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Abstract: Regular monitoring and assessment of crops is one of the keys to optimal crop production.
This research presents the development of a monitoring system called the Crop Monitoring and
Assessment Platform (C-MAP). The C-MAP is composed of an image acquisition unit which is an
off-the-shelf unmanned aerial vehicle (UAV) equipped with a multispectral camera (near-infrared,
green, blue), and an image processing and analysis component. The experimental apple orchard
at the Parma Research and Extension Center of the University of Idaho was used as the target for
monitoring and evaluation. Five experimental rows of the orchard were randomly treated with five
different irrigation methods. An image processing algorithm to detect individual trees was developed
to facilitate the analysis of the rows and it was able to detect over 90% of the trees. The image
analysis of the experimental rows was based on vegetation indices and results showed that there was
a significant difference in the Enhanced Normalized Difference Vegetation Index (ENDVI) among the
five different irrigation methods. This demonstrates that the C-MAP has very good potential as a
monitoring tool for orchard management.

Keywords: apple; digital image processing; machine vision; unmanned aerial vehicle (UAV);
vegetation indices

1. Introduction

In spite of the challenging economic situation of the nation, the specialty crop industry in Idaho
is thriving. According to the US Census Bureau, the US population is projected to grow 34% by the
year 2060 [1]. With an increasing population, the need to improve production and management of
agricultural products has become a necessity [2]. Providing farmers with inexpensive cutting-edge
technologies that can assist them in managing their crops will help them run their business more
efficiently and make Idaho specialty crops more competitive in the market. Efficiency in the use of crop
inputs such as water, chemicals and fertilizers means that fewer of these inputs will be used based
upon crop requirements. The benefits of this efficiency will be both economical and environmental.

Remote sensing [3,4] is one of the technologies that has been gaining considerable interest in
monitoring row crops. Remote sensing data provide farmers with the ability to monitor crop health
and conditions. For example, chlorophyll in the plant reflects green while absorbing the red and blue
wavelengths. Stress in plants means higher yellow-red reflectance due to lower chlorophyll content
and pigmentation [5]. On the other hand, structural collapse of a dying cell caused by a disease
infection has a lower near-infrared (NIR) reflectance [6]. In addition, reflectance in the NIR band has
been correlated with applied nitrogen in the field.

Typically in remote sensing [7], data is acquired using manned aircraft mounted with a
color-infrared camera and satellite-based imaging [8]. This system is not widely used by farmers as it
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is expensive, has low spatial resolution (which means less accuracy), and has low sampling frequency.
Although these systems could facilitate in the decision-making of the farmers in crop management, it is
not economically feasible for specialty crop application in Idaho. A cost-effective platform is critical
for the development of remote sensing for specialty crops.

This paper shows the development of a remote sensing platform, called the Crop Monitoring
and Assessment Platform (C-MAP), to support localized specialty crop monitoring needs in Idaho.
The C-MAP provides the farmer with an inexpensive, efficient, rapid, and non-invasive field
monitoring system on demand.

The C-MAP as a whole is composed of a low-cost unmanned aerial vehicle (UAV) with the sensor
module attached. The sensor is modular so it could also be mounted on another mobile platform, e.g.,
tractor. It will be a remote sensing system that acquires data at a distance; however, unlike remote
sensing technologies, e.g., satellite imaging and general aviation aircraft, crop data will be acquired
at low altitude and near field features of interest. The C-MAP will be a practical substitute for these
expensive remote sensing technologies and is immediately accessible to farmers.

Specifically, this research has the following objectives:

