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Abstract: The Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas has
collected approximately 1000 terabytes (TB) of radar depth sounding data over the Arctic and
Antarctic ice sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately
understand the impacts of climate change and sea level rise. In addition to data collection, the
storage, management, and public distribution of the dataset are also primary roles of the CReSIS. The
Open Polar Server (OPS) project developed a free and open source infrastructure to store, manage,
analyze, and distribute the data collected by CReSIS in an effort to replace its current data storage
and distribution approach. The OPS infrastructure includes a spatial database management system
(DBMS), map and web server, JavaScript geoportal, and MATLAB application programming interface
(API) for the inclusion of data created by the cryosphere community. Open source software including
GeoServer, PostgreSQL, PostGIS, OpenLayers, ExtJS, GeoEXT and others are used to build a system
that modernizes the CReSIS data distribution for the entire cryosphere community and creates a
flexible platform for future development. Usability analysis demonstrates the OPS infrastructure
provides an improved end user experience. In addition, interpolating glacier topography is provided
as an application example of the system.

Keywords: CReSIS; data management; spatial data infrastructure; geoportal; interpolation

1. Introduction

Over the past 30 years, a global warming of 0.2 ˝C per decade has been detected [1]. The significant
increase in temperature in the Arctic and Antarctic regions is contributing to global sea level rise,
which greatly influences the living environment and socioeconomic settings of human beings living
near the current mean sea level [2]. According to Mitrovica et al. [3], the melting of the Greenland
ice complex is equivalent to 0.6 mm¨ year´1 of sea level rise over the last century. More recently,
Shepherd et al. [4] reported that the total contribution of the polar ice sheets to sea level rise has been
0.59 ˘ 0.20 mm¨ year´1 on average since 1992 using satellite altimetry, interferometry, and gravimetry
datasets, with the current rate being about 1 mm¨ year´1. As a consequence, it is important to measure
the surface velocity, mass and surface elevation of the Arctic and Antarctic ice sheets in order to model
and simulate how they will respond to a warming climate, and to predict their contribution to sea
level rise [5].

The Center for Remote Sensing of Ice Sheets (CReSIS), with the mission of developing new
technologies and computer models to measure and predict the response of sea level change to the
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mass balance of ice sheets in the Arctic and Antarctic, collects much-needed data relevant to ice sheets
and the rapid changes they are undergoing. Large amounts of geospatial data have been collected or
generated from remote sensors for the advanced monitoring and investigation of the polar environment
at CReSIS. Since 1993, CReSIS, or precursor groups to CReSIS, have collected over 1000 TB of raw data
in the Arctic and Antarctic using a suite of radars developed at the center. The delivery of this dataset
is one of the core duties of CReSIS. As a distributor of such an important dataset to the cryosphere
community, and to the broader field of climate research, simplifying the process of data retrieval for
data users and streamlining the process of data creation for the scientists and staff at CReSIS are two
important and unresolved goals.

Over the last few decades, the implementation of spatial data infrastructure (SDI) has facilitated
access to geospatial data for a large number of users [6]. The SDI offers an environment which
enables a wide range of potential users to acquire and maintain geographic datasets easily in a secure,
consistent, and complete manner [7]. It provides the opportunity to disseminate and share rich
geo-information over the web, and to rapidly integrate and use geospatial datasets [8]. In the GIS
(geographic information system) community, standards and free and open source software (FOSS)
development falls under the umbrella of open GIS, which was initially promoted by the Open GIS
Consortium [6,9,10].

Open source software tools, however, do not always work well in highly demanding systems
because of the lack of official support and debugging issues [11], which makes it so that open source
web GIS applications sometimes only serve as experiments. As a result, it is important to develop
and test open source web GIS applications with real-world large geospatial data. Recently, several
such infrastructures have been implemented. Gkatzoflias et al. [11] examined the development of an
open source web GIS application which generates and distributes maps and files as part of an emission
inventory system. Delipetrev et al. [12] developed a web application to manage, present, store, model
and optimize geospatial water resources based on open source software. Zavala-Romero et al. [13]
implemented the open source Open Web GIS (OWGIS) that can display multi-dimensional geospatial
data from distinct map servers. Those web GIS applications showed the success of open source
software tools in different research fields. Our research presents yet another example which shows
that open source software and technologies could be used to develop a robust and integrative web
application serving diverse geospatial data for the cryosphere research community based on the
previous studies.

