the hidden LSTM layer consisting
of 128 units with the Rectified Linear Unit (ReLu) activation function. The outputs of the
LSTM layer are passed to a fully connected “Dense” layer that generates the output. When
optimizing the model parameters, LSTM uses the mean square error (MSE) as the cost
function and the Adam optimizer for stochastic gradient descent (SGD). The stochastic
nature of the SGD changes the results obtained from the optimization depending on the
series of random numbers generated during the optimization process. To obtain more
robust results, we adopted an “iteration” technique for each stock that allowed for re-
optimization by changing the “seed” of the random numbers used by the optimizer during
the SGD. For each stock, we produced 15 iterations of predictions, which were stored for
use in the selection of stocks by majority voting. Finally, for each stock, the model was
trained for 300 epochs with a batch size of 16, as illustrated in Table 2. Since the choice
of the lookback period (w) and the input data size (m) in LSTM networks is important
for predictions, we studied the impact of two values of the first variable {w = 3, w = 4}
and two values of the second {m = 173, m = 128} on the model’s performance. The other
hyperparameters were set manually by measuring the error and choosing the best ones by
applying the cross-validation detailed in the next section.
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Figure 7. LSTM model architecture.
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Table 2. Model hyperparameters.

Hyperparameters Values

Number of units in LSTM 128
Activation function Relu
Look-back period {3, 4}
Number of features {173, 128}
Number of units in dense layer 1
Optimizer Adam
Cost function MSE
Batch size 16
Number of epochs 300

3.3.3. Statistical Evaluation of the Model

To compare several model versions, we used cross-validation (CV): 70% of the training
dataset is used to train the model and the remaining 30% is used for model validation
while respecting the chronological order (Dangeti 2017; Kohavi 1995). For each version of
the model, we calculated the statistical error of the prediction via two metrics: the mean
square error (MSE) and the mean absolute error (MAE). The MSE metric is the average of
the squares of the difference between the predicted and actual values (Formula (7)), while
the MAE is the average of absolute difference between the predicted values and actual
values (Formula (8)), where ŷt, yt, and T are the predicted value, the actual value, and the
size of the prediction horizon, respectively. These metrics were calculated for the training
dataset sample to estimate the training error, and on the validation sample to estimate
the validation error (Val-Error). These measurements allowed us to choose the optimal
configuration of the model hyperparameters in terms of batch size, the number of epochs,
the number of units in the LSTM layer, etc.
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Given that we made 15 different predictions per stock, corresponding to the 15 iter-
ations made by changing the “seed” during the optimization of the model parameters,
we calculated the average metrics per stock over all the iterations, namely, the average
MSE of stock “i” according to Formula (9) and the average MAE of stock “i” according to
Formula (10), where the number of repetitions R = 15:

MSEi =
1
R

R

∑
r=1

MSEi,r (9)

MAEi =
1
R

R

∑
r=1

MAEi,r (10)

Finally, the estimation of the model error was obtained by a simple average of the
errors of all the stocks according to Formulas (11) and (12), where n is the number of stocks:

MSE =
1
n

n

∑
i=1

MSEi (11)

MAE =
1
n

n

∑
i=1

MAEi (12)
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The final statistical performance of the different versions of the model was measured
by the MSE and MAE errors calculated from the out-of-sample testing dataset. The diagram
in Figure 8 shows the process of calculating the estimation of the training error (Train-MSE
and Train-MAE), the validation error (Val-MSE and Val-MAE), and the test error (Test-MSE
and Test-MAE).
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of stocks).

For the evaluation of models that make predictions in portfolio management, the
statistical metrics commonly used in data mining, such as MSE or MAE, are not suit-
able measures for evaluating performance; instead, portfolio performance measures take
precedence (Hou et al. 2020).

3.4. Portfolio Construction

In this study we construct an equally weighted portfolio according to an equity-market-
neutral strategy. This type of strategy is used in alternative investment portfolios where
the long position of the portfolio is covered by the short position composed of short-sold
stocks. This strategy has two main advantages: financing, as the short position finances the
long position, and hedging against market risk, i.e., if the market is falling, the strategy will
lose on the long positions, but the loss will be compensated by the gains made from the
short positions (Jacobs and Levy 2005).

Figure 9 shows the three steps of the portfolio construction process: first, the prediction
of stock returns is performed in 15 iterations for each stock. The second step involves the
selection of stocks, and the third step comprises the construction of the “robust” portfolio.
The constructed portfolio consists of two sides, long and short, with the same number of
stocks. Two portfolios are to be compared; the first one has 12 stocks, with 6 stocks in
each side, and the second portfolio is composed of 14 stocks, with 7 stocks in each side.
Moreover, the data used in the model have a weekly frequency, the same as the portfolio
rebalancing frequency. Each week, the portfolio is reconstructed according to the results of
the prediction, which leads to a new selection of stocks on both sides. In addition, the same
market value (MV) is invested in each stock of the two sides of the portfolio, as illustrated
in Formulas (13) and (14), where VML

t and VMS
t are the market values of the “long” and

“short” portfolios, respectively; VML
i,t and VMS

j,t are the market values of stock “i” in the
“long” portfolio and stock “j” in the “short” portfolio, respectively; and nl and ns are the
number of stocks in the “long” and “short” portfolios, respectively. In effect, the market
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value of the long portfolio equals that of the short portfolio, resulting in a net market value
of zero dollars.

VML
t = VML

1,t + · · ·+ VML
nl,t (13)

VMS
t = VMS

1,t + · · ·+ VMS
ns,t (14)

Int. J. Financial Stud. 2023, 11, x FOR PEER REVIEW 17 of 49 
 

 

stocks in each side. Moreover, the data used in the model have a weekly frequency, the 
same as the portfolio rebalancing frequency. Each week, the portfolio is reconstructed 
according to the results of the prediction, which leads to a new selection of stocks on 
both sides. In addition, the same market value (MV) is invested in each stock of the two 
sides of the portfolio, as illustrated in Formulas (13) and (14), where 𝑉𝑀௧

 and 𝑉𝑀௧
ௌ are 

the market values of the “long” and “short” portfolios, respectively; 𝑉𝑀,௧
  and  𝑉𝑀,௧

ௌ  are 
the market values of stock “i” in the “long” portfolio and stock “j” in the “short” portfo-
lio, respectively; and 𝑛 and 𝑛௦ are the number of stocks in the “long” and “short” port-
folios, respectively. In effect, the market value of the long portfolio equals that of the 
short portfolio, resulting in a net market value of zero dollars. 

 𝑉𝑀௧
 = 𝑉𝑀ଵ,௧

 + ⋯ + 𝑉𝑀,௧
   (13)

 𝑉𝑀௧
ௌ = 𝑉𝑀ଵ,௧

ௌ + ⋯ + 𝑉𝑀ೞ,௧
ௌ   (14)

 
Figure 9. Robust portfolio construction process. 

For each date of the test period and for each iteration, the model predicts the next 
return (of the later week) for all stocks present at that date. The predicted returns ob-
tained are ordered in ascending order and are ranked in five quintiles (five classes of 
stock). Only stocks belonging to the first and last quintiles are to be considered when 
forming the two classes of stocks, namely class “1” and class “5”. Class 1 corresponds to 
the first quintile, containing the stocks with the lowest predicted returns, and class 5 cor-
responds to the fifth quintile, containing the stocks with the highest predicted returns. 
The stocks in class 1, which are expected to perform poorly, are considered as candidate 
stocks in the “short” portfolio, while those in class 5, which are expected to perform 
well, form the candidate stocks in the “long” portfolio. 

To build a robust portfolio, we ran the model 15 times (15 iterations) by changing 
the seed of the random numbers used by the LSTM neural network optimization algo-
rithm to obtain 15 different classes of candidate stocks for the long and short portfolios. 
To construct the robust “short” portfolio, we applied the majority voting principle on the 
fifteen different “1” classes by counting the number of times the stock was classified as a 
candidate of the “short” portfolio. Thus, the stocks with the highest number of appear-
ances formed the “short” portfolio (up to the number of stocks previously fixed in each 
of the two sides of the robust portfolio). We experimented with two types of robust port-
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For each date of the test period and for each iteration, the model predicts the next
return (of the later week) for all stocks present at that date. The predicted returns obtained
are ordered in ascending order and are ranked in five quintiles (five classes of stock). Only
stocks belonging to the first and last quintiles are to be considered when forming the two
classes of stocks, namely class “1” and class “5”. Class 1 corresponds to the first quintile,
containing the stocks with the lowest predicted returns, and class 5 corresponds to the fifth
quintile, containing the stocks with the highest predicted returns. The stocks in class 1,
which are expected to perform poorly, are considered as candidate stocks in the “short”
portfolio, while those in class 5, which are expected to perform well, form the candidate
stocks in the “long” portfolio.

To build a robust portfolio, we ran the model 15 times (15 iterations) by changing the
seed of the random numbers used by the LSTM neural network optimization algorithm to
obtain 15 different classes of candidate stocks for the long and short portfolios. To construct
the robust “short” portfolio, we applied the majority voting principle on the fifteen different
“1” classes by counting the number of times the stock was classified as a candidate of the
“short” portfolio. Thus, the stocks with the highest number of appearances formed the
“short” portfolio (up to the number of stocks previously fixed in each of the two sides of the
robust portfolio). We experimented with two types of robust portfolios: one with six stocks
in each side, and a second with seven stocks in each side. The same method is applied
to the different candidate stocks classified as “5” to construct the robust “long” portfolio.
Note that the choice of the number of stocks in each side of the robust portfolio is justified
by the average number of stocks that form the quintiles over the test-set period, which
varies between six and eight stocks.

3.5. Evaluation of Portfolio Performance

In addition to the statistical evaluation of the model’s performance through the MAE
and MSE error measures, we carried out an evaluation of the actual performance of the
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robust portfolios obtained by the different versions of the model on the test set. Several
performance measures were used to evaluate the financial performance of the portfolios on
the one hand, and, on the other, to compare them to benchmarks such as the S&P500 stock
market index and the CS sector index. Indeed, eight portfolios were compared in terms
of performance over two different periods (pre-COVID-19 and the period including the
COVID-19 pandemic). Table 3 shows the eight portfolios that were constructed based on
the four versions of the model by changing the following three hyperparameters:

• The type of basket of explanatory variables taken in the model, including a first basket
of “basic variables” with 128 variables, and a second basket of “all variables” with
173 variables.

• The size of the look-back period used by the LSTM networks, which takes the following
two values: w = 3 and w = 4.

• The number of stocks taken for each side of the robust portfolio, with the following
two values: n = 6 and n = 7.

Table 3. Portfolios to measure performance.

Portfolios Models Number of Stocks
by Side Period

P1 M1 (basic variables, w = 3) n = 6
pre-COVID-19

including COVID-19

P2 M1 (basic variables, w = 3) n = 7
pre-COVID-19

including COVID-19

P3 M2 (basic variables, w = 4) n = 6
pre-COVID-19

including COVID-19

P4 M2 (basic variables, w = 4) n = 7
pre-COVID-19

including COVID-19

P5 M3 (all variables, w = 3) n = 6
pre-COVID-19

including COVID-19

P6 M3 (all variables, w = 3) n = 7
pre-COVID-19

including COVID-19

P7 M4 (all variables, w = 4) n = 6
pre-COVID-19

including COVID-19

P8 M4 (all variables, w = 4) n = 7
pre-COVID-19

including COVID-19

Sector S&P 500 Consumer Staples pre-COVID-19
including COVID-19

Market S&P 500
pre-COVID-19

including COVID-19

For this comparison, several performance measures were calculated, namely: return,
volatility, downside volatility, Alpha, Beta, correlation, Sharpe ratio, Sortino ratio, Treynor
ratio, Omega ratio, information ratio, capture ratio, and maximum drawdown. The bench-
mark and risk-free rate used to calculate these measures are, respectively, the S&P 500
Index and the three-month U.S. Treasury Bill (T-bills) rate.

