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Abstract: Intensity-Hue-Saturation (IHS), Brovey Transform (BT), and Smoothing-Filter-
Based-Intensity Modulation (SFIM) algorithms were used to pansharpen GeoEye-1 
imagery. The pansharpened images were then segmented in Berkeley Image Seg using a 
wide range of segmentation parameters, and the spatial and spectral accuracy of image 
segments was measured. We found that pansharpening algorithms that preserve more of 
the spatial information of the higher resolution panchromatic image band (i.e., IHS and 
BT) led to more spatially-accurate segmentations, while pansharpening algorithms that 
minimize the distortion of spectral information of the lower resolution multispectral image 
bands (i.e., SFIM) led to more spectrally-accurate image segments. Based on these findings, 
we developed a new IHS-SFIM combination approach, specifically for object-based image 
analysis (OBIA), which combined the better spatial information of IHS and the more 
accurate spectral information of SFIM to produce image segments with very high spatial 
and spectral accuracy. 

Keywords: pansharpening; image segmentation; object-based image analysis; image 
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1. Introduction 

Recent years have seen an increase in the number of satellites that acquire high spatial resolution 
imagery. The latest generation of these satellites (e.g., GeoEye-1, Worldview-2, Pléiades 1A) acquire 
imagery at a very high spatial resolution for a panchromatic (PAN) band (around 0.5 m) and at a 
slightly lower resolution (around 2 m) for several multispectral (MS) bands. For these types of remote 
sensing data that contain PAN and MS bands of different spatial resolutions, image fusion methods 
referred to as “pansharpening” methods are often performed to increase the resolution of the MS bands 
using the PAN band [1]. Pansharpening allows for the high level of spatial information in the PAN 
band to be combined with the more detailed spectral information in the MS bands. A large number 
of pansharpening algorithms have been developed, and [2] provides an overview and comparison 
of many of the frequently-used algorithms. In general, some pansharpening algorithms, such as  
Intensity-Hue-Saturation (IHS) transformation [3] and the Brovey Transform (BT) [4] preserve almost 
all of the spatial details in the PAN image but distort the MS information to some degree [5,6], while 
others like the Smoothing-Filter-Based Intensity Modulation (SFIM) [7] preserve more accurate MS 
information at the cost of some reduction in spatial information [6]. In addition, some pansharpening 
methods incorporate an adjustable filter or parameter that allows users to control this tradeoff between 
color distortion and spatial resolution enhancement (e.g., [6–10]).  

A large number of metrics have been developed to evaluate the spatial and/or spectral quality of 
different pansharpening techniques, and [2] review the most commonly-used metrics. These evaluation 
metrics all involve pixel-based calculations, but in many cases high resolution images are classified 
using an object-based image analysis (OBIA) approach rather than a pixel-based approach due to the 
higher classification accuracy often achieved by the OBIA approach [11–13]. In the OBIA approach, 
an image is first segmented into homogeneous regions called “image segments” or “image objects”, 
and then classified using the spectral (e.g., mean, standard deviation) and non-spectral (e.g., size, 
shape, etc.) attributes of these image segments [14]. Since classification variables in the OBIA approach 
are calculated for image segments rather than individual pixels, it should therefore be more appropriate 
to evaluate the quality of pansharpening algorithms using segment-based evaluation metrics rather than 
pixel-based metrics if the pansharpened image is intended for OBIA. These segment-based evaluation 
metrics should take into account the spatial and spectral accuracy of image segments. 