In the cryosphere community, there are two primary data access systems: PolarGrid Cloud
GIS (http://www.polargrid.org/cloud-gis-service.html) and the National Snow and Ice Data Center
(NSIDC) Operation Ice Bridge (OIB, http://nsidc.org/icebridge/portal/). However, the PolarGrid
Cloud GIS is not open to public. The NSIDC OIB portal is mainly used to browse the polar data
products, including flight reports and flight geometries, and users can use the File Transfer Protocol
(FTP) site, OGC services and encodings such as WMS, WFS, GML, and KML to access NSIDC
data products.

In this work, the authors present a new system, Open Polar Server (OPS), which offers a
resolution to the unresolved goals. The primary goal of this work is to develop a free and open
source infrastructure capable of storing, managing, creating, analyzing, and distributing the dataset
collected by CReSIS in a way that provides an improved experience for both the users and primary
producers of the data. A secondary goal is to design the OPS in a way that allows the entire cryosphere
community to provide new datasets for inclusion in the system. To achieve the secondary goal, special
attention was paid to standardization and generalization of the custom OPS components.

The motivation for this research, including the geospatial datasets and the data storage and
distribution issues, is described in Section 2. The open-source architecture and development is
discussed in Section 3. An evaluation on OPS is presented in Section 4. An example application of the
data provided by the OPS is presented in Section 5. A summary of the research and possible future
work is provided in Section 6.
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2. Research Motivation for the OPS Project

CReSIS has been collecting, storing, managing, and distributing polar data since 1993. Several data
management systems existed prior to the OPS. This section describes data storage and distribution
systems of the pre-OPS and discusses issues with these systems, and then presents the research
objectives of this article.

2.1. Data

CReSIS is the primary data contributor to the OPS. Most of the CReSIS datasets are in the form of
radar echograms showing 2-D cross sections of the Arctic and Antarctic ice sheets. Radar echograms are
designated as Level 1B (L1B) data defined by NASA as “data that have been processed to sensor units”.
They offer a data product from which usable information can be extracted, including the position
of the ice surface, ice bottom and, optionally, internal ice layers (Figure 1). The extraction process
(digitization) is completed using the Data Picker application, a custom MATLAB software package
developed at CReSIS for manual and automatic extraction of the ice layers. The Data Picker application
existed prior to the development of the OPS and was originally built to support the extraction of only
ice surface and bottom layers with data stored in flat files: MATLAB files loaded directly over a local
network at CReSIS. The version presented here is a major redesign of the application which allows the
extraction of any layers and performs CRUD (create, read, update, and delete) services on the OPS via
the OPS MATLAB API. The OPS MATLAB API will be further illustrated in Section 3. The application
generates a dataset of points, each with a set of attributes. These points are designated as Level 2 (L2)
data defined by NASA as “derived geophysical variables at the same resolution and location as Level
1 source data”. The primary L2 data products from CReSIS are the ice surface, ice bottom, and the
resulting ice thickness extracted from radar echograms.

ISPRS Int. J. Geo-Inf. 2016, 5, 32 3 of 15 

 

2. Research Motivation for the OPS Project 

CReSIS has been collecting, storing, managing, and distributing polar data since 1993. Several 

data management systems existed prior to the OPS. This section describes data storage and 

distribution systems of the pre-OPS and discusses issues with these systems, and then presents the 

research objectives of this article. 