3.5.1. Return

Since return is the main measure of portfolio performance, we calculated the entire
series of actual weekly returns over the entire test period (222 weeks from 19 August 2016 to
18 December 2020) of the different portfolios to be compared. To do this, we first calculated
the return series of the two portfolios, long and short, separately, and then deducted the
return series of the net portfolio as the difference between the two returns series of the two
portfolios at each date of the test period. The return of each of the long (rL

t ) and short (rS
t )
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portfolios at date “t” was calculated by the arithmetic average of the return of stocks in the
portfolio, according to Formulas (15) and (16) (Demonstration A1 in Appendix A). While
the net return (rt) of the portfolio at date “t” is the difference between the long portfolio
return and the short portfolio return, as in Formula (17), where nl and ns are the number
of stocks in the long and short portfolios, respectively; rL

i,t is the return of the stock “i” in
the long portfolio at date “t” and rS

j,t is the return of the stock “j” in the short portfolio at
date “t”.

rL
t =

rL
1,t + · · ·+ rL

nl ,t

nl
(15)

rS
t =

rS
1,t + · · ·+ rS

ns ,t

ns
(16)

rt = rL
t − rS

t (17)

From the series of net portfolio returns over the entire test period, we calculated all
the performance indicators of the robust equity-market-neutral portfolio. The annualized
average return is the most important indicator to consider. It does not give much detail
on the behavior of the return series over time, but it nevertheless summarizes the realized
performance of the portfolio over the whole test period. It is measured by the geometric
mean of all weekly returns in the net portfolio series according to Formula (18), where
rt is the weekly return of the net portfolio on date t and T is the number of weeks in the
test period.

r = [
t=T

∏
t=1

(1 + rt)]

52/T

− 1 (18)

3.5.2. NAV

The graphical representation of the evolution of the net asset value (NAV) of the net
robust portfolio and the other portfolios (long and short) offers a highly relevant overview
of the portfolio’s performance. It allows for a visual comparison of the performance of port-
folios with each other and with the benchmarks. The NAV is calculated by accumulating
returns from an initial NAV at the beginning of the period (USD 100, for example). The NAV
at the end of the period is reinvested for the next period according to Formula (19), over
the whole test period, where NAV0 is the initial amount invested. NAVt is the portfolio
NAV at date “t”, and rj is the weekly portfolio return in week “j”.

NAVt = NAV0[
j=t

∏
j=1

(1 + rj)] (19)

3.5.3. Volatility

Annualized volatility is the first indicator of risk to be seen in a portfolio, complement-
ing the information provided by the first measure of performance: the annualized average
return. It measures the degree to which the returns of the series deviate, on average, from
the average return. It is calculated as the standard deviation of the series of weekly returns
over the test period according to Formula (20), where rt is the weekly return of the portfolio
in week t; r(h) is the arithmetic average of the weekly return series; and T is the number of
weeks in the test period.

vol =
√

52

√
∑t=T

t=0 (rt − r(h))
2

T − 1
(20)

3.5.4. Sharpe Ratio

Developed by the economist Sharpe (1994), this ratio measures the risk-adjusted return
of a portfolio. It is one of the best indicators for comparing the risk-adjusted performance
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of different portfolios, and for assessing a portfolio compared to benchmark portfolios. The
higher the ratio, the better the portfolio. Thus, a value of this ratio greater than 1 means
that the portfolio’s risk-taking is amply rewarded by an excess return of the portfolio over
the risk-free return. This ratio is calculated by dividing the portfolio’s excess return by its
volatility, according to Formula (21), where r and r f are the annualized average returns
of the portfolio and the risk-free rate, respectively, and vol is the annualized volatility of
the portfolio.

Sharpe Ratio =
r− r f

vol
(21)

3.5.5. Downside Volatility

Unlike volatility that considers both increases and decreases in returns relative to the
mean, downside volatility is an additional risk measure that only takes into account bearish
returns below the average. It is calculated according to Formula (22), where rt is the weekly
portfolio return in week t; r(h) is the arithmetic average of the weekly return series; and T is
the number of weeks in the test period.

Downside vol =
√

52

√
∑t=T

t=0 [min(rt − r(h), 0)]
2

T − 1
(22)

3.5.6. Sortino Ratio

Developed by Frank A. Sortino, the Sortino ratio is an improved version of the Sharpe
ratio (Bodson et al. 2010). Both ratios calculate a risk-adjusted performance measure. How-
ever, the Sortino ratio substitutes the volatility used in Sharpe’s ratio with the downside
volatility, which only considers bearish returns. The rationale behind is that bullish returns
are generally beneficial and should not be included in a risk measure, according to the au-
thor of the ratio. It calculated according to Formula (23), where r and r f are the annualized
average returns of the portfolio and the risk-free rate, respectively.

Sortino ratio =
r− r f

Downside vol
(23)

3.5.7. Beta

Beta measures the systematic risk of the portfolio; that is, the sensitivity of the portfolio
to the market. It is always compared to the reference value 1. The portfolio fluctuates
more than the market if the Beta value is higher than 1, and fluctuates less if its Beta value
is lower than 1. Furthermore, a Beta-neutral portfolio is a portfolio with a Beta close to
or equal to 0. It is calculated via Formula (24) as the ratio between the covariance of the
portfolio’s return and the market’s return on the one hand, and the variance of the market’s
return on the other hand, where rt and rm are the portfolio return and market return series,
respectively. cov(.) and var(.) are covariance and variance, respectively.

Beta =
cov(rt, rm)

var(rm)
(24)

3.5.8. Alpha

Jensen’s Alpha, or simply the Alpha, is a performance metric that is widely used in
active portfolio management strategies where managers use their skills to outperform the
market. Proposed by Jensen (1968), it is extracted from the Capital Asset Pricing Model
(CAPM) and measures how well the portfolio outperforms the market considering its
systematic risk. The alpha is calculated as the difference between the excess return achieved
by the portfolio and the expected return measured by the Beta weighted market excess
return. It is calculated by Formula (25), where r(h), r(h)f , and r(h)m are the average of the
portfolio weekly returns, the average of weekly risk-free rates, and the average of weekly



Int. J. Financial Stud. 2023, 11, 57 21 of 48

market returns, respectively. β is the Beta of the portfolio and T is the number of weeks in
the test period.

Alpha = (1 + α(h))
52/T
− 1 (25)

Additionally, α(h) = (r(h) − r(h)f )− β(r(h)m − r(h)f )

3.5.9. Correlation

Correlation measures the intensity of the linear relationship between two variables.
If two variables move relatively and linearly in the same way, the correlation between
them will be close to 1, and if they move relatively in the same way but in opposite
directions, their correlation will be close to −1. A value of zero or close to zero for the
correlation indicates that the two variables have no linear relationship or a very weak linear
relationship. The correlation is calculated by Formula (26) as the ratio of the covariance
of the portfolio return and the market return to the product of the standard deviations of
the two series of portfolio and market returns. rt et rm are the portfolio and market return
series, respectively, and σ(.) refers to the standard deviation.

Beta =
cov(rt, rm)

σ(rt)σ(rm)
(26)

3.5.10. Treynor Ratio

Created by economist Treynor (1962), the Treynor ratio is similar to the Sharpe ratio,
with both measuring the risk-adjusted return of a portfolio. However, the Sharpe ratio
uses the risk of the portfolio represented by its volatility, whereas the Treynor ratio uses
the systematic risk of the portfolio represented by the Beta value. The higher the ratio, the
better the portfolio performs. It is calculated by dividing the excess return of the portfolio
by its Beta according to the Formula (27), where r and r f are the annualized portfolio
average return and the risk-free rate, respectively:

Treynor ratio =
r− r f

Beta
(27)

3.5.11. Information Ratio

The information ratio measures how much the portfolio outperforms the benchmark,
considering the risk of this benchmark. As shown in Formula (28), it is calculated as the
ratio of the difference between the average return of the portfolio and the benchmark to the
tracking error. The tracking error is calculated by the square root of variance of the series of
differences between the portfolio returns and the benchmark returns, where r and rb are
the portfolio and benchmark annualized average returns, respectively. TE is the tracking
error, and r(h)t and r(h)b, t are the portfolio and benchmark weekly return series, respectively,
at date t (Bodson et al. 2010; Zhang and Tan 2018):

In f ormation ratio =
r− rb

TE
(28)

and TE =
√

52 σ(r(h)t − r(h)b, t)

3.5.12. Capture Ratios

There are two capture ratios: the upside capture ratio and the downside capture
ratio. The upside capture ratio calculates the performance of the portfolio compared to a
benchmark if the benchmark is rising, whereas the downside capture ratio calculates the
performance of the portfolio relative to a benchmark if the benchmark is falling. The upside
capture ratio measures the extent to which the portfolio outperforms (or underperforms) the
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benchmark during periods of positive returns (bull market) and the downside capture ratio
measures the extent to which the portfolio outperforms (or underperforms) the benchmark
during periods of negative returns (bear market).

A value greater than one for the upside capture ratio means that the portfolio has
performed better than the benchmark through periods when the benchmark is rising,
whereas a value below one indicates that the portfolio has underperformed while the
benchmark has risen. The analysis is reversed for the downside capture ratio, where a
positive value less than one indicates that the portfolio has lost less than the index during
periods when the index is falling. The difference between the value of this ratio and 1
measures the degree of resilience of the portfolio during periods when the market is falling.
A negative downside capture value means that the portfolio has made a positive return
when the benchmark has negative returns during its downside periods.