One common method to estimate the spatial accuracy of image segments is to calculate the 
similarity in position, size, and/or shape between image segments and manually-digitized reference 
polygons [15]. These types of segment-based spatial accuracy measures have been used in past remote 
sensing studies for optimizing segmentation parameters [16] and for comparing different segmentation 
algorithms [17], but to our knowledge no studies have compared the spatial accuracy of segmentations 
using different pansharpening algorithms to see which lead to more spatially-accurate segmentations. 
In addition, while a large number of segment-based spatial accuracy metrics exist, there is a lack of 
segment-based spectral accuracy metrics, probably because it is assumed that segments with a higher 
spatial accuracy should also have more accurate spectral information. This is likely to be true for a set 
of segmentations of a single image. However, to compare segmentations produced by multiple 
pansharpening algorithms (and thus multiple images with different levels of spectral distortion), it is 
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necessary to include a spectral accuracy measure because a more spatially-accurate segmentation may 
not necessarily be more spectrally-accurate. 

In this study, we evaluated the effect that three commonly-used pansharpening techniques—IHS, 
BT, and SFIM—had on the spatial and spectral quality of image segmentations. As previously 
mentioned, IHS and BT are both excellent at preserving spatial details from the PAN image, while 
SFIM minimizes the distortion of spectral information from the MS image, so a comparison should be 
useful to see which characteristic, if either, is most useful for OBIA. For each pansharpened image, a 
wide range of segmentation parameters were tested, and the spatial accuracy of segments was calculated 
for each segmentation parameter. Like past studies, we assumed that, for an individual pansharpened 
image, segmentations with higher spatial accuracy should also be more spectrally-accurate (and thus 
did not calculate spectral accuracy for every segmentation parameter). However, once the most 
spatially-accurate segmentations of each pansharpened image were identified, we calculated the 
spectral accuracy of these segmentations to allow for comparisons of spectral distortion to be made 
among the three algorithms. We anticipated that IHS and BT pansharpening would produce more 
spatially-accurate segmentations since they better preserve spatial information, while SFIM would 
better preserve the spectral information of image segments. In past research, pixel-based evaluation 
metrics have indicated that the IHS, BT, and SFIM algorithms work well in combination [6], so another 
objective of this study was to develop a hybrid approach specifically for OBIA that can incorporate 
both the rich spatial information of IHS and BT and the accurate spectral information of SFIM. 

2. Pansharpening Equations 

IHS is one of the most commonly-used pansharpening methods in remote sensing due to its 
efficiency and ease of implementation [5]. The original IHS pansharpening algorithm was designed for 
only three spectral bands [2], but [18] provides an efficient n-band IHS-like algorithm. Using this  
IHS-like algorithm for a 4-band image with blue (B), green (G), red (R), and near infrared (NIR) 
spectral bands, pansharpened MS values are calculated as 

ێێۏ
ۍ ۑۑےᇱ௦ܴܫᇱ௦ܴᇱ௦ܰܩᇱ௦ܤ

ې
 = ൦ ܤ  ܩߜ  ܴߜ  ܴܫܰߜ  ߜ

൪ 
(1-1)

ߜ  ൌ ܰܣܲ െ ܫ ܫ(1-2) ൌ αଵ ൈ ܤ  ଶߙ ൈ ܩ  ଷߙ ൈ ܴ  ସߙ ൈ ܴܫܰ (1-3)

where ܤᇱ௦ is the pansharpened value for the blue band, ܤ is the digital number (DN) value of the 
pixel in the original MS band (radiance or reflectance values can be used alternatively), and ܲܰܣ is the 
DN of the pixel in the PAN image. αଵ to αସ can be determined based on the spectral response curve of 
a sensor’s PAN and MS bands [6]. Alternatively, a simple average can be used in place of αଵ to αସ, 
i.e., ሺB  G  R  NIRሻ/4), or αଵto αସ  can be determined through multivariate regression [18,19]. 
Since the MS bands are used for calculation of ߜ, the theoretical spatial resolution of the sharpened 
image is not exactly equal to that of the PAN image, but satisfactory resolution can be achieved in 
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practice [6]. We chose to test IHS pansharpening in this study for its ability to preserve the spatial 
information of the PAN image, which may be beneficial for image segmentation purposes.  