2.1. Data 

CReSIS is the primary data contributor to the OPS. Most of the CReSIS datasets are in the form 

of radar echograms showing 2-D cross sections of the Arctic and Antarctic ice sheets. Radar 

echograms are designated as Level 1B (L1B) data defined by NASA as “data that have been processed 

to sensor units”. They offer a data product from which usable information can be extracted, including 

the position of the ice surface, ice bottom and, optionally, internal ice layers (Figure 1). The extraction 

process (digitization) is completed using the Data Picker application, a custom MATLAB software 

package developed at CReSIS for manual and automatic extraction of the ice layers. The Data Picker 

application existed prior to the development of the OPS and was originally built to support the 

extraction of only ice surface and bottom layers with data stored in flat files: MATLAB files loaded 

directly over a local network at CReSIS. The version presented here is a major redesign of the 

application which allows the extraction of any layers and performs CRUD (create, read, update, and 

delete) services on the OPS via the OPS MATLAB API. The OPS MATLAB API will be further 

illustrated in Section 3. The application generates a dataset of points, each with a set of attributes. 

These points are designated as Level 2 (L2) data defined by NASA as “derived geophysical variables 

at the same resolution and location as Level 1 source data”. The primary L2 data products from 

CReSIS are the ice surface, ice bottom, and the resulting ice thickness extracted from radar echograms. 

  
(a) (b) 

Figure 1. (a) A Center for Remote Sensing of Ice Sheets (CReSIS) Level 1B (L1B) radar echogram with 

its location (green line in (b)) shown on (b) a reference map of Greenland. Major features are labeled 

on the radar echogram (a). 

A major community contribution to the dataset that is supported by the OPS is the digitization 

of internal ice layers from CReSIS radar echograms. Prior to the development of the OPS, only the 

digitized ice surface and ice bottom were natively supported within the CReSIS systems. With the 

transition to the OPS, any digitized layer (including multiple versions of the same layer) can be 

included. This allows any member of the cryosphere community to include their own layers derived 

from CReSIS radar echograms. Using a single infrastructure to store, manage, analyze, and distribute 

community derived data allows for simplified comparison and fosters collaboration between 

previously disconnected research groups. 

Figure 1. (a) A Center for Remote Sensing of Ice Sheets (CReSIS) Level 1B (L1B) radar echogram with
its location (green line in (b)) shown on (b) a reference map of Greenland. Major features are labeled on
the radar echogram (a).

A major community contribution to the dataset that is supported by the OPS is the digitization
of internal ice layers from CReSIS radar echograms. Prior to the development of the OPS, only
the digitized ice surface and ice bottom were natively supported within the CReSIS systems. With
the transition to the OPS, any digitized layer (including multiple versions of the same layer) can
be included. This allows any member of the cryosphere community to include their own layers
derived from CReSIS radar echograms. Using a single infrastructure to store, manage, analyze, and
distribute community derived data allows for simplified comparison and fosters collaboration between
previously disconnected research groups.
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In addition to the datasets derived from radar echograms, the OPS also maintains a collection
of vector and raster reference data. The reference datasets include imagery, velocity data, bedrock
elevation models, and coastline data.