According to Formula (29), the upside capture ratio is calculated as the ratio of the
annualized average return of the portfolio during periods when the benchmark has positive
returns, to the annualized average return of the benchmark during the same periods.
Similarly, the downside capture ratio is calculated over periods when the benchmark has
a negative return according to Formula (30), where rt and rb,t are, respectively, the return
of the portfolio and the return of the benchmark at date t. Tp and Tn are, respectively, the
number of weeks when the benchmark returns are positive and the number of weeks when
they are negative:

Upside Capture ratio =
[∏t, rb,t≥0 (1 + rt)]

52/Tp − 1

[∏t, rb,t≥0 (1 + rb,t)]
52/Tp − 1

(29)

Downside Capture ratio =
[∏t, rb,t≤0 (1 + rt)]

52/Tn − 1

[∏t, rb,t≤0 (1 + rb,t)]
52/Tn − 1

(30)

3.5.13. Omega Ratio

This ratio was developed by Keating and Shadwick (2002) and measures the risk-
adjusted performance of the portfolio compared to a threshold or a benchmark. It identifies
the chances of gain compared to loss. Omega captures all the moments of the portfolio
return distribution and makes no assumptions about the distribution of returns. According
to Formula (31), it is calculated as the ratio of total gains to total losses relative to an
objective return (expected return) or a so-called “minimum accepted return” (MAR), which
can be a risk-free rate or a benchmark portfolio. In the formula, rt is the portfolio return at
date t; MAR is the minimum accepted return, which may be a fixed threshold, a risk-free
rate, or a benchmark return; and T is the number of weeks in the test period:

Omega ratio =
∑T

t=0 max(rt −MAR, 0)

∑T
t=0 min(rt −MAR, 0)

(31)

3.5.14. Maximum Drawdown

The maximum drawdown measures the widest loss in a portfolio that connects the
highest peak and the next deepest trough. It measures the maximum loss over the history
of a portfolio. A value of 100% for this metric means that the portfolio has lost all its value.
It is a risk measure used to compare performances between portfolios and is also used as a
risk measure in the Calmar ratio. It is calculated using Formula (32) as the accumulated
return during the entire period of steep decline, where H is the highest portfolio value
reached before the largest portfolio fall and L is the lowest value observed before a new H:

Maximum Drawdown (%) = 100
L− H

H
(32)
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3.5.15. Calmar Ratio

Created by fund manager Terry Young in 1991, the Calmar ratio is a measure of risk-
adjusted return similar to the Sharpe ratio, but it uses the maximum drawdown in its risk
instead of volatility. It is calculated according to Formula (33) by the excess return divided
by the maximum drawdown, where r et r f are the portfolio annualized average return and
the risk-free rate annualized average return, respectively:

Calmar ratio =
r− r f

abs(Max Drawdown)
(33)

4. Results and Discussion
4.1. Statistical Performance of the Model

During this study, several hyperparameters of the model were experimentally tested
to select those that best fit the data. For these purposes, we used the cross-validation
technique by calculating the two metrics MSE and MAE according to Formulas (11) and
(12) detailed above in the section titled “Statistical evaluation of the model”. According to
Figure 1, the performances of the four versions of the model were compared by changing
the type of the basket of variables input to the model and the size of the look-back period
used by the LSTM networks.

Table 4 presents the results of the statistical performance of the four model versions
chosen for comparison by calculating the MSE and MAE for the training, validation, and
test samples.

Table 4. Statistical errors of the model. (The bold numbers indicate the best result).

Models M1 M2 M3 M4

Basic Variables Basic Variables All Variables All Variables

w: 3 w: 4 w: 3 w: 4

MSE MAE MSE MAE MSE MAE MSE MAE

Train 0.01 0.06 0.01 0.07 0.01 0.07 0.01 0.07
Val 2.07 1.04 2.27 1.07 2.03 1.03 2.09 1.04
Test 3.65 1.39 3.73 1.40 3.75 1.41 3.74 1.41

With the same number of epochs (epoch = 300), the model versions have the same
statistical error values for the training sample. Furthermore, the error generated by the
cross validation (which is an estimate of the model error extracted from the training data)
allowed us to calibrate the model hyperparameters. This error shows a minimal value for
model M3, which uses “all variables”, and a size w = 3 of the look-back period. However,
model M1, which uses the “basic variables” and a look-back period size w = 3, provides
the best statistical performance (minimum error), measured from the unseen data of the
test set.

Although they provide insights into the accuracy of the prediction, the errors used do
not allow for an effective comparison of the different versions of the model because they
only provide an estimate of the average of the errors over all the stocks and all the iterations
used in the model. Moreover, they do not consider the selection process of the stocks
in the portfolio, which is limited to only some of the stocks. For this reason, a financial
performance evaluation of the portfolio is necessary.

4.2. Financial Performance of the Model

In addition to the statistical performance, we evaluated the financial performance of
the eight robust portfolios from the different versions of the model, as shown in Table 3. For
this purpose, we calculated the 15 performance and risk measures (detailed above in the
“Evaluation of portfolio performance” section) for the different portfolios to be compared
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(P1, P2, . . . , P8) on the one hand, and for the benchmarks on the other hand. Recall that we
used the “US three-month Treasury Bill” rate for the risk-free rate, and two benchmarks,
the “S&P500 Consumer Staples” sector index from which we selected the stocks, and the
“S&P 500” index, representing the market, which was also used in the calculation of the
performance metrics.

To study the behavior of the different versions of the model in normal times and in
highly volatile periods of crisis, we measured their performance over two periods: the
pre-COVID-19 period and then the entire test period, including the period of the COVID-19
crisis. The frontier date separating the pre-COVID-19 period and the post-COVID-19 period
was estimated by the effective start of the influence of the pandemic on the behavior of
financial markets. In this study, we took the start date of the largest drop in the S&P500
index, 19 February 2020, as the frontier date.

According to the results of the financial performance of the portfolios represented by
the NAV evolution graph (base USD 100) in Figures 10–13, and summarized in Tables 5a,b
and 6a,b, we reached the following conclusions:

1. All portfolios outperformed their sector index in terms of risk-adjusted returns (Sharpe
ratio, Sortino ratio, Treynor ratio, Omega ratio, Calmar ratio, and information ratio).

2. Portfolios P5, P6, P7, and P8 from models M3 and M5, which use all of the explanatory
variables, outperformed the sector index and the S&P500 index representing the
market on the one hand; on the other hand, they largely outperformed portfolios P1,
P2, P3, and P4 from models M1 and M2, which use “basic variables”.

3. Portfolios from models where LSTM neural networks use a look-back period of size
w = 4 to predict the stock’s future return outperformed the other models using w = 3
for the whole period including-COVID-19. However, portfolios from models using a
look-back period with a size w = 3 outperformed the others during the pre-COVID-
19 period.

4. The P7 portfolio, which consists of six stocks in each of its long and short sides
and which is generated by the model M4 (w = 4, all variables), provided the best
performance both in the pre-COVID-19 period and in the period including COVID-19.
It achieved an annualized average return of 25% over the entire test period compared
to 27% over the pre-COVID-19 period, a decrease of 2%; meanwhile, the annualized
average returns of the S&P 500 index and the sector index decreased from 15% to
10% and from 5% to 3%, respectively. However, the annualized volatility of the P7
portfolio increased from 19% pre-COVID-19 to 22% over the entire period (including
COVID-19): an increase of 3%. Meanwhile, the annualized volatilities of the S&P500
index and the CS sector index increased from 12% to 18% and from 12% to 16%,
increases of 6% and 4%, respectively.

5. Over the entire period, the P7 portfolio achieved 1.04, 1.92, and 0.93 for the Sharpe,
Sortino, and Treynor ratios, respectively, indicating that it achieved an acceptable risk-
adjusted excess return. Indeed, the Sortino ratio is higher than the Sharpe ratio because
it only takes into account the downside volatility, which is lower than volatility. In
addition, its Sharpe, Sortino, and Treynor ratios are significantly higher than those of
the benchmarks: the S&P500 market index had values of 0.48, 0.62, and 0.09 and the
CS sector index had values of 0.12, 0.16, and 0.03 for the three ratios.

6. The P7 portfolio has an Alpha of 23%, i.e., most of its returns are not made through
systematic market risk taking, but are rather due to its own strategy. Its Beta and
Correlation relative to the market are 0.25 and 0.20 over the whole test period, and 0.17
and 0.11 over the pre-COVID-19 period, respectively. This means that the portfolio
has a very low correlation to the market, which is the goal of the EMN strategy.

7. The P7 portfolio has an information ratio of 0.56, which means that it outperformed
the benchmark, given its risk. Furthermore, its positive excess returns outperformed
its negative excess returns over the entire period, which is reflected in its Omega ratio
of 1.51. This is higher than the benchmarks S&P500 index and the CS sector index,
which had values of 1.26 and 1.09, respectively.
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8. The Calmar ratio of the P7 portfolio reaches 1.11, compared to 0.27 for the S&P 500
index and 0.09 for the CS sector. This ratio measures the risk-adjusted return using
the maximum drawdown in the denominator, which reached a value of −21% for
this portfolio on 11 January 2019. This maximum loss is lower than the maximum
drawdown of the benchmarks that took place simultaneously on 20 March 2020, with
values of −32% for the S&P 500 index and −22% for the CS sector index.

9. As for the upside capture and downside capture ratios, the P7 portfolio scored 0.42 and
0.09 for these two ratios, respectively, indicating that the P7 portfolio underperformed
while the benchmark S&P 500 index was performing well; however, the portfolio
was very resilient during periods when the benchmark S&P500 index declined. In
addition, the CS Sector index had an upside capture value of 0.53, meaning that it
also underperformed while the benchmark S&P500 index performed well, but with a
downside capture of 0.79, showing little resilience to market downturns compared to
the P7 portfolio.

10. The risk-adjusted performance of all portfolios in the pre-COVID-19 period was better
than that in the period including the COVID-19 pandemic. When the COVID-19
pandemic period was introduced to the test data, the returns experienced a decline
ranging from 6% to 16% for the M1 and M2 model portfolios (using the basic variables).
The level of decline ranged from 2% to 12% for the M3 and M4 model portfolios (using
all variables). The pandemic caused the volatility of all portfolios to rise. The increase
in volatility ranged from 3% to 6%. Similarly, the returns for the S&P500 benchmark
and the CS sector index decreased by 5% and 2% and their volatilities increased by
6% and 4%, respectively. This means that the EMN strategy portfolios were more
strongly impacted by the COVID-19 pandemic than the benchmarks were. Moreover,
EMN was the strategy with the lowest performance according to a study conducted
by Ganchev (2022) on the performance of hedge fund strategies before and after the
COVID-19 crisis.

11. Transitioning from the M1 and M2 models to the M4 and M5 models by introducing
the three baskets of variables (“Piotroski”, “Scores”, and “stock to sector fundamental
indicators”) greatly improved the performance of the EMN strategy portfolios. Indeed,
for all of the portfolios, we saw an increase in the annualized average return, from 6%
to 15%, with almost the same volatility.

12. Portfolios from models M1 and M3 using a look-back period of size w = 3 performed
well during the pre-COVID-19 period, while those from models M3 and M4 using
w = 4 outperformed over the entire period, including the COVID-19 crisis period.

In summary, the portfolios obtained, on average, a pre-COVID-19 annualized average
return of 30% compared to 5% and 15% for the CS sector index and the S&P500 index over
the same period, respectively. Meanwhile, over the whole period, including the pandemic
period, the portfolios of our model achieved an annualized average return of 22% compared
to 3% and 10% for the same benchmarks, respectively.

As for the annualized volatility of the portfolios, it remains higher than that of the
two benchmarks, reaching 18% on average, versus 12% for the two benchmarks during the
pre-COVID-19 period, and 22% versus 16% and 18% for the CS sector index and the S&P500
index, respectively, during the period including COVID-19. However, despite the high
volatility of the portfolios when compared against the benchmarks, the risk-adjusted return
of the portfolios remains well above the benchmarks at, on average, 1.6 versus 0.3 and
1.05 in the pre-COVID-19 period, and 0.94 versus 0.48 and 0.12 in the COVID-19-inclusive
period. Moreover, the Sortino ratio, which considers downside volatility, is significantly
higher than that of the benchmark index, with an average value of 3.16 for all portfolios
compared to 0.41 and 1.48 for the two indexes in the pre-COVID-19 period. The same ratio
reached an average of 1.60 for all portfolios versus 0.16 and 0.62 for the benchmarks over
the COVID-19-inclusive period.
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Figure 10. Evolution of the net value of portfolios long, short, and net constructed based on Model 
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Figure 10. Evolution of the net value of portfolios long, short, and net constructed based on Model
M1 over the test period, versus the net value of the benchmarks. (a) Evolution of the net value of
portfolios P1. (b) Evolution of the net value of portfolios P2.
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Figure 11. Evolution of the net value of portfolios long, short, and net constructed based on Model
M2 over the test period, versus the net value of the benchmarks. (a) Evolution of the net value of
portfolios P3. (b) Evolution of the net value of portfolios P4.
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Figure 12. Evolution of the net value of portfolios long, short, and net constructed based on Model
M3 over the test period, versus the net value of the benchmarks. (a) Evolution of the net value of
portfolios P5. (b) Evolution of the net value of portfolios P6.
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5. Conclusions 

Figure 13. Evolution of the net value of portfolios long, short, and net constructed based on Model
M4 over the test period, versus the net value of the benchmarks. (a) Evolution of the net value of
portfolios P7. (b) Evolution of the net value of portfolios P8.