BT is another fast and efficient pansharpening method that has been used in many remote sensing 
studies [5]. Like IHS, BT was also originally developed for 3-band imagery, but an n-band BT-like 
algorithm is given in [8]. For a 4-band image, it can be calculated as 

ێێۏ
ۍ ۑۑےᇱ௧ܴܫᇱ௧ܴᇱ௧ܰܩᇱ௧ܤ

ې
 = ேூ  ൈ    (2)ܴܫܩܴܰܤ

where ܤᇱ௧ is the pansharpened value for band B and ܫ is calculated as in Equations (1) to (3). This BT 
algorithm is similar to the “naïve” mode of the Hyperspherical Color Sharpening (HCS) algorithm 
recently proposed for pansharpening WorldView-2 imagery [6]. BT is also similar to IHS in that it 
preserves almost all of the spatial information of the PAN image while distorting the MS information. 
However, IHS pansharpening is known to result in saturation compression, while BT results in 
saturation stretch [6]. We chose to test BT in addition to IHS to assess which property, if either, 
resulted in higher image segmentation quality.  

As the third pansharpening algorithm in this study, we chose to test SFIM due to its capability to 
minimize the distortion of MS information (unlike IHS and BT). Also unlike IHS and BT, it can be 
applied to n-bands without requiring αଵ to αସ. Instead, a smoothed version of the PAN image, often 
obtained using a 7 × 7 mean filter [6], is required. For a 4-band image, SFIM can be calculated as 

ێێێۏ
ۍ ۑۑۑےᇱ௦ܴܫᇱ௦ܴᇱ௦ܰܩᇱ௦ܤ

ې
 = ேேೞ  ൈ    (3)ܴܫܩܴܰܤ

where ܤᇱ௦ is the pansharpened value for band B and ܲܣ ௦ܰ௧ is the DN value of the pixel in the 
PAN band after the 7 × 7 mean filter has been applied. Thus, any change in the spectral information of 
the MS bands is caused solely by ܲܣܲ/ܰܣ ௦ܰ௧. This SFIM equation is very similar to the “smart 
mode” of HCS [6]. 

3. Methods 

3.1. Study Area and Data 

For this study, GeoEye-1 imagery was acquired for a residential area and a forested area in 
Ishikawa Prefecture, Japan. The imagery consisted of four 2 m resolution MS bands (B, G, R, and NIR 
bands) and a 0.5 m PAN band. After orthorectifying the images using the provided Rational 
Polynomial Coefficients (RPCs) and a 5 m resolution LIDAR-derived digital elevation model (DEM), 
they were pansharpened using Equations 1 to 3. To calculate I in Equations (1) to (3) for IHS and BT 
pansharpening, αଵ to αସ values (0.343, 0.376, 0.181, and 0.1) were determined based on the spectral 
response of GeoEye-1’s spectral bands (values obtained from [6]). False color composites of the 
original and pansharpened images of the residential and forested study areas are shown Figures 1 and 
2, respectively, to allow for a visual comparison of results.  
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Figure 1. GeoEye-1 image (NIR, R, G bands) of (a) the residential study area.  
(b) Intensity-Hue-Saturation (IHS), (c) Brovey Transform (BT), and (d) Smoothing-Filter-
Based-Intensity Modulation (SFIM) pansharpened images. Yellow polygons in (a) 
delineate reference tree polygons and black polygons delineate reference building polygons. 
A standard deviation contrast stretch of 2.0 was used for display purposes. 
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Figure 2. GeoEye-1 image (NIR, R, G bands) of (a).the forested study area, (b) IHS, (c) BT, 
and (d) SFIM pansharpened images. Yellow polygons in (a) delineate reference polygons of 
damaged or killed trees. A standard deviation contrast stretch of 3.0 was used for display 
purposes. 