2.2. Data Storage and Issues

The primary data storage format for CReSIS L1B and L2 datasets is the MATLAB binary file
format commonly referred to as a MAT file because of their .mat extension. CReSIS chose this format
as its primary data storage container because all of the data processing, digitization (picking), and
analysis is performed using MATLAB. CReSIS designates two primary types of MAT files: DATA files
and LayerData files. The DATA files store the L1B radar echogram values and the LayerData files
store the L2 ice surface and bottom layers. Data collected at CReSIS is organized by days and then
each day is divided into segments. Each segment is further divided into frames. There is a minimum
of one LayerData file per frame, but there can be more if additional layers are extracted from radar
echograms. In addition to the two primary files, CReSIS also stores additional information about
the data collection path geometries in the MAT file format. The data collection paths or tracks are
referred to as flightlines and are stored in MAT files called GPS, RECORDS, and FRAMES files. There
is a single GPS file per flight or mission and a single RECORDS file and a single FRAMES file per
data segment. A data segment is defined as a track of continuously collected data, and there may be
multiple data segments per mission. GPS files store time and position data from the onboard GPS
instruments. RECORDS files store time and position data synchronized to the sensor. FRAMES files
store the indices of data in records files marking the subdivision of segments into frames. Figure 2
shows a graphical representation of the GPS, RECORDS, FRAMES, DATA, and LayerData files for a
single segment of data.
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Figure 2. An example set of CReSIS data for a single data collection segment. Three files (one GPS, one
RECORDS, and one FRAMES) store the flight path data, three files (one LayerData per frame) store
the digitized layers, and a minimum of three DATA files (one per frame per processing type) store
radar echograms.
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Each frame (the smallest along-track division of CReSIS data) is stored on-disk as a collection of
two or more MAT files. These files stored positional information of the aircraft during collection, the
digitized layer points, raw radar echogram data, and more. For a typical field campaign (there are
generally a few campaigns per year), there would be approximately 1500 frames, resulting in at least
3000 files on disk. In addition to these MAT files, a number of other data output formats, including
CSV, JPEG, OGC KML Version 2.2 [14], OGC NetCDF Version 1.0 [15] and others, are required by data
users. These output files are generally created per frame meaning an output dataset from CReSIS
would contain approximately 10,000 files. This collection of files results in several hundred gigabytes
(GB) on disk (excluding raw data) for a typical mission.

While file-based storage is good for small datasets stored locally, it has many disadvantages, some
of which are: (1) additional libraries/code are required to load, process, and analyze each file format;
(2) related data stored in separate files must be loaded to make comparisons; (3) files require additional
software to manage data access and record data edits; (4) one file cannot be used and modified by more
than one user at a time; (5) most file formats do not support data indexing which can improve data
access and analysis performance; and (6) data must be replicated in order to store different file formats.

2.3. Data Distribution and Issues

Prior to the OPS, the distribution of the CReSIS file-based dataset was handled using a site
supported by the FTP. Two FTP sites allowed users access to the data: the CReSIS FTP and the NSIDC
data archive. The FTP sites offer a simple web-based exposure of the on-disk, file-based dataset. While
the CReSIS FTP is just an exposure of the CReSIS on-disk storage, the NSIDC data archive site includes
catalog pages and a more advanced navigational schema.

The issue of retrieving data directly from an FTP website is worth examining. Let us imagine
the following common data access task: using the CReSIS FTP site to download all ice thickness data
in a specified region. If a user were to follow the KML search approach to download CReSIS data
from 1993–2013 in the Petermann glacier region, they would first need to download approximately
170 GB of posted KML files, then find approximately 360 unique segment IDs and finally navigate to
approximately 10 different directories on the FTP site to download the 360 unique files in one of the
formats provided (e.g., MAT, CSV, NetCDF). Following the download they would need to merge all of
the downloaded data and subset the resulting dataset to their specific study area. As a consequence, it
is both time-consuming and tedious for researchers to retrieve such large datasets for further scientific
research using the FTP data distribution site.

2.4. Project Objectives

It should now be clear what problems were faced by CReSIS prior to the development of the OPS
infrastructure. Given the inadequacy of the systems readily available to CReSIS for data storage and
distribution, the primary goal of the OPS project is to develop a free and open source infrastructure
capable of storing, managing, creating, analyzing, and distributing the datasets collected by CReSIS in
a way that provides an improved experience for both end users and the primary producers of polar
remote sensing data. From this goal, a set of clear objectives are identified for the OPS: (1) develop
a database to replace file-based storage; (2) develop a web-based data retrieval system (geoportal);
(3) develop an API for interaction between MATLAB and the new system to streamline data processing;
(4) make the infrastructure public and include community-derived datasets; and (5) share the free and
open source software with the community.