Int. J. Financial Stud. 2023, 11, 57 30 of 48

Table 5. (a) Pre-COVID-19 performance of the P1, P2, P3, and P4 portfolios constructed based on the
M1 and M2 models versus the performance of the benchmarks. (b) Performance of the P1, P2, P3, and
P4 portfolios constructed based on the M1 and M2 models versus the performance of the benchmarks
during the COVID-19-inclusive period. (The bold numbers indicate the best result for each metric).

(a)

Portfolios S&P500 CS P1 P2 P3 P4

Models M1 M1 M2 M2

Number of stocks 6 7 6 7

Annualized return 15% 5% 23% 20% 20% 14%
Annualized volatility 12% 12% 21% 18% 20% 18%
Downside volatility 8.8% 8.6% 11% 10% 10% 10%
Alpha 0% −4% 21% 19% 18% 11%
Beta 1 0.65 0.15 0.09 0.17 0.15
Correlation 1 0.68 0.09 0.06 0.10 0.10
Sharpe ratio 1.05 0.30 1.03 1.02 0.93 0.67
Sortino ratio 1.48 0.41 1.89 1.85 1.81 1.21
Treynor ratio 0.13 0.06 1.42 2.11 1.13 0.81
Omega Ratio 1.49 1.14 1.50 1.48 1.45 1.31
Calmar Ratio 0.78 0.19 1.49 1.30 0.99 0.77
Information ratio −0.99 0.35 0.25 0.21 −0.08
Upside capture ratio 1 0.45 0.44 0.34 0.44 0.36
Downside capture ratio 1 0.70 0.02 −0.09 0.13 0.25
Max drawdown −17% −19% −14% −14% −19% −16%

Date max drawdown 21 December
2018 18 May 2018 25 May 2018 8 September

2017
8 September

2017 8 June 2018

(b)

Portfolios S&P500 CS P1 P2 P3 P4

Models M1 M1 M2 M2

Number of stocks 6 7 6 7

Annualized return 10% 3% 7% 8% 12% 8%
Annualized volatility 18% 16% 23% 20% 24% 22%
Downside volatility 14% 12% 16% 13% 15% 13%
Alpha 0% −4% 6% 7% 9% 6%
Beta 1 0.71 0.24 0.15 0.38 0.32
Correlation 1 0.81 0.19 0.13 0.28 0.26
Sharpe ratio 0.48 0.12 0.24 0.34 0.44 0.31
Sortino ratio 0.62 0.16 0.36 0.51 0.73 0.52
Treynor ratio 0.09 0.03 0.23 0.45 0.28 0.21
Omega Ratio 1.26 1.09 1.15 1.18 1.25 1.18
Calmar Ratio 0.27 0.09 0.16 0.24 0.49 0.39
Information ratio −0.62 −0.11 −0.07 0.06 −0.10
Upside capture ratio 1 0.53 0.20 0.15 0.33 0.29
Downside capture ratio 1 0.79 0.24 0.08 0.31 0.37
Max drawdown −32% −22% −36% −28% −22% −17%

Date max drawdown 20 March 2020 20 March 2020 18 December
2020

18 December
2020 20 March 2020 20 March 2020
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Table 6. (a) Pre-COVID-19 performance of the P5, P6, P7, and P8 portfolios constructed based on the
M3 and M4 models versus the performance of the benchmarks. (b) Performance of the P5, P6, P7, and
P8 portfolios constructed based on the M3 and M4 models versus the performance of the benchmarks
in the COVID-19-inclusive period. (The bold numbers indicate the best result for each metric).

(a)

Portfolios S&P500 CS P5 P6 P7 P8

Models M3 M3 M4 M4

Number of stocks 6 7 6 7

Annualized return 15% 5% 34% 29% 27% 30%
Annualized volatility 12.5% 11.8% 18% 17% 19% 17%
Downside volatility 8.8% 8.6% 9.1% 8.7% 9.7% 8.7%
Alpha 0% −4% 32% 28% 24% 26%
Beta 1 0.65 0.11 0.07 0.17 0.20
Correlation 1 0.68 0.07 0.05 0.11 0.15
Sharpe ratio 1.05 0.30 1.78 1.63 1.34 1.64
Sortino ratio 1.48 0.41 3.58 3.17 2.64 3.26
Treynor ratio 0.13 0.06 2.97 4.00 1.46 1.41
Omega Ratio 1.49 1.14 1.83 1.74 1.65 1.79
Calmar Ratio 0.78 0.19 1.94 1.44 1.21 1.52
Information ratio −0.99 0.91 0.71 0.55 0.74
Upside capture ratio 1 0.45 0.51 0.40 0.48 0.56
Downside capture ratio 1 0.70 −0.35 −0.37 −0.08 −0.05
Max drawdown −16.8% −18.7% −16.7% −19.2% −21.1% −18.7%

Date max drawdown 21 December
2018 18 May 2018 28 December

2018
28 December

2018 11 January 2019 21 December
2018

(b)

Portfolios S&P500 CS P5 P6 P7 P8

Models M3 M3 M4 M4

Number of stocks 6 7 6 7

Annualized return 10% 3% 22% 21% 25% 22%
Annualized volatility 18% 16% 24% 22% 22% 21%
Downside volatility 13.74% 12.23% 14.48% 14.1% 12.21% 12.47%
Alpha 0% −4% 18% 17% 23% 18%
Beta 1 0.71 0.48 0.42 0.25 0.40
Correlation 1 0.81 0.36 0.34 0.20 0.34
Sharpe ratio 0.48 0.12 0.88 0.86 1.04 0.98
Sortino ratio 0.62 0.16 1.45 1.37 1.92 1.67
Treynor ratio 0.09 0.03 0.44 0.46 0.93 0.52
Omega Ratio 1.26 1.09 1.45 1.43 1.51 1.48
Calmar Ratio 0.27 0.09 0.99 1.01 1.11 1.11
Information ratio −0.62 0.51 0.46 0.56 0.52
Upside capture ratio 1 0.53 0.43 0.38 0.42 0.47
Downside capture ratio 1 0.79 0.18 0.13 0.09 0.25
Max drawdown −32% −22% −21% −19.2% −21% −18.7%

Date max drawdown 20 March 2020 20 March 2020 20 March 2020 28 December
2018 11 January 2019 21 December

2018

Based on the results of this empirical study, we can conclude that portfolios constructed
according to the EMN strategy and utilizing LSTM neural networks for return prediction
outperformed the benchmarks (sector index and market index). This is due to the advantage
of LSTM neural networks in predicting stock returns by effectively identifying sequential
patterns in the data. LSTM is one of the most advanced techniques for capturing complex
dependencies and relationships in financial time series data. This confirms the initially
proposed hypothesis (1).

Furthermore, the results also show that the use of feature engineering and integration
of new variable categories such as “Scores”, “Piotroski”, and “stock to sector fundamen-
tal indicators” enhance the portfolio’s performance. This is due to the fact that feature
engineering enables the extraction of analytical representations from data, making them
more relevant to the studied problem and easier to capture by the model. The categories of
indicators, “Scores” and “Piotroski”, assess the financial quality of stocks in the medium
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and long term, whereas the “stock to sector fundamental indicators” category captures
interactions by comparing the financial state of stocks to their sector based on financial
statements information. This finding supports the previously stated hypothesis (2).

5. Conclusions

This study fills the existing gap in the literature regarding the construction of a
profitable portfolio built according to an equity-market-neutral investment strategy using
LSTM neural networks, which are widely used in portfolio management due to their
strength in time series prediction. To achieve this purpose, this study proposed a new
two-step portfolio construction approach according to the alternative equity-market-neutral
investment strategy. The first step of our approach involved predicting stock returns using
LSTM neural networks in 15 different iterations based on historical price data, technical
indicators, fundamental indicators, and sector indicators. The second step consisted of
selecting the stocks for the long and short sides of the portfolio by ranking the stocks
according to their predicted returns. The long portfolio was made up of the stocks that we
expected to perform the best, while the short portfolio was made up of the stocks that we
expected to perform the worst. Thus, we constructed several portfolios by changing some
of the hyperparameters of the model.

In the next stage of the research, we compared the performance of the constructed
portfolios against each other and against two benchmarks, in periods exclusive and inclu-
sive of the COVID-19 pandemic, using 15 performance and risk metrics that are commonly
used in portfolio management. Our model was tested on the S&P500 Consumer Staples
sector stocks with weekly portfolio rebalancing. By including all of the variables in the
model, the portfolios experienced a change in their performance levels. Nonetheless, all of
them outperformed the benchmarks.

The results show that integrating LSTM neural networks to predict returns and construct
a portfolio based on the market-neutral strategy outperformed benchmarks. Moreover, incor-
porating all types of variables such as historical quotes, technical and fundamental indicators,
stock-to-sector indicators, and indicators that assess the quality of stocks into the input data
greatly improved the model’s performance. These results should give investors and managers
more confidence in using alternative strategies that use LSTM neural networks in the process
of developing investment strategies, stock selection and portfolio construction.

These findings support this research’s hypotheses: (1) Constructing a portfolio based
on the EMN investment strategy, which utilizes LSTM neural networks to forecast returns,
outperform both benchmarks: the sector index and the market index; and (2) enriching
the input data by including features using feature engineering techniques enhances the
portfolio’s performance.

Future work will focus on improving the predictive abilities of the model during crisis
periods, such as the COVID-19 pandemic, in order to reduce the volatility of the portfolio
returns. In fact, during the training period of the present model from 2010 to 2016, there
was no sharp drop in the market such as that experienced during the COVID-19 crisis
period. Whereas the test data used to measure the performance of the model from 2016 to
2020 included the COVID-19 crisis period.

One avenue to be explored in further research is the use of a rolling training period, i.e.,
using past data to predict later week’s return. Then, once the return is achieved, it can be
incorporated into the model training data to predict the later week’s return, and so on. With
this method, LSTM networks will adjust as they go along by using more and more recent data.

Finally, we intend to extend the scope of this approach to other sectors of activity, as
well as to other alternative investment strategies.
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Appendix A

Demonstration A1.