 

3.2. Digitizing Reference Polygons of Land Cover Objects of Interest 

For each study area, we digitized reference polygons of specific land cover objects of interest, 
which were used to evaluate the spatial accuracy of image segmentations. The boundaries of these 
reference polygons closely matched the boundaries of the objects of interest based on detailed visual 
analysis. For the residential study area, we digitized 30 polygons of individual trees to assess how well 
each pansharpening algorithm allowed for small features to be segmented, and 30 polygons of 
buildings to test how well each algorithm allowed for larger features with distinctive shapes to be 
segmented (reference polygons are shown in Figure 1(a)). In the forested study area, we digitized 
30 polygons of damaged or killed Oak trees to test how well each pansharpening algorithm allowed for 
specific targets to be detected in a vegetation-dominated landscape (reference polygons are shown in 
Figure 2(a)). These Oak trees were severely damaged or killed due to mass attacks by ambrosia beetles 
(Platypus quercivorus) carrying the fungus Raffaelea quercivora [20]. Early detection of attacked trees 
is important to prevent further expansion of Platypus quercivorus [21], so a more accurate 
segmentation of damaged trees may lead to more accurate detection using OBIA techniques. 
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3.3. Image Segmentation 

Image segmentation was done in BerkeleyImageSeg (BIS; http://www.imageseg.com). BIS’s 
segmentation algorithm is based on the region-merging approach described in [11], making it 
computationally similar to eCognition’s (http://www.ecognition.com) “multi-resolution segmentation” 
algorithm [11] that has been used in many remote sensing studies. Any difference between BIS’s and 
eCognition’s segmentation algorithms is therefore due to proprietary implementation details not 
publically available [16]. There are three user-defined parameters for segmentation: a “Threshold” 
parameter that controls the relative size of segments, a “Shape” parameter that controls the relative 
amounts of spectral and spatial information used in the segmentation process, and a “Compactness” 
parameter that controls how smooth vs. how jagged segment boundaries are [16].  

For delineation of individual trees in the residential study area, we tested Threshold parameters 
from 5 to 40 at a step of 5, and Shape and Compactness parameters of 0.1, 0.3, 0.5, 0.7, and 0.9 for 
segmenting the pansharpened images (total of 200 segmentations for each pansharpened image). As a 
baseline for comparison purposes, we also segmented the original PAN image using these 
segmentation parameters. For delineation of buildings in the residential study area, we tested 
Threshold parameters of 40–100 at a step of 5 and the same Shape and Compactness parameters used 
for individual trees (total of 325 segmentations for each pansharpened image). Finally, for delineation 
of damaged trees in the forested study area, we tested Threshold, Shape, and Compactness parameters 
equivalent to those used for extracting trees in the residential area. The optimal parameters for 
segmenting each of these types of land cover were determined quantitatively using the methods 
described in Section 3.4. As shown in Section 4.1., the most spatially-accurate segmentations were not 
obtained using the highest or lowest Threshold parameter values tested. For this reason, we did not 
further expand the parameter search to include lower or higher Threshold parameters. 

3.4. Calculating the Spatial Accuracy of Image Segments 

The spatial accuracy of each image segmentation was assessed using the D metric (D) [16], which 
combines measures of oversegmentation (i.e., segments smaller than the land cover objects of interest) 
and undersegmentation (i.e., segments larger than the land cover objects of interest) into a single value 
that estimates closeness to an ideal segmentation result (i.e., a perfect match between the reference 
polygons and image segments). Oversegmentation (ܱ݃݁ܵݎ݁ݒ) is defined as ܱ݃݁ܵݎ݁ݒ ൌ 1 െ area൫ݔ ת ሻݔ൯areaሺݕ , ݕ א ܻ(4) כ

where area൫ݔ ת ൯ݕ is the area of the geographic intersection of reference polygon ݔ and image 
segment ݕ . ܻכ is the subset of segments relevant to reference polygon ݔ (i.e., segments for which 