3. Architecture and Implementation of the OPS Infrastructure

The definition of a SDI and the components a SDI should contain have been explored and
discussed many times [6,16,17]. A SDI can be defined more simply as the collection of software,
hardware, and custom code needed to provide basic data services such as storage, management,
analysis, and distribution to both data users and data producers. The software, hardware, and code
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that is needed varies based on the data, management, and distribution requirements of an organization.
The following sections outline the required and custom components of the OPS infrastructure. It
should be noted here that all of the components created or used in the OPS, except for MATLAB, are
free and open source according to the Open Geospatial Consortium (OGC) [18] community services
and standards [18–20]. In the selection of open source SDI components an attempt was made to follow
the guide presented by Steiniger and Hunter [6]. However, it often becomes clear that specific software
packages are the obvious (and sometimes only) choice in their respective categories. Figure 3 shows
the conceptual structure of the OPS, and Figure 4 presents the actual software chosen to fill the roles of
the components in Figure 3. The arrows demonstrate the communication and interaction among the
various components of the OPS. Table 1 summarizes the specific software and its corresponding version.
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Figure 4. A modified version of Figure 3 showing the software selected to fill each OPS component role.

Table 1. Selected open-source software for building the OPS infrastructure.

OPS Components Open Source Software

Operating System CENTOS Linux
Web Server Apache
Database PostgreSQL 9.3 + PostGIS 2
Scripting Python 2.7 (Django)

Web Map Server Geoserver
GeoPortal GeoExt + OpenLayers
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3.1. Schema Design

A relational database management system (RDBMS) provides solutions to all of the disadvantages
of file based storage. With data from many files stored in a database, the power of the structured
query language (SQL) can be used to simplify data access and analysis. Data in a database can take
advantage of various indexing methods which allow SQL to quickly search for and find data, resulting
in a significant performance gain. The combination of PostgreSQL [21] and PostGIS [22] is chosen to
build a database named OPS to store both spatial and non-spatial data. PostgreSQL is a powerful,
open source object-relational database system. PostGIS is chosen as the spatial database extender for
PostgreSQL and adds support for spatial indexing and queries in SQL.

The complete OPS database schema is shown in the form of an entity-relationship (ER) diagram
in Figure 5. The major goal of the database design process is to improve query efficiency while
minimizing data redundancy in the database. When the OPS was developed, there were four different
radar systems at CReSIS: radar depth sounders (rds), accumulation radar (accum), snow radar (snow),
and kuband radar (kuband). In Figure 5, “sys” in the table name represents one of the four different
radar systems. The table sys_locations includes two records, “Arctic” and “Antarctic”. The table
sys_radars records the specific radars used for data collection such as “mcrds”, “mcords”, and “wise”
for the rds radar system. The table sys_seasons records the different data collection season names,
such as “2014_Greenland_P3”, “2013_Antarctica_Basler”, and so forth. The table sys_layers records
the different layers of the ice sheets, including “surface”, “bottom”, and other internal ice layers.
The table sys_point_paths stores the points along the flight lines with their geographic locations and
a variety of attributes. The table sys_layer_points records the attributes of the points in different
layers along specific point paths in the sys_point_paths table. The table sys_crossovers stores the
geographic location of points where flight lines cross each other, and the two nearest point paths
to the crossover point. The table sys_landmarks records the location and attributes of a variety of
important features such as buried lakes, data artifacts, and points of interest. The table sys_segments
and sys_frames store the basic information of segments and frames. Furthermore, four tables,
opsuser_userprofile_sys_season_groups, opsuser_userprofile_sys_layer_groups, opsuser_userprofile,
and auth_user, are created to manage the authentication of different users for the Data Picker to execute
the CRUD tasks.

3.2. Mapping Server

The mapping server is designed to generate a variety of georeferenced spatial data formats for
return via standard web services. The mapping server serves geospatial data from both the hard
drive and database to the Internet (via the WAS) through different standard services such as Web
Map Service (WMS), Web Feature Service (WFS), Web Map Tile Service (WMTS), and others. The OPS
map server primarily uses the WMS, which is a protocol that defines request and response structures.
A quality open source mapping server typically implements OGC-compliant services because most
web clients will expect a response in the OGC standard. GeoServer [23] is chosen for the OPS because
it is free and open source and is the reference implementation for the OGC web services standards.
The role of GeoServer in the OPS is to take geospatial data from the server hard drive and database
and generate georeferenced map images.