Hereafter, VM denotes the market value, L and S denote the long and short portfolios, respectively,
nl denotes the number of stocks in the long portfolio, ns denotes the number of stocks in the short
portfolio, and rL

i,t is the return of stock “i” which is part of the long portfolio at date “t”.
If the same market value VMt−1 is invested at date “t − 1” in both the long and short portfolios,
whose stocks are equally weighted, the market value at date “t” of the long portfolio will be:

VML
t = VML

1,t + · · ·+ VML
nl ,t

VML
t = VM1,t−1(1 + rL

1,t) + · · ·+ VMnl ,t−1(1 + rL
nl ,t)

Such as VMi,t−1 =
VMt−1

nl
because we invest the same amount in each stock

VML
t =

VMt−1
nl

(1 + rL
1,t) + · · ·+

VMt−1
nl

(1 + rL
nl ,t)

VML
t =

VMt−1
nl

(nl + rL
1,t + · · ·+ rL

nl ,t)

VML
t = VMt−1 (1 +

rL
1,t + · · ·+ rL

nl ,t

nl
)

VML
t = VMt−1 (1 + rL

t )

Such as, rL
t =

rL
1,t + · · ·+ rL

nl ,t

nl

Similarly, the return of the short portfolio at date “t” is calculated as follows, where «rL
t » and «rS

t »
are the returns at date “t” of the long and short portfolios, respectively. «nl» and «ns» are the
number of stocks in the long and short portfolios, respectively:

rS
t =

rS
1,t + · · ·+ rS

ns ,t

ns
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Appendix B

Table A1. List of stocks with their Bloomberg symbols and their start dates, end dates, and number
of weeks in the data after imputation.

Symbol Start Date End Date Number of Weeks

1 ADM 2010-01-08 2020-12-18 553

2 AVP 2010-01-08 2020-01-03 505

3 BF/B 2010-01-08 2020-12-18 553

4 CAG 2010-01-08 2020-12-18 553

5 CCE 2010-12-31 2018-11-02 396

6 CHD 2010-01-08 2020-12-18 553

7 CL 2010-01-08 2020-12-18 553

8 CLX 2010-01-08 2020-12-18 553

9 COST 2010-01-08 2020-12-04 551

10 COTY 2014-03-28 2020-12-18 338

11 CPB 2010-01-08 2020-12-18 553

12 DPS 2010-12-31 2018-07-06 379

13 EL 2010-01-08 2020-12-18 553

14 GAPTQ 2010-01-08 2012-03-09 111

15 GIS 2010-01-08 2020-12-18 553

16 GMCR 2010-01-08 2016-02-26 308

17 HNZ 2010-01-08 2013-06-07 174

18 HRL 2010-01-08 2020-12-18 553

19 HSY 2010-01-08 2020-12-18 553

20 K 2010-01-08 2020-12-18 553

21 KHC 2016-07-08 2020-12-18 228

22 KMB 2010-01-08 2020-12-18 553

23 KO 2010-01-08 2020-12-18 553

24 KR 2010-01-08 2020-12-18 553

25 KRFT 2013-07-12 2015-06-26 98

26 LO 2010-07-02 2015-06-05 249

27 LW 2017-08-25 2020-12-18 170

28 MDLZ 2010-01-08 2020-12-18 553

29 MJN 2010-03-12 2017-06-09 364

30 MKC 2010-01-08 2020-12-18 553

31 MNST 2010-01-08 2020-12-18 553

32 MO 2010-01-08 2020-12-18 553

33 PEP 2010-01-08 2020-12-18 553

34 PG 2010-01-08 2020-12-18 553

35 PM 2010-04-09 2020-12-18 541

36 RAD 2010-01-08 2020-12-18 553

37 RAI 2010-01-08 2017-07-21 379
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Table A1. Cont.

Symbol Start Date End Date Number of Weeks

38 SJM 2010-01-08 2020-12-18 553

39 STZ 2010-01-08 2020-12-18 553

40 SVU 2010-01-08 2018-10-19 443

41 SWY 2010-01-08 2015-01-23 255

42 SYY 2010-01-08 2020-12-18 553

43 TAP 2010-01-08 2020-12-18 553

44 TSN 2010-01-08 2020-12-18 553

45 UN 2010-01-08 2013-09-20 189

46 WAG 2010-12-31 2014-12-19 203

47 WBA 2010-01-08 2020-12-18 553

48 WFM 2010-01-08 2017-08-25 384

49 WMT 2010-01-08 2020-11-13 548

Table A2. Raw variables of stocks directly downloaded from Bloomberg (BBG).

Variable Name Description Bloomberg Field Name

Stock market data: BBG field (daily frequency)

curMrkCap Current market capitalization CUR_MKT_CAP

Open Open price OPEN

High High price HIGH

Low Low price LOW

Volume Volume PX_VOLUME

Close Close price PX_LAST

nbrShares Total current number of shares outstanding EQY_SH_OUT

indDivYld Indicative dividend per share EQY_IND_DPS_ANNUAL_GROSS

Fundamental data: BBG field (quarterly frequency)

_debt Short-term and long-term debt SHORT_AND_LONG_TERM_DEBT

_debtLT Long term borrowing BS_LT_BORROW,

_debtST Short term borrowing BS_ST_BORROW,

_marge1Y Trailing 12-month gross margin TRAIL_12M_GROSS_MARGIN

_cash Cash CASH_&_ST_INVESTMENTS

_cshMrkSecr Cash and marketable securities CASH_AND_MARKETABLE_SECURITIES

_Eqy Total Equity TOTAL_EQUITY

_sales1Y Trailing 12-month sales TRAIL_12M_NET_SALES

_CF1y Trailing 12-month cash flow TRAIL_12M_CASH_FROM_OPER

_FCF1y Trailing 12-month free cash flow TRAIL_12M_FREE_CASH_FLOW

_assets Total assets BS_TOT_ASSET

_divPerSh1y Trailing 12-month dividend per share TRAIL_12M_DVD_PER_SH

_Liab Total liability BS_TOT_LIAB2

_earn1Y Trailing 12-month earning T12M_INC_BEF_XO_LESS_MIN_INT_PFD
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Table A2. Cont.

Variable Name Description Bloomberg Field Name

_EPS1y Trailing 12-month EPS TRAIL_12M_EPS

_nbrShEps Average number of shares for EPS IS_AVG_NUM_SH_FOR_EPS

_nbrShDilEps Average number of shares used for diluted Eps IS_SH_FOR_DILUTED_EPS

_ROE Return on common equity RETURN_COM_EQY

_ebitda1Y Trailing 12-month EBITDA TRAIL_12M_EBITDA

_curAssets Current assets BS_CUR_ASSET_REPORT

_curLiab Current liability BS_CUR_LIAB

_inventori Inventories BS_INVENTORIES

_accReceiv Receivable account BS_ACCT_NOTE_RCV

_accPayble Payable account BS_ACCT_PAYABLE

_augCap Trailing 12-month increase capital stock TRAIL_12M_INCR_CAP_STOCK

_dimCap Trailing 12-month decrease capital stock TRAIL_12M_DECR_CAP_STOCK

Table A3. Raw variables of the sector index directly downloaded from Bloomberg (BBG).

Variable Name Description BBG Field

Sector data: BBG field (weekly frequency)

open_sec Open price OPEN

high_sec High price HIGH

low_sec Low price LOW

volume_sec Volume PX_VOLUME

close_sec Close price PX_LAST

curMrkCap_sec Current market capitalization CUR_MKT_CAP

rvnPerSh_sec Revenue per share REVENUE_PER_SH

divPerSh1Y_sec Dividend per share last 12 months DVD_SH_12M

Eps_sec Trailing 12-month earnings per share TRAIL_12M_EPS_BEF_XO_ITEM

assets_sec Assets BS_TOT_ASSET

EV_sec Entreprise value ENTERPRISE_VALUE

bkPerSh_sec Book value per share BOOK_VAL_PER_SH

cfPerSh_sec Cash flow per share CASH_FLOW_PER_SH

fcfPerSh_sec Free cash flow per share FREE_CASH_FLOW_PER_SH

ptMrg_sec Trailing 12-month profit margin TRAIL_12M_PROF_MARGIN

fcf2Pr_sec Free cash flow to price FREE_CASH_FLOW_YIELD

liab_sec Total liability BS_TOT_LIAB2

ROE_sec Return on equity RETURN_COM_EQY

dbt2Eqy_sec Debt to equity TOT_DEBT_TO_TOT_EQY

salesPerSh1Y_sec Sales per share last 12 months TRAIL_12M_SALES_PER_SH

pr2CF_sec Price to cash flow PX_TO_CASH_FLOW

pr2Bk_sec Price to book value PX_TO_BOOK_RATIO

pr2Ern_sec Price to earning PE_RATIO
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Table A4. Calculated intermediate stock indicators. (Note that (j-n) means the end of the nth day
before the day j, and (Q-n) means the nth quarter before the quarter Q).

Variable Name Description Formula

_assetsTrnv Asset turnover _sales1Y/_assets

_debtSTminsCash Short term debt minus cash Max (_debtST − _cash, 0)

_debtMinsCash Debt minus cash _debtLT + _debtSTminsCash

_netIncome Net income (NI) _Eps1Y × _nbrShEps

Eps Earnings per share (EPS) earn1Y/nbShares

_ptMrg Profit margin earn1Y/sales1Y

_dbt2Eqy Debt to Equity _debt/_Eqy

_cfoMrg Cash flow margin _CF1y/_sales1Y

_yoyErnGr Year to year earnings growth _earn1Y(Q)/_earn1Y(Q-4)

_yoyErnGrRate Year to year earnings growth rate _yoyErnGr − 1

yoyEpsGrRate Year to year EPS growth rate EPS(j)/EPS(j-252) − 1

_yoyEbitdaGrRate Year to year EBITDA growth rate _ebitda1y(Q)/_ebitda1y(Q-4) − 1

_yoySlGr Year to year sales growth _sales1Y(Q)/_sales1Y(Q-4)

_yoySlGrRate Year to year sales growth rate _yoySlGr − 1

_netDebt Net debt _debt − _cshMrkSecur

EV Enterprise value curMrkCap + _debtMinsCash

_netDbtToEV Net debt to EV _netDebt/EV

_netDbt2Ebd Net debt to EBITDA _netDebt/_ebitda1Y

_curRatio Current ratio _curAssets/_curLiab

_ebitdaMrg EBITDA margin _ebitda1Y/_sales1Y

_inventryToSales Inventories to sales _inventori/_sales1y

_receivTurnover Receivables turnover _sales1y/_accReceiv

_operFin Operations financing (_accPayble − _accReceiv)/_sales1y

fcfPerSh Free cash flow per share _FCF1y/nbrShares

FcfDivCovRt Free cash flow dividend coverage ratio indDivYld/fcfPerSh

NiDivCovRt Net income dividend coverage ratio indDivYld/EPS

divPerShGr4Q 4Q dividend per share growth _divPerSh1y(Q)/_divPerSh1y(Q-4)

divPerShGr12Q 12Q dividend per share growth _divPerSh1y(Q)/_divPerSh1y(Q-12)

_netDebtIss Net debt issuance _debt(Q) − _debt(Q-4)

_netEqyIss Net equity issuance _augCap − _dimCap

_netFin Net financing _netEqyIss + _netDebtIss

_cfoToNiAcr CFO to net income accrual (_CF1y(Q) − _netIncome(Q))/assets(Q-4)

_ebidaToCfoAcr EBITDA to CFO accrual (_ebitda1Y(Q) − _CF1Y(Q))/assets(Q-4)

_acrEarn Accrual earning (_cshMrkSecr(Q) − _netEqyIss(Q)) − _cshMrkSecr(Q-4)

_3yAcrEarn 3-year accrual earnings _acrEarn(Q) + _acrEarn(Q-4)

_earn3Y 3-year earnings _earn1Y(Q) + _earn1Y(Q-4) + _earn1Y(Q-8)

_netAccrual Net accrual (_acrEarn − _earn1Y)/_Eqy

_3yNetAccrual 3-year net accrual (_3yAcrEarn(Q) − _earn3Y(Q))/_Eqy(Q-8)



Int. J. Financial Stud. 2023, 11, 57 38 of 48

Table A4. Cont.