either: the centroid of ݔ  is in ݕ , the centroid of ݕ  is in ݔ , ୟ୰ୣୟ൫௫ת௬ೕ൯ୟ୰ୣୟ൫௬ೕ൯ > 0.5, or ୟ୰ୣୟ൫௫ת௬ೕ൯ୟ୰ୣୟሺ௫ሻ ݃݁ܵݎ݁ݒܱ .0.5 < values range from 0 to 1, with lower values indicating less oversegmentation. 
Undersegmentation (ܷ݊݀݁݃݁ܵݎ) is defined as ܷ݊݀݁݃݁ܵݎ ൌ 1 െ area൫ݔ ת ൯ݕ൯area൫ݕ , ݕ א ܻ(5) כ
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݃݁ܵݎܷ݁݀݊  also ranges from 0–1, and lower values indicate less undersegmentation. D combines 
these measures of over- and under-segmentation using root mean square error (RMSE), and is given by 

ܦ ൌ  ඨܱ݃݁ܵݎ݁ݒଶ  ଶ2݃݁ݏݎܷ݁݀݊  (6)

Lower D values indicate segmentations with a higher spatial accuracy (i.e., less over- and  
under-segmentation). D was chosen to measure the spatial accuracy of segments in this study due to its 
good performance in [16] (it frequently indicated an optimal segmentation equivalent or similar to the 
optimal segmentation indicated by many other metrics) and its speed and ease of implementation (it 
can be automatically calculated in BIS). 

3.5. Calculating the Spectral Accuracy of Image Segments 

Once the most spatially-accurate segmentations of each pansharpened image were identified (using 
D), their spectral accuracy was measured by comparing the spectral characteristics of image segments 
before and after pansharpening. First, pixels in the original MS bands were upsampled to 0.5 m 
resolution to match the pixels in the pansharpened images. Then, the mean DN values from the 
original and MS bands were calculated for each image segment polygon. Once image segments 
contained their original and pansharpened spectral values, the spectral accuracy of the segmentation 
was measured, band by band, by calculating the RMSE and average bias (BIAS) of the original and 
pansharpened values. RMSE was calculated as  

ܧܵܯܴ ൌ ඨ∑ ሺܲܽ݊ݎ݄ܽݏ െ ሻଶୀଵ݈ܽ݊݅݃݅ݎܱ ݊  (7)

where ܲܽ݊ݎ݄ܽݏ is the mean DN value in a pansharpened band for segment i, ܱ݈ܽ݊݅݃݅ݎ is the mean 
DN value in the original MS band for segment i, and ݊ is the total number of image segments. For 
evaluation of spectral distortion using pixel-based methods, RMSE has been considered as a good 
metric for spectrally-homogeneous regions in an image [22]. Since image segments represent relatively 
homogeneous image regions, calculating RMSE at the segment level (i.e., comparing the mean values 
of the original MS and pansharpened MS bands for each segment) should provide a relatively accurate 
estimate of spectral quality. However, the mean spectral values of a segment are expected to change to 
some degree due to pansharpening, and in some cases this change may not be due to color distortion 
but instead indicate useful spectral information added by pansharpening. Thus, the segmentation with 
the lowest RMSE may not always indicate the segmentation with the highest spectral accuracy. On the 
other hand, if the mean spectral values of some segments increase, the mean spectral values of other 
segments should decrease by roughly the same amount if there is little distortion (since pansharpening 
should not drastically change the radiometric properties of the image as a whole). Thus, an error 
measure that takes into account the direction of errors is also important for assessing spectral accuracy. 
For this study, we calculated average bias (BIAS) for this purpose. BIAS is calculated as ܵܣܫܤ ൌ ∑ ሺܲܽ݊ݎ݄ܽݏ െ ሻୀଵ݈ܽ݊݅݃݅ݎܱ ݊  (8)
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BIAS values range from −∞ to ∞. BIAS values near to 0 indicate little over- or underestimation of the 
spectral values of segments due to pansharpening, making BIAS another good indicator of the spectral 
accuracy of a segmentation. 