3.3. Web Data Portal (Geoportal)

The OPS geoportal (Figure 6) is a JavaScript web application that is designed with the discovery
and download of CReSIS data as its primary function. The discovery of geographic content is the
primary role of a geoportal [24]. The OPS geoportal is a complete MVC (Model View Controller)
application developed using the Sencha ExtJS framework [25], which is an application development
platform with cross-browser compatibility, advanced MVC architecture, and a sleek modern user
interface (UI). ExtJS is distributed freely for applications that are FOSS, which means commercial
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developers must purchase ExtJS but open source developers can use it free of charge. While the ExtJS
library contains a vast number of tools and methods it does not contain a native solution for map
based content. An additional open source library, GeoExt [26], is used to add this functionality to ExtJS.
GeoExt is a JavaScript framework which extends the base classes of the ExtJS framework using the
OpenLayers (OL) [27] JavaScript mapping library, an actively developed and popular open source web
mapping library.
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In addition to the discovery and download of CReSIS data, the geoportal offers some basic
data browsing functionality that is aimed at making data exploration an easy task. This secondary
functionality includes the ability for users to spatially browse CReSIS radar echograms simply by
clicking on the map interface.

The OPS geoportal does not need a custom JavaScript OPS API because the client can make
requests directly to the OPS Django web framework using asynchronous JavaScript and XML (AJAX).
AJAX is used to submit API requests to the OPS server including JSON (JavaScript Object Notation)
serialized data. These requests are made directly to the Django views, allowing the geoportal to
leverage the logic defined in Django.

3.4. MATLAB Data Picker Client

The OPS infrastructure supports a wide variety of clients and request types. The primary OPS
clients include a web geoportal (introduced in Section 3.3) and a MATLAB application. For a client
to include data in an HTTP request for use in a Django view, JSON is used to encode variables in a
structured string object. JSON is a standard notation and has libraries in most programming languages
for encoding and decoding. Python, JavaScript, and MATLAB all support the JSON format, which
covers all of the languages used in the OPS. MATLAB is the primary programming language used by
CReSIS for data processing, data management, and creation of data products for distribution. The OPS
project has therefore developed an API for MATLAB which allows communication between the Django
API on the server and any local MATLAB client. The MATLAB API is a collection of MATLAB scripts
that allow communication between the OPS Django API and the MATLAB programming language.
The primary role of the MATLAB API is to facilitate communication between the MATLAB Data Picker
and the OPS, but it also allows for the execution of OPS CRUD tasks from MATLAB. Each Django
view (Figure 7) has a corresponding MATLAB function in the MATLAB API. The role of the MATLAB
function is to take MATLAB input (usually a structure), convert it to a JSON string, send it as an HTTP
request to the Apache HTTP web server, wait for the HTTP response, and finally decode the response
back into a MATLAB structure. The MATLAB API functions do not perform any of the logic of the
task they represent. All of the logic is handled by the Django views on the server.
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While the MATLAB API can be used as a standalone library and its functions included in any
MATLAB script, the primary role of the API is to facilitate the operation of the custom MATLAB
DATA Picker developed by CReSIS. Although the design of the Data Picker itself is not a direct part
of this project, the development of the OPS and the new Data Picker is synchronous and the Data
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Picker would not function without the OPS MATLAB API and the backend data storage the OPS
database provides.