Variable Name Description Formula

_3yErnGrRate 3-year earnings growth rate

• If _earn1Y(Q) ≥ 0 and _earn1Y(Q-12) ≥ 0: _3yErnGrRate =
power(_earn1Y(Q)/_earn1Y(Q-12), 1/3) − 1

• If _earn1Y(Q) ≥ 0 and _earn1Y(Q-12) ≤ 0: _3yErnGrRate = 1
• If _earn1Y(Q) ≤ 0 and _earn1Y(Q-12) ≥ 0: _3yErnGrRate = −1

_3ySlGrRate 3-year sales growth rate

• If _sales1Y(Q) ≥ 0 and _sales1Y(Q-12) ≥ 0: _3ySlGrRate =
power(_sales1Y(Q)/_sales1Y(Q-12), 1/3) − 1

• If _sales1Y(Q) ≥ 0 and _sales1Y(Q-12) ≤ 0: _3ySlGrRate = 1
• If _sales1Y(Q) ≤ 0 and _sales1Y(Q-12) ≥ 0: _3ySlGrRate = −1

3yEpsGrRate 3-year EPS growth rate

• If Eps(j) ≥ 0 and Eps(j-756) ≥ 0: 3yEpsGrRate = power
(Eps(j)/Eps(j-756), 1/3) − 1

• If Eps(j) ≥ 0 and Eps(j-756) ≤ 0: 3yEpsGrRate = 1
• If Eps(j) ≤ 0 and Eps(j-756) ≥ 0: 3yEpsGrRate = −1

_3yEbitdaGrRate 3-year EBITDA growth rate

• If _ebitda1Y(Q) ≥ 0 and _ebitda1Y(Q-12) ≥ 0: _3yEbitdaGrRate
= power (_ebitda1Y(Q)/_ebitda1Y(Q-12), 1/3) − 1

• If _ebitda1Y(Q) ≥ 0 and _ebitda1Y(Q-12) ≤ 0: _3yEbitdaGrRate
= 1

• If _ebitda1Y(Q) ≤ 0 and _ebitda1Y(Q-12) ≥ 0: _3yEbitdaGrRate
= −1

_pPsCurRtV Piotroski positive current ratio variation
indicator

• If _curRatio(Q) > _curRatio(Q-4): _pPsCurRtV = 1 Else:
_pPsCurRtV = 0

_pNgEqyIss Piotroski negative equity issuance indicator
• If _augCap > 0: _pNgEqyIss = 1
• Else: _pNgEqyIss = 0

_pPsGrsMrgV Piotroski positive gross margin variation
indicator

• If _marge1Y(Q) > _marge1Y(Q-4): _pPsGrsMrgV = 1
• Else: _pPsGrsMrgV = 0

scNetDebtToEBITDA Net debt to EBITDA score

• If _netDebt > 0 and _ebitda1Y ≤ 0: score = 0
• If _netDbt2Ebd < 2 and _netDebt≤ 0 and_ebitda1Y≤ 0: score = 2
• If _netDbt2Ebd < 2 and _netDebt < 0 and _ebitda1Y > 0: score = 2
• If _netDbt2Ebd < 2 and _netDebt > 0 and _ebitda1Y > 0: score = 2
• If _netDbt2Ebd ≥ 2 and f_netDbt2Ebd < 3.5: score = 1
• If _netDbt2Ebd ≥ 3.5: score = 0

scCurrentRatio Current ratio score
• If _curRatio > 1.5: score = 2
• If _curRatio > 1 and _curRatio <= 1.5: score = 1
• If _curRatio ≤ 1: score = 0

scROE Return on equity score
• If _ROE > 20: score = 2
• If 10 < _ROE ≤ 20: score = 1
• If _ROE <= 10: score = 0

scEbidtaToSales EBITDA to sales score
• If _ebitdaMrg > 0.2: score = 2
• If 0.1 < _ebitdaMrg ≤ 0.2: score = 1
• If _ebitdaMrg ≤ 0.1: score = 0

scInvtryToSales Inventory to sales score
• If _inventryToSales < 10: score = 2
• If 10 ≤ _inventryToSales < 20: score = 1
• If _inventryToSales ≥ 20: score = 0

scReceivTurnover Receivable turnover score
• If _receivTurnover > 10: score = 2
• If 8 < _receivTurnover ≤ 10: score = 1
• If _receivTurnover ≤ 8: score = 0

scOperFinancing Operation financing score
• If _operFin > 0.1: score = 2
• If 0 < _operFin ≤ 0.1: score = 1
• If _operFin ≤ 0: score = 0

scFcfDivCovRatio FCF dividend coverage ratio score
• If FcfDivCovRt < 0.3: score = 2
• If 0.3 ≤ FcfDivCovRt < 0.8: score = 1
• If FcfDivCovRt ≥ 0.8: score = 0

scNiDivCovRatio Net income dividend coverage ratio score
• If NiDivCovRt < 0.5: score = 2
• If 0.5 ≤ NiDivCovRt < 0.9: score = 1
• If NiDivCovRt ≥ 0.9: score = 0
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Table A4. Cont.

Variable Name Description Formula

scDivShareGrowth4Q 4Q dividend per share growth score
• If divPerShGr4Q > 0.1: score = 2
• If 0.05 < divPerShGr4Q ≤ 0.1: score = 1
• If divPerShGr4Q ≤ 0.05: score = 0

scDivShareGrowth12Q 12Q dividend per share growth score
• If divPerShGr12Q > 0.1: score = 2
• If 0.05 < divPerShGr12Q ≤ 0.1: score = 1
• If divPerShGr12Q ≤ 0.05: score = 0

scNetEqyIssuance Net equity issuance score
• If _netEqyIss < 0: score = 2
• If 0 ≤_netEqyIss < (0.15 × curMrkCap): score = 1
• If _netEqyIss ≥ (0.15 × curMrkCap): score = 0

scNetFinancing Net financing score
• If _netFin < 0: score = 2
• If 0 ≤_netFin < (0.15 × curMrkCap): score = 1
• If _netFin ≥ (0.15 × curMrkCap): score = 0

scEbitdaToCfoAccrual EBITDA to CFO accrual score
• If _ebidaToCfoAcr > −0.03: score = 2
• If −0.07 < _ebidaToCfoAcr ≤ −0.03: score = 1
• If _ebidaToCfoAcr ≤ −0.07: score = 0

scNetAccrual Net accrual score
• If _netAccrual < 0: score = 2
• If 0 ≤ _netAccrual < (0.15 × close): score = 1
• If _netAccrual ≥ (0.15 × close): score = 0

sc3yrNetAccrual 3-year net accrual score
• If _3yrNetAccrual < 0: score = 2
• If 0 ≤ _3yrNetAccrual < (0.15 × close): score = 1
• If _3yrNetAccrual ≥ (0.15 × close): score = 0

scYoyEbitdaGrowth Year-on-year EBITDA growth score
• If _yoyEbitdaGrRate > 0.15: score = 2
• If 0.07 < _yoyEbitdaGrRate ≤ 0.15: score = 1
• If _yoyEbitdaGrRate ≤ 0.07: score = 0

sc3yrEbitdaGrowth 3-year EBITDA growth score
• If _3yEbitdaGrRate > 0.15: score = 2
• If 0.07 < _3yEbitdaGrRate ≤ 0.15: score = 1
• If _3yEbitdaGrRate ≤ 0.07: score = 0

Table A5. Calculated intermediate sector indicators. (Note that (j-n) means the end of the nth day
before the day j, and (Q-n) means the nth quarter before the quarter Q).

Variable Name Description Formula

EV2Ass_sec Enterprise value to total assets EV_sec/assets_sec

debt_sec Debt bkPerSh_sec × dbt2Eqy_sec/100

cfoMrg_sec Cash flow margin cfPerSh_sec/rvnPerSh_sec

yoyErnGr_sec Year-to-year earning growth Eps_sec/Eps_sec (j-252)

yoySlGr_sec Year-to-year sales growth rvnPerSh_sec/rvnPerSh_sec(j-252)

retD_sec Daily return (close_sec(j)/close_sec(j-1)) − 1

ret5D_sec 5-day return (close_sec(j)/close_sec(j-5)) − 1

ret9D_sec 9-day return (close_sec(j)/close_sec(j-9)) − 1

ret22D_sec 22-day return (close_sec(j)/close_sec(j-22)) − 1

ret50D_sec 50-day return (close_sec(j)/close_sec(j-50)) − 1

ret130D_sec 130-day return (close_sec(j)/close_sec(j-130)) − 1

ret200D_sec 200-day return (close_sec(j)/close_sec(j-200)) − 1

ret252D_sec 252-day return (close_sec(j)/close_sec(j-252)) − 1

RSI14D_sec Sector 14-day Relative Strength Index (RSI)

100 × SUM(UPs)/(SUM(UPs) + SUM(DOWNs)),
Where, Ups = (px − px(j-1)) if px > px(j-1),
DOWNs = (px(j-1) − px) if px < px(j-1)
over 14 days, and px = Close_sec
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Table A5. Cont.

Variable Name Description Formula

MA5Rsi14D_sec 5-day average 14-day RSI AVG(RSI14D) over 5 days

stOscK14D_sec 14-day Stochastic Oscillator (%k) k = 100 × (close_sec −MIN(low_sec) over 14
days)/(MAX(high_sec) −MIN(low_sec) over 14 days)

fStOscK14D_sec Fast 14-day Stochastic Oscillator AVG(stOscK14D) over 3 days

sStOscK14D_sec Slow 14-day Stochastic Oscillator AVG(fStOscK14D) over 3 days

wliamR14D_sec 14-day Williams percent range (%R) 100 × (close_sec −MAX(high_sec) over 14
days)/(MAX(high_sec)−MIN(low_sec) over 14 days)

OBV_sec On-balance-volume OBV = SUM(sign(close_sec(j) − close_sec(j-1)) × Volume)
over all historical data

volAn130D_sec 130-day annualized volatility sqrt(252) × std(retD_sec) over 130 days

volAn26W_sec 26-week annualized volatility sqrt(52) × std(ret5D) over 26 weeks

volAn52W_sec 52-week annualized volatility sqrt(52) × std(ret5D) over 52 weeks

volAn104W_sec 104-week annualized volatility sqrt(52) × std(ret5D) over 104 weeks

MA5D_sec 5-day simple moving average AVG(close_sec) over 5 days

MA20D_sec 20-day simple moving average AVG(close_sec) over 20 days

MA50D_sec 50-day simple moving average AVG(close_sec) over 50 days

MA130D_sec 130-day simple moving average AVG(close_sec) over 130 days

MA200D_sec 200-day simple moving average AVG(close_sec) over 200 days

MA252D_sec 252-day simple moving average AVG(close_sec) over 252 days

EMA5D_sec 5-day exponential moving average

EMA5D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA5D_sec(j-1)
Where, alpha = 2/(5 + 1)
and EMA5D_sec(initial) = MA5D_sec