4. Results and Discussion 

4.1. Spatial and Spectral Accuracy of Image Segments 

As was originally anticipated, use of the pansharpening algorithms which preserved more of the 
spatial information from the PAN band (i.e., IHS and BT) led to more spatially-accurate image 
segmentations. D values of the most accurate segmentations for each pansharpened image are shown in 
Table 1. From this table, it is clear that all of the pansharpened images tended to produce more 
spatially-accurate segmentations than the original PAN image, indicating that the addition of MS 
information increased spatial accuracy. Of the three pansharpening algorithms, IHS produced the most 
spatially-accurate segments for all land cover objects of interest, while SFIM produced the least 
spatially-accurate segments. The worse spatial accuracy of SFIM was likely due to the fact that it 
degraded the spatial resolution of the PAN image, causing the edges of objects in the pansharpened 
image to be blurry (leading to less accurate segment boundaries). IHS and BT suffered from spectral 
distortion, but they seemed to at least preserve sufficient local contrast (i.e., adjacent land cover objects 
were still relatively easy to distinguish from one another), so this spectral distortion had less of an 
effect on the spatial accuracy of segmentation than the spatial information degradation of SFIM. The 
better performance of IHS over BT in all cases suggests that the saturation compression effect of IHS 
had less of a negative impact than the saturation stretch effect of BT for segmentation purposes. 

Table 1. D Metric values (D) of the most spatially-accurate segmentations (i.e., those with 
the lowest D value) for each pansharpening method, and the Threshold, Shape, and 
Compactness parameters that produced these segmentations. Lower D indicates a more 
spatially-accurate segmentation. The pansharpening method with the most accurate 
segmentation for each land cover of interest is highlighted in gray. 

Land Cover of Interest  
(Study Area) 

Pansharpening Method D Threshold Shape Compactness 

Trees 
(Residential Area) 

PAN (No pansharpening) 0.7666 15 0.5 0.7 
IHS 0.7156 10 0.9 0.9 
BT 0.7224 15 0.5 0.1 

SFIM 0.7598 15 0.3 0.3 

Buildings 
(Residential Area) 

PAN (No pansharpening) 0.653 85 0.7 0.9 
IHS 0.6362 65 0.9 0.9 
BT 0.654 60 0.9 0.9 

SFIM 0.6705 45 0.9 0.7 

Damaged Oak Trees 
(Forested Area) 

PAN (No pansharpening) 0.7594 20 0.7 0.9 
IHS 0.5856 15 0.9 0.5 
BT 0.6115 20 0.5 0.5 

SFIM 0.6299 10 0.9 0.9 
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Next, we assessed the spectral accuracy of the most spatially-accurate segmentations of each 
pansharpened image. As shown in Table 2, for all land cover objects of interest, segmentations of the 
IHS and BT imagery had high RMSE values and BIAS values well below 0. This indicates that these 
two pansharpening methods produced segments with a low spectral accuracy, and that they tended to 
significantly reduce the DN values of image segments. SFIM imagery, on the other hand, produced 
segmentations with a much lower RMSE and BIAS values much closer to 0, indicating a higher 
spectral accuracy. 

Table 2. RMSE and BIAS of the most spatially-accurate segmentations for each 
pansharpening method. The pansharpening method with the highest spectral 
accuracy (i.e., lowest RMSE and BIAS) is highlighted in gray. 

Land Cover of 
Interest 

(Study Area) 

Pansharpening 
Method 

B 
RMSE 

G 
RMSE 

R 
RMSE 

NIR 
RMSE 

B 
BIAS 

G 
BIAS 

R 
BIAS 

NIR 
BIAS 

Trees 
(Residential Area) 

IHS 115.8 115.8 115.8 115.8 −79.7 −79.7 −79.7 −79.7 
BT 136.8 102.6 85.5 179.2 −93.3 −67.5 −48.8 −128.7 

SFIM 102.5 81.1 74.3 125.0 10.6 8.6 8.5 9.6 

Buildings 
(Residential Area) 