Figure 8 shows the graphical user interface (GUI) of the Data Picker. The GUI consists of three
primary windows, the preference window (top left), the map window (bottom left), and the picking
window (right). Each of these windows gets data from the OPS server. The preference window
includes options for choosing which data to view in the picking window. Information on available
data for each radar system is provided, including the names of available data collection seasons, the
specific radars used during each season, and the location (Arctic and Antarctic) for each season. The
preference window communicates with GeoServer using the MATLAB mapping toolbox to get a list of
available WMS images for viewing in the selected region. After making a selection in the preference
window, the map window is launched. The data in the map window is completely driven by the OPS
GeoServer and accessed via the WMS request tool in the MATLAB mapping toolbox. A flight line’s
frame is selected by clicking on the map window. When a selection is made in the map window, the
picking window is loaded. The radar echogram of the selected data frame is returned and loaded from
server file system, but all of the layer points, layer information, and the list of frames in the segment
are pulled from the OPS server using the MATLAB API. Radar echogram data is not stored on the OPS
database because of its data volume and raster data type. Then the Data Picker users pick the points in
different layers, and finally save these points into the OPS spatial database.
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4. System Evaluation

In order to verify that the OPS has, in fact, achieved the goal of providing an improved experience
for end users of polar remote sensing data, the OPS was compared with three existing systems (old
geographic search GUI at CReSIS, CReSIS FTP, and NSIDC OIB Data portal). The server machine on
which the OPS is currently running has a Dual Intel Xeon E5-2643 CPU and 128 GB RAM.

The major objective of this evaluation is to demonstrate the robustness of the OPS and explore the
advantages and disadvantages compared to other data distribution systems when completing a typical
task. In the evaluation, a user is asked to complete the same task on each system which downloads
CReSIS L2 data in the CSV format over a northeast Greenland outlet glacier (79 N), including only
data from 2010 and 2011. There were a total of 10 users that participated in the evaluation. Participants
were instructed on how to use these systems and assigned the above task using all the systems. We
used three quantitative metrics, i.e., processing time, number of keystrokes, and number of mouse
clicks to evaluate the systems.
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The mean values of the metrics are shown in Figure 9, which shows that the OPS has the fastest
processing time, the smallest number of mouse clicks, and the second least number of keystrokes,
indicating that the OPS has achieved the goal of providing an improved experience. Mouse clicks and
keystrokes indicate the simplicity of a system’s user interface. A system which requires the lowest
number of each is generally simpler to use. Note that while the CReSIS FTP recorded the least number
of keystrokes, they were likely offset by mouse clicks, which is the second highest number in that
category. In fact, when the number of clicks and keystrokes are combined the OPS recorded the
lowest total number, indicating the OPS system is simpler to use than the other systems. The most
important improvement in the OPS is the efficiency of the processing time compared with the complex
steps described in Section 2.3. This is because the OPS can restrict spatiotemporal parameters at the
beginning of data downloading, and database indices greatly speed up data access.
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Figure 9. Results from the comparison of four data distribution systems (OPS, old Geographic Search
GUI at CReSIS, CReSIS FTP, and NSIDC OIB Data Portal). The processing time, number of keystrokes,
and number of mouse clicks required to download the same dataset are shown for each system.

The main conclusion drawn from the evaluation is that the OPS is more efficient and simpler
for downloading desired data when compared to the other three systems. It is worth noting that
these results represent the ideal case, i.e., perfect use of each system where the users are already
familiar with the systems through tutorials and help documentation. The OPS does include interactive
help documentation that should make it very easy for new users to familiarize themselves with the
system quickly.