EMA20D_sec 20-day exponential moving average

EMA20D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA20D_sec(j-1)
Where, alpha = 2/(20 + 1)
and EMA20D_sec(initial) = MA20D_sec

EMA50D_sec 50-day exponential moving average

EMA50D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA50D_sec(j-1)
Where, alpha = 2/(50 + 1)
and EMA50D_sec(initial) = MA50_sec

EMA130D_sec 130-day exponential moving average

EMA130D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA130D_sec(j-1)
Where, alpha = 2/(130 + 1)
and EMA130D_sec(initial) = MA130D_sec

EMA200D_sec 200-day exponential moving average

EMA200D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA200D_sec (j-1)
Where, alpha = 2/(200 + 1)
and EMA200D_sec(initial) = MA200D_sec

EMA252D_sec 252-day exponential moving average

EMA252D_sec(j) = alpha × close_sec(j) + (1 − alpha) ×
EMA252_sec (j-1)
Where, alpha = 2/(252 + 1)
and EMA252D_sec(initial) = MA252D_sec

momTCT_sec Very short-term momentum (close_sec/MA5D_sec) − 1

momCT_sec Short-term momentum (MA5D_sec/MA20D_sec) − 1

momMT_sec Middle-term momentum (MA20D_sec/MA50D_sec) − 1

momLT_sec Long-term momentum MA50D_sec/MA200D_sec − 1

momTLT_sec Very long-term momentum (MA200D_sec/MA252D_sec) − 1

mmRt53Ex2w_sec Momentum of weekly returns 1 year before 2 last
weeks

mom53w_sec = AVG(rendW) over 52 weeks before 2 last
weeks.
Where, rendW is 5 days sector return weekly taken

pr2MA5D_sec Price to 5-day simple moving average close_sec/MA5D_sec

pr2MA20D_sec Price to 20-day simple moving average close_sec/MA20D_sec
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Table A5. Cont.

Variable Name Description Formula

pr2MA50D_sec Price to 50-day simple moving average close_sec/MA50D_sec

pr2MA130D_sec Price to 130-day simple moving average close_sec/MA130D_sec

pr2MA200D_sec Price to 200-day simple moving average close_sec/MA200D_sec

pr2MA252D_sec Price to 252-day simple moving average close_sec/MA252D_sec

pr2EMA5D_sec Price to 5-day exponential moving average close_sec/EMA5D_sec

pr2EMA20D_sec Price to 20-day exponential moving average close_sec/EMA20D_sec

pr2EMA50D_sec Price to 50-day exponential moving average close_sec/EMA50D_sec

pr2EMA130D_sec Price to 130-day exponential moving average close_sec/EMA130D_sec

pr2EMA200D_sec Price to 200-day exponential moving average close_sec/EMA200D_sec

pr2EMA252D_sec Price to 252-day exponential moving average close_sec/EMA252D_sec

Table A6. Final variables. (Note that (j-n) means the end of the nth day before the day j, and (Q-n)
means the nth quarter before the quarter Q).

Variable Name Description Formula

Price

Open Open price

High High price

Low Low price

volume Volume

Close Close price

curMrkCap Current market capitalization

Stock price to sector

low2Sec Low price to sector low/low_sec

close2Sec Close price to sector close/close_sec

mrktCap2Sec Market capitalisation price to sector curMrkCap/curMrkCap_sec

open2Sec Open price to sector open/open_sec

high2Sec High price to sector high/high_se

Returns

retTD Daily stock total return (close(j) − close(j-1) + div)/close(j-1)

retT5D 5-day stock total return (close(j) − close(j-5) + div)/close(j-5)

retT9D 9-day stock total return (close(j) − close(j-9) + div)/close(j-9)

retT22D 22-day stock total return (close(j) − close(j-22) + div)/close(j-22)

retT50D 50-day stock total return (close(j) − close(j-50) + div)/close(j-50)

retT130D 130-day stock total return (close(j) − close(j-130) + div)/close(j-130)

retT200D 200-day stock total return (close(j) − close(j-200) + div)/close(j-200)

retT252D 252-day stock total return (close(j) − close(j-252) + div)/close(j-252)

Stock return to sector

retD2Sec Daily return to sector retTD/retD_sec

ret5D2Sec 5-day return to sector retT5D/ret5D_sec

ret9D2Sec 9-day return to sector retT9D/ret9D_sec

ret22D2Sec 22-day return to sector retT22D/ret22D_sec
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Variable Name Description Formula

ret50D2Sec 50-day return to sector retT50D/ret50D_sec

ret130D2Sec 130-day return to sector retT130D/ret30D_sec

ret200D2Sec 200-day return to sector retT200D/ret200D_sec

ret252D2Sec 252-day return to sector retT252D/ret252D_sec

Volatility

volAn130D 130-day stock annualized volatility sqrt(252) × std(retTD) over 130 days

volAn26W 26-week stock annualized volatility sqrt(52) × std(retT5D) over 26 weeks

volAn52W 52-week stock annualized volatility sqrt(52) × std(retT5D) over 52 weeks

volAn104W 104-week stock annualized volatility sqrt(52) × std(retT5D) over 104 weeks

Stock volatility to sector

volAn130D2Sec 130-day annualized volatility to sector volAn130D/volAn130D_sec

volAn26W2Sec 26-week annualized volatility to sector volAn26W/volAn26W_sec

volAn52W2Sec 52-week annualized volatility to sector volAn52W/volAn52W_sec

volAn104W2Sec 104-weeksannualized volatility to sector volAn104W/volAn104W_sec

Return to volatility

r5DToVol52W 5-day return to 52-week volatility retT5D/volAn52W

r5DToVol26W 5-day return to 26-week volatility retT5D/volAn26W

r5DToVol104W 5-day return to 104-week volatility retT5D/volAn104W

r5DToVol130D 5-day return to 130-day volatility retT5D/volAn130D

rDToVol130D 1-day return to 130-day volatility retTD/volAn130D

Simple moving average (SMA)

MA5D 5-day SMA of stock Close AVG(close) over 5 days

MA20D 20-day SMA of stock Close AVG(close) over 20 days

MA50D 50-day SMA of stock Close AVG(close) over 50 days

MA130D 130-day SMA of stock Close AVG(close) over 130 days

MA200D 200-day SMA of stock Close AVG(close) over 200 days

MA252D 252-day SMA of stock Close AVG(close) over 252 days

Stock SMA to Sector

MA5D2Sec 5-day SMA to sector MA5D/MA5D_sec

MA20D2Sec 20-day SMA to sector MA20D/MA20D_sec

MA50D2Sec 50-day SMA to sector MA50D/MA50D_sec

MA130D2Sec 130-day SMA to sector MA130D/MA130D_sec

MA200D2Sec 200-day SMA to sector MA200D/MA200D_sec

MA252D2Sec 252-day SMA to sector MA252D/MA252D_sec

Exponential moving average (EMA)

EMA5D 5-day EMA of stock close

EMA5D(j) = alpha × close(j) + (1 − alpha) ×
EMA5D(j-1)
Where, alpha = 2/(5 + 1)
and EMA5D(initial) = MA5D

EMA20D 20-day EMA of stock close

EMA20D(j) = alpha × close(j) + (1 − alpha) ×
EMA20D(j-1)
Where, alpha = 2/(20 + 1)
and EMA20D(initial) = MA20D

EMA50D 50-day EMA of stock close

EMA50D(j) = alpha × close(j) + (1 − alpha) ×
EMA50D(j-1)
Where, alpha = 2/(50 + 1)
and EMA50D(initial) = MA50
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Variable Name Description Formula

EMA130D 130-day EMA of stock close

EMA130D(j) = alpha × close(j) + (1 − alpha) ×
EMA130D(j-1)
Where, alpha = 2/(130 + 1)
and EMA130D(initial) = MA130D

EMA200D 200-day EMA of stock close

EMA200D(j) = alpha × close(j) + (1 − alpha) ×
EMA200D (j-1)
Where, alpha = 2/(200 + 1)
and EMA200D(initial) = MA200D

EMA252D 252-day EMA of stock close

EMA252D(j) = alpha × close(j) + (1 − alpha) ×
EMA252 (j-1)
Where, alpha = 2/(252 + 1)
and EMA252D(initial) = MA252D

Stock EMA to Sector

EMA5D2Sec 5-day EMA to sector EMA5D/EMA5D_sec

EMA20D2Sec 20-day EMA to sector EMA20D/EMA20D_sec

EMA50D2Sec 50-day EMA to sector EMA50D/EMA50D_sec

EMA130D2Sec 130-day EMA to sector EMA130D/EMA130D_sec

EMA200D2Sec 200-day EMA to sector EMA200D/EMA200D_sec

EMA252D2Sec 252-day EMA to sector EMA252D/EMA252D_sec

Momentum

momTCT Very short-term momentum (close/MA5D) − 1

momCT Short-term momentum (MA5D/MA20D) − 1

momMT Middle-term momentum (MA20D/MA50D) − 1

momLT Long-term momentum MA50D/MA200D − 1

momTLT Very long-term momentum (MA200D/MA252D) − 1

mmRt53Ex2w Momentum of 1 year’s weekly returns before 2 last
weeks

mom53w_sec = AVG(rendW) over 52 weeks before 2
last weeks.
Where, rendW= rendT5D weekly taken

Stock Momentum to sector

momTCT2Sec Very short-term momentum to sector momTCT/momTCT_sec

momCT2Sec Short-term momentum of sector momCT/momCT_sec

momMT2Sec Middle-term momentum of sector momMT/momMT_sec

momLT2Sec Long-term momentum of sector momLT/momLT_sec

momTLT2Sec Very long-term momentum of sector momTLT/momTLT_sec

mmRet53Ex2w2Sec Momentum of 1 year’s weekly returns before 2 last
weeks to sector mmRet53Ex2w/mmRet53Ex2w_sec

Price to SMA

pr2MA5D Price to 5 days SMA ratio close/MA5D

pr2MA20D price to 20 days SMA ratio close/MA20D

pr2MA50D price to 50 days SMA ratio close/MA50D

pr2MA130D price to 130 days SMA ratio close/MA130D

pr2MA200D price to 200 days SMA ratio close/MA200D

pr2MA252D price to 252 days SMA ratio close/MA252D

Price to SMA ratio to sector

pr2MA5D2Sec Price to 5-day SMA ratio to sector pr2MA5D/pr2MA5D_sec

pr2MA20D2Sec price to 20-day SMA ratio to sector pr2MA20D/pr2MA20D_sec

pr2MA50D2Sec price to 50-day SMA ratio to sector pr2MA50D/pr2MA50D_sec

pr2MA130D2Sec price to 130-day SMA ratio to sector pr2MA130D/pr2MA130D_sec

pr2MA200D2Sec price to 200-day SMA ratio to sector pr2MA200D/pr2MA200D_sec
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Table A6. Cont.