IHS 107.9 107.9 107.9 107.9 −70.7 −70.7 −70.7 −70.7 
BT 129.7 94.9 76.1 144.2 −90.9 −64.1 −46.3 −106.9 

SFIM 95.5 77.9 71.5 103.5 28.5 23.2 21.6 29.6 

Damaged Oak Trees 
(Forested Area) 

IHS 75.8 75.8 75.8 75.8 −70.5 −70.5 −70.5 −70.5 
BT 90.8 60.8 29.5 190.0 −81.8 −55.0 −26.8 −174.0 

SFIM 39.2 26.4 12.7 85.8 −7.9 −5.3 −2.8 −14.7 

4.2. IHS-SFIM Combination Approach 

Since IHS led to very spatially-accurate image segments and SFIM led to very spectrally-accurate 
image segments, in this section we propose a new IHS-SFIM hybrid approach that combines the benefits 
of both pansharpening algorithms to produce a final segmented image with a high spatial and spectral 
accuracy. To combine the spatially-accurate IHS segment boundaries with the spectrally-accurate 
information of the SFIM pansharpened imagery, we developed a simple two-step process, shown in 
Figure 3. First, the segment polygons from the most accurate segmentations of the IHS pansharpened 
imagery were overlaid onto the SFIM imagery. For the residential study area, the segmentation with 
the highest spatial accuracy for single trees and the segmentation with the highest spatial accuracy for 
buildings were overlaid onto the SFIM image, and for the forested study area the segmentation with 
the highest accuracy for damaged/dead trees was overlaid onto the SFIM image. Next, the mean 
spectral values for each image segment were extracted from the SFIM image bands, and these mean 
values replaced the spectral values derived from the IHS image. Thus, the final segmentations 
consisted of segment boundaries from the IHS image segmentation and spectral information from the 
SFIM imagery.  
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Figure 3.True color IHS pansharpened image of: (a) a subset of the forested study area, 
(b) the most spatially-accurate segmentation of the IHS image, and (c) image segments 
from (b) overlaid on the SFIM pansharpened image to extract more accurate mean spectral 
values for the segments. Brown areas in the images show trees severely damaged or killed 
by Raffaelea quercivora. False color imagery (NIR, R, G) used in place of the true color 
imagery in (d–f) for visualization purposes. White-colored areas show stressed, damaged, 
or dead trees, which are clearer in (f).  

 

The spectral accuracies of these final segmentations, shown in Table 3, were much higher than the 
spectral accuracies of the original IHS segmentations in Table 2. For the most spatially-accurate 
segmentation of single trees in the residential area (i.e., the IHS segmentation with Threshold, Shape, 
and Compactness parameters of 10, 0.9, and 0.9), use of the IHS-SFIM hybrid approach led to a 
relative reduction in RMSE values for the B, G, R, and NIR spectral bands of 19.6% (from 115.8 to 
93.0), 37.1% (from 115.8 to 72.8), 42.0% (from 115.8 to 67.2) and 4.7% (from 115.8 to 110.4), 
respectively. BIAS for each of the four spectral bands was decreased by 86.6%, 89.1%, 89.3%, and 
86.7%, respectively. For the most spatially-accurate segmentation of buildings in the residential area, 
RMSE was reduced by 20.1%, 33.9%, 37.3%, and 13.3%, and BIAS decreased by 63.9%, 69.5%, 
70.0%, and 58.6%. Finally, for the most spatially-accurate segmentation of insect-damaged trees in the 
forested study area, RMSE was reduced by 61.1%, 74.0%, 87.3%, and 18.3%, and BIAS decreased by 
88.1%, 92.1%, 95.7%, and 79.6%. These results indicate that, for both study areas and all three land 
cover types of interest, the proposed IHS-SFIM approach was able to achieve the same spatial accuracy 
as the most spatially-accurate segmentations (i.e., the IHS segmentations in Table 1), while significantly 
increasing the spectral accuracy of these segmentations (using SFIM spectral information). 