5. An Application of CReSIS Data Served on the OPS

Previous sections introduce the architecture and implementation of the OPS system. Researchers
in the cryosphere community can download the data from OPS geoportal and apply that data to
different areas of scientific research, including questions about sea level rise, climate change, and so on.
Here, we present an application of CReSIS data downloaded from OPS geoportal to interpolate glacier
topography. When CReSIS data is downloaded from the OPS geoportal, it is first necessary to specify
the radar system, start date, end date, seasons, a polygon defining the study area, and an output
format for the data (CSV, KML, MAT, and NetCDF). The content of a CSV formatted file is shown in
Figure 10. This file contains the following information for the flight path: latitude, longitude, UTC
Time, thickness, elevation, frame information, surface layer elevation, bottom layer elevation, picking
quality (1 represents good; 2 represents moderate; 3 represents derived; and null represents unpicked), and
season information.
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For this application, good quality data is used to interpolate standardized ice surface and bottom
elevation grids, and to calculate a thickness grid. The major outputs are three raster layers for the
ice surface, ice thickness, and ice bottom. The interpolation process is implemented in ArcGIS’s [28]
ModelBuilder environment to organize the tools and data used, and to create an easy-to-use tool.
Figure 11 shows the model for the interpolation tool of CReSIS data. After downloading the CReSIS
data from the OPS geoportal, the CSV file should first be converted into a point shapefile and entered
into the tool as the “Flightlines Shapefile” with the projection definition. Furthermore, a polygon
shapefile representing the study area (“Study Area Shapefile”) should be prepared, which defines the
area to be interpolated over. Some preprocessing procedures, such as format conversion, buffering the
study area, and so on, are implemented. The “Surface Field” and “Bottom Field” are the ice surface
elevation and bottom elevation in the “Flightlines Shapefile”. For the ice surface layer interpolation,
the inverse distance weighted (IDW) technique is used. For the ice bottom layer interpolation, the
“Topo to Raster” tool in the ArcGIS toolbox is used to generate hydrologically correct bottom elevation.
The “Interpolation Cell Size” should be specified, if a different size than the 500 m default is desired.
The smoothing of the ice surface and bottom layers is applied to the interpolation results. Finally, we
obtain three major layers (Surface, Bottom, and Thickness) as ASCII format and other outputs. To
test and validate the capability and accuracy of this tool, the Helheim Glacier in Greenland and Byrd
Glacier in Antarctic were interpolated and shown in Figure 12. The final gridding products for the
glaciers in the Arctic and Antarctic can be downloaded from https://data.cresis.ku.edu/.
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6. Conclusions

This work presented the development of a free and open source infrastructure, i.e., the OPS, to
store, manage, analyze, and distribute the data collected by CReSIS in an effort to replace its current
data storage and distribution approaches. In the system, PostgreSQL, PostGIS, and Django were used
to develop and deploy a database management system. ExtJS, GeoExt, and OpenLayers were used to
develop and deploy a geoportal. Custom MATLAB scripts and the Django Python web framework
were used to deploy an API for the interaction between MATLAB and the OPS. The evaluation of the
OPS indicated a much improved user experience to retrieve data collected by CReSIS. The system will
allow and encourage scientists to explore the data and potentially provide new scientific knowledge
in an effort to understand the cryosphere, ice sheets, and future sea level rise. As an example, a
gridding application using the CReSIS data accessed from the OPS geoportal was also presented.
Researchers can make use of these gridding products and L2 CReSIS data to answer various scientific
research questions.

The OPS has been developed using all FOSS and conforms to practical data and coding standards.
The system is available to the public at http://ops.cresis.ku.edu/ and many cryosphere community
data providers have included or are preparing to include their datasets in the OPS. The code for the OPS
is open source and provided free of charge or restriction on GitHub at https://github.com/CReSIS.
As an open source project the OPS will only be successful if the community contributes to its growth.
Some possibilities for future exploration and development of the OPS are:

1. Cloud-based hosting of the OPS on systems such as RACKSPACE or Amazon EC2.
2. An interactive (web-based) data picking system build in JavaScript to replace the MATLAB

Data Picker.
3. An interactive JavaScript echogram browser that loads dynamic data instead of static images.
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4. A web-based data loading system so that community members can load their own data into a
cloud system without CReSIS intervention.

5. Explore the potential collaboration between an Arctic SDI (http://arctic-sdi.org/) and the OPS
such as by sharing the data between the systems and using the OPS as the front end of the
Arctic SDI.

In addition, the maintenance and continuous software upgrades for the OPS is also a task that
must be accounted for. It is the authors’ hope that the cryosphere community accepts the system, uses
it, and contributes to its future development.
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