Variable Name Description Formula

pr2MA252D2Sec price to 252-day SMA ratio to sector pr2MA252D/pr2MA252D_sec

Price to EMA

pr2EMA5D Price to 5-day EMA ratio close/EMA5D

pr2EMA20D price to 20-day EMA ratio close/EMA20D

pr2EMA50D price to 50-day EMA ratio close/EMA50D

pr2EMA130D price to 130-day EMA ratio close/EMA130D

pr2EMA200D price to 200-day EMA ratio close/EMA200D

pr2EMA252D price to 252-day EMA ratio close/EMA252D

Price to EMA ratio to sector

pr2EMA5D2Sec Price to 5-day EMA ratio to sector pr2EMA5D/pr2EMA5D_sec

pr2EMA20D2Sec price to 20-day EMA ratio to sector pr2EMA20D/pr2EMA20D_sec

pr2EMA50D2Sec price to 50-day EMA ratio to sector pr2EMA50D/pr2EMA50D_sec

pr2EMA130D2Sec price to 130-day EMA ratio to sector pr2EMA130D/pr2EMA130D_sec

pr2EMA200D2Sec price to 200-day EMA ratio to sector pr2EMA200D/pr2EMA200D_sec

pr2EMA252D2Sec price to 252-day EMA ratio to sector pr2EMA252D/pr2EMA252D_sec

Other technical indicators

RSI14D 14-day Relative Strength Index (RSI)

100 × SUM(UPs)/(SUM(UPs) + SUM(DOWNs)),
where, Ups = (px−px(j-1)) if px > px(j-1)
and DOWNs = (px(j-1)-px) if px < px(j-1)
over 14 days, and px = Close

MA5Rsi14D 5-day average 14-day RSI AVG(RSI14D) over 5 days

stOscK14D 14-day stochastic oscillator (%k) k = 100 × (close −MIN(low) over 14
days)/(MAX(high) −MIN(low) over 14 days)

fStOscK14D Fast 14-day stochastic oscillator AVG(stOscK14D) over 3 days

sStOscK14D Slow 14-day stochastic oscillator AVG(fStOscK14D) over 3 days

wliamR14D 14-day Williams percent range (%R) 100 × (close −MAX(high) over 14
days)/(MAX(high) −MIN(low) over 14 days)

OBV On-Balance-Volume OBV = SUM(sign(close(j) − close(j-1)) × Volume)
over all historical data

Other stock to sector technical indicators

RSI14D2Sec 14-day RSI to sector RSI14D/RSI14D_sec

MA5Rsi14D2Sec 5-day average 14-day RSI MA5RSI14D/MA5RSI14D_sec

stOscK14D2Sec 14-day stochastic oscillator to sector stOscK14D/stOscK14D_sec

fStOscK14D2Sec Fast 14-day stochastic oscillator to sector fStOscK14D/fStOscK14D_sec

sStOscK14D2Sec Slow 14-day stochastic oscillator to sector sStOscK14D/sStOscK14D_sec

wliamR14D2Sec 14-day Williams percent range to sector wliamR14D/wliamR14D_sec

OBVlm2Sec On-balance-volume to sector OBV/OBV_sec

Price multiples

EV Enterprise value curMrkCap + _debtMinsCash

pr2Ern Price to earning ratio curMrkCap/_earn1Y

pr2ErnDil Price to earning diluted ratio close/_earn1Y/_nbrShDilEps

pr2Bk Price to book ratio curMrkCap/_Eqy

pr2Sl Price to sales ratio curMrkCap/_sales1Y

pr2CF Price to cash flow ratio curMrkCap/_CF1Y

pr2FCF Price to free cash flow ratio curMrkCap/_FCF1Y

Ev2As Enterprise value to total assets ratio EV/_assets
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Table A6. Cont.

Variable Name Description Formula

Stock price multiples to sector

pr2Sl2Sec Price to sales to sector pr2Sl/salesPerSh1Y_sec

pr2CF2Sec Price to cash flow to sector pr2CF/pr2CF_sec

pr2Bk2Sec Price to free cash flow to sector pr2Bk/pr2Bk_sec

pr2Ern2Sec Price to book to sector pr2Ern/pr2Ern_sec

Stock to sector fundamental indicators

dvPerSh1y2Sec Dividend per share for 1 year to sector _divPerSh1y/divPerSh1y_sec

eps2Sec Earning per share to sector EPS/Eps_sec

sl1y2Sec Sales 4Q to sector sales1Y/rvnPerSh_sec

assets2Sec Assets to sector _assets /assets_sec

ev2Sec Enterprise value to sector EV/EV_sec

eqy2Sec Equity to sector _Eqy/bkPerSh_sec

dbt2Eqy2Sec Debt to equity to sector _dbt2Eqy/dbt2Eqy_sec

cf1y2Sec Cash flow to sector (_CF1y/nbrShares)/cfPerSh_sec

fcf2Sec Free cash flow to sector (_FCF1y/nbrShares)/fcfPerSh_sec

ptMrg2Sec Profit margin to sector _ptMrg/ptMrg_sec

fcf2Pr2Sec Free cash flow to price to sector (1/pr2FCF)/fcf2Pr_sec

liab2Sec Liability to sector _liab/liab_sec

retOnEqy2Sec Return on equity to sector _ROE/ROE_sec

debts2Sec Debt to sector _debts/debts_sec

ev2Ass2Sec Enterprise value to assets to sector Ev2As/EV2Ass_sec

CfoMrg2Sec Cash flow margin to sector _cfoMrg/CfoMrg_sec

yoyErnGr2Sec Year-to-year earning growth to sector _yoyErnGr/yoyErnGr_sec

yoySlGr2Sec year-to-year sales growth to sector _yoySlGr/yoySlGr_sec

Piotroski indicators

_piotrROA Piotroski return on assets (ROA) _earn1Y/assets(Q-4)

_piotrCFO Piotroski cash flow (CFO) _CF1y/assets(Q-4)

_pPsRoa Piotroski positive ROA indicator If _piotrROA > 0: _pPsRoa = 1
Else _pPsRoa = 0

_pPsCfo Piotroski positive CFO indicator If _piotrCFO > 0: _pPsCfo = 1
Else _pPsCfo = 0

_pPsRoaV Piotroski positive ROA variation indicator If _piotrROA > _piotrROA(Q-4): _pPsRoaV = 1
Else: _pPsRoaV = 0

_pPsCfoV Piotroski positive CFO variation indicator If _piotrCFO > _piotrCFO(Q-4): _pPsCfoV = 1
Else: _pPsCfoV = 0

_pCfoS2Roa Piotroski CFO greater than ROA indicator IF _piotrCFO > _piotrROA: _pCfoS2Roa = 1
Else _pCfoS2Roa = 0

_pNgDbtV Piotroski negative debt variation indicator if _debt > _debt(Q-4): _pNgDbtV = 0
Else _pNgDbtV = 1

_pPsAsTrnV Piotroski positive asset turnover variation indicator If _assetsTrnv > _assetsTrnv(Q-4): _pPsAsTrnV = 1
Else _pPsAsTrnV = 0

_piotrSc Piotroski score

SUM (piotroski indicators) = _pPsRoa + _pPsRoaV +
_pPsCfo + _pPsCfoV + _pCfoS2Roa + _pNgDbtV +
_pPsAsTrnV + _pPsCurRtV + _pNgEqyIss +
_pPsGrsMrgV

Scores

scNetDbt2EV Net debt to enterprise value score
If _netDbtToEV < 0.25: score = 2
If 0.25 ≤ _netDbtToEV < 0.35: score = 1
If _netDbtToEV ≥ 0.35: score = 0
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Variable Name Description Formula

scEty Equity score

If _netDebt ≥ 0 and _Eqy > 0 and _Eqy ≥ (2 ×
_netDebt): score = 2
If _netDebt ≥ 0 and _Eqy > 0 and _Eqy < (2 ×
_netDebt): score = 1
If _netDebt ≥ 0 and _Eqy ≤ 0: score = 0
If _netDebt ≤ 0 and _Eqy > 0: score = 2
If _netDebt ≤ 0 and _Eqy ≤ 0: score = 0

scBlncSht Balance sheet score score = scNetDebtToEBITDA + scNetDbt2EV +
scCurrentRatio + scEty

scNi2Sl Net income to sales score
If _ptMrg > 0.15: score = 2
If 0.1 < _ptMrg ≤ 0.15: score = 1
If _ptMrg ≤ 0.1: score = 0

scOpEff Operation efficiency score
score = (3 × scROE) + (3 × scEbidtaToSales) + (4 ×
scNiToSales) + (1 × scInvtryToSales) + (1 ×
scReceivTurnover) + (1 × scOperFinancing)

scDivQly Dividend quality score
score = (2 × scFcfDivCovRatio) + (2 ×
scNiDivCovRatio) + (1 × scDivShareGrowth4Q) + (1
× scDivShareGrowth12Q)

scNetDbtIss Net debt issuance score

If _netDebtIss < 0: score = 2
If _netDebtIss ≥ 0 and f_netDebtIss < (0.15 ×
curMrkCap): score = 1
If _netDebtIss ≥ (0.15 × curMrkCap): score = 0

scFin Financing score scFin = (1 × scNetDebtIssuance) + (1 ×
scNetEqyIssuance) + (3 × scNetFinancing)

scCfo2NiAc Cash flow to net income accrual score
If _cfoToNiAcr > −0.03: score = 2
If −0.07 < _cfoToNiAcr ≤ −0.03: score = 1
If _cfoToNiAcr ≤ −0.07: score = 0

scErnQly Earning quality score
score = (1 × scEbitdaToCfoAccrual) + (1 ×
scCfo2NiAc) + (1 × scNetAccrual) + (3 ×
sc3yrNetAccrual)

scYoyErnGrh Year-to-year earning growth score
If _yoyErnGrRate > 0.15: score = 2
If 0.07 < _yoyErnGrRate ≤ 0.15: score = 1
If _yoyErnGrRate ≤ 0.07: score = 0

sc3yrErnGr 3-year earning growth score

If _3yErnGrRate > 0.15: score = 2
If _3yErnGrRate > 0.07 and _3yErnGrRate <= 0.15:
score = 1
If _3yErnGrRate ≤ 0.07: score = 0

scYoySlGr Year-to-year sales growth score
If _yoySlGrRate > 0.10: score = 2
If 0.05 < _yoySlGrRate ≤ 0.10: score = 1
If _yoySlGrRate <= 0.05: score = 0

sc3yrSlGr 3-year sales growth score
If _3ySlGrRate > 0.10: score = 2
If 0.05 < _3ySlGrRate ≤ 0.10: score = 1
If _3ySlGrRate ≤ 0.05: score = 0

scYoyEpsGr Year-to-year earnings per share growth score
If yoyEpsGrRate > 0.15: score = 2
If 0.07 < yoyEpsGrRate ≤ 0.15: score = 1
If yoyEpsGrRate <= 0.07: score = 0

sc3yrEpsGr 3-year EPS growth score
If 3yEpsGrRate > 0.15: score = 2
If 0.07 < 3yEpsGrRate ≤ 0.15: score = 1
If 3yEpsGrRate ≤ 0.07: score = 0

scGrowth Growth score

scGrowth = (1 × scYoyEarnGrowth) + (3 ×
sc3yrEarnGrowth) + (1 × scYoyEbitdaGrowth) + (3
× sc3yrEbitdaGrowth) + (1 × scYoySalesGrowth) +
(3 × sc3yrSalesGrowth) + (1 × scYoyEpsGrowth) +
(3 × sc3yrEpsGrowth)

Other indicators

ret5D_sec 5-day return of sector [close_sec(j)/close_sec(j-5)) − 1

sp 5-day return spread between stock and sector retT5D − ret5D_sec
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