For practical applications like image classification, the spectral and spatial information of image 
segments in one or more of these final segmentations could be incorporated for analysis. For example, 
to detect insect-damaged trees in the forested study area, the spectral (mean values for each band) and 
spatial attributes (e.g., texture, size, shape, etc.) of image segments in the most accurate segmentation 
could be used as classification variables. On the other hand, a multi-scale classification approach 
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similar to [23,24] may be preferable for mapping trees and buildings in the residential area since trees 
and buildings are much different in terms of size and shape. 

Table 3. RMSE and BIAS of each spectral band using the proposed IHS-SFIM combination 
approach. The values are similar to those of SFIM in Table 2, and have D Metric values 
equal to those of IHS in Table 1. 

Land Cover of Interest 

(Study Area) 

Pansharpening 

Method 

B 
RMSE 

G 
RMSE 

R 
RMSE 

NIR 
RMSE 

B 
BIAS 

G 
BIAS 

R 
BIAS 

NIR 
BIAS 

Trees (Residential Area) IHS-SFIM 93.0  72.8  67.2  110.4  10.7  8.7  8.5  10.6  

Buildings (Residential Area) IHS-SFIM 85.3  71.3  67.7  93.5  25.5  21.5  21.2  29.3  

Damaged Oak Trees 

(Forested Area) 
IHS-SFIM 29.5  19.7  9.6  61.9  −8.4  −5.6  −3.0  −14.4  

The proposed hybrid approach was used in this study for combining the positive characteristics of 
two different pansharpening algorithms, but it may also be useful to apply this approach for 
pansharpening algorithms with adjustable parameters or filters (e.g., [6–10]) that control the tradeoff 
between spatial and spectral information preservation. For example, segment boundaries can be 
generated from images pansharpened using parameters/filters that maximize spatial information 
preservation, and the spectral information of these segments can be derived from images pansharpened 
using parameters/filters that minimize spectral distortion. 

5. Conclusions 

In this study, we compared the effects of IHS, BT, and SFIM pansharpening on the spatial and 
spectral accuracy of image segmentation and proposed a new IHS-SFIM hybrid approach based on the 
results of these comparisons. IHS and BT tend to preserve the spatial information of the PAN band 
while distorting the spectral information of the MS bands, while SFIM preserves accurate spectral 
information from the MS bands while losing some information from the PAN band. We found that 
IHS and BT pansharpening led to more spatially-accurate segmentation (with IHS producing the most 
spatially-accurate segmentations), indicating that spatial information preservation was most useful for 
segmentation purposes. On the other hand, SFIM pansharpening led to segments with more accurate 
spectral information, which may be more important for applications such as image classification, 
change detection, or the extraction of vegetation biophysical parameters. 

To combine the high spatial accuracy of IHS segments with the high spectral accuracy of SFIM 
imagery, we proposed a hybrid approach developed specifically for OBIA that involves (i) overlaying 
the segment boundaries from the IHS image segmentation onto a SFIM image and (ii) deriving the 
spectral values for image segments (mean DN for each spectral band) from the SFIM imagery. Based 
on our segment-based calculations of spatial and spectral accuracy, the proposed approach led to 
higher spatial and spectral accuracy of image segments than the use of a single pansharpening 
algorithm alone. Since a hybrid approach including two pansharpening methods produced the best 
results in this study, we recommend users planning to process images with PAN and MS bands using 
OBIA to pansharpen the imagery themselves (rather than purchase pansharpened imagery directly 
from the image vendor) so that they can incorporate multiple pansharpening methods for their analysis. 
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It should be noted that we only tested D for measuring the spatial accuracy of image segments, and 
RMSE and BIAS for measuring the spectral accuracy of image segments. In future studies it may be 
beneficial to include additional spatial and spectral accuracy measures to see if our findings remain 
consistent. Finally, since image classification often follows image segmentation in OBIA, future 
studies are needed to quantitatively assess the impact that different pansharpening algorithms and our 
proposed hybrid approach have on classification accuracy. 
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