1. To acquire remote sensing data (multispectral images) of apple groves with controlled input of
irrigation (water);

2. To use image processing techniques to process the images and analyze the data using vegetation
indices (VI).

2. Materials and Methods

2.1. Target Orchards

The target orchard is an experimental apple orchard located at the University of Idaho Parma
Research and Extension Center in Parma, Idaho, which is located in the southwest portion of the
state of Idaho (Figure 1). The experimental apple orchard was established in the spring and summer
of 2002. “Autumn Rose Fuji” trees on RN 29 (Nic 29) rootstock (Columbia Basin Nursery, Quincy
WA, USA) were planted at 1.52 m ˆ 4.27 m spacing with an east-west row orientation. “Snow Drift”
crab apple on RN 29 rootstock (C & O Nursery, Wenatchee, WA, USA) was planted in each row
as a pollinizer between every 10 “Autumn Rose Fuji” trees. The experimental site has a semi-arid
climate, with an annual precipitation of about 297 mm and a sandy loam soil. Crested wheatgrass
(Agropyron cristatum (L.) Gaertn.), which is a drought tolerant grass, was planted as the orchard floor
cover in all treatments.
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Figure 1. Study area map of experimental orchard.
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Five different water delivery methods for apple production were compared in this study: (a) full
sprinkler; (b) 50% deficit sprinkler; (c) 50% deficit drip; (d) full drip; and (e) 65% drip. Five experimental
rows in the orchard were chosen to be the controlled rows. Figure 2 shows the target orchard and the
five controlled rows. Each row was divided into five groups, corresponding to the watering method,
and each group was composed of about six to eight trees as shown in Table 1. These different watering
methods are management strategies that focus on maximizing yield production. In order to isolate the
controlled rows, guard trees were planted between the groups. Their main purpose is to serve as a
physical barrier between the groups, so the data obtained from each group is reliable.
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Figure 2. Target orchard showing the five experimental rows.

Table 1. Distribution of irrigation methods for the experimental rows.

Tree Groups Row 1 Row 2 Row 3 Row 4 Row 5

A Full Sprinkler 50% Deficit Sprinkler Full Drip 65% Deficit Drip 50% Deficit Drip

B 65% Deficit Drip 50% Deficit Drip 50% Deficit Sprinkler Full Drip Full Sprinkler

C Full Drip Full Sprinkler 65% Deficit Drip 50% Deficit Drip 50% Deficit Sprinkler

D 50% Deficit Drip Full Drip Full Sprinkler 50% Deficit Sprinkler 65% Deficit Drip

E 50% Deficit Sprinkler 65% Deficit Drip 50% Deficit Drip Full Sprinkler Full Drip

2.2. Unmanned Aerial System

The unmanned aerial vehicle (UAV) used in this study is the Mikrokopter OktokopterXL,
an eight-rotor platform [9]. The UAV has flight and navigation controller that allows both remote
control navigation and GPS waypoint navigation. A ground station composed mainly of a personal
computer with a receiver provides flight information of the UAV such as altitude, battery level,
position, etc. The payload capacity of the UAV is about one kilogram, which allows the UAV to be
equipped with an image acquisition system. Figure 3 shows the UAV with its components and Figure 4
shows the UAV over the experimental orchard. The system used in this study is similar to others that
have conducted research using multi-rotor UAVs [10–12].
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Figure 3. Unmanned aerial vehicle with multispectral camera (vegetation stress camera).
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2.3. Image Acquisition System

The image acquisition system is a three-band multispectral camera (Figure 2). The multispectral
camera is a Canon PowerShot SX280 with 12.1 megapixels, a complementary metal-oxide
semiconductor (CMOS) sensor, and a 25 mm wide-angle lens. The filter of the camera was modified to
allow it to capture the blue and green wavelengths for the visible band and a short-wave near-infrared
(NIR) bandwidth centered at 750 nm. The multispectral camera has first person video capability that
allows viewing of video from the ground as well as manual image acquisition. In addition to the
multispectral camera, a GoPro camera was also attached to the UAV to collect color video data.

2.4. Image Acquisition

Image acquisition started on 15 May 2013, and ended on 14 July 2013. Images were collected
every week and it took place mostly in the morning times between 9 a.m. and 12 p.m. The conditions
of the day varied a little over the weeks, but most of the data was taken under clear skies.

For image acquisition using the UAV, the MikroKopter Tool was used to set up the flight.
The MikroKopter Tool is a Windows program that allows the operator to adjust the settings of the UAV
such as the flight control module and the navigation control module. Figure 5 shows an image of the
MikroKopter On-Screen-Display that allows the planning of the waypoint flight for image acquisition.
The On-Screen-Display also shows telemetry data such as altitude, speed, location, and battery level.
There were two methods for image acquisition: (1) a single waypoint was selected on the middle
of the field, and the altitude was set to 100 m. At that altitude the camera was able to take images
of the entire field, approximately 7000 m2, in a single shot. (2) Several waypoints were inserted on
chosen areas so the UAV, at 50 m high, could acquire images that after mosaicking would recreate a
single high resolution image of the entire orchard. Figure 6 shows a sample multispectral image of the
target orchard.
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Figure 6. Sample multispectral image of the target orchard.

2.5. Data Analysis

Figure 7 shows the flowchart of the overall methodology of this paper. It starts with image
acquisition and is followed by image preprocessing. The image preprocessing is separating the
image into three bands. The acquired multispectral image is composed of the following three bands:
short-wave NIR, green (G), and blue (B). The tree rows are segmented from the ground using the
NIR band and then an image processing algorithm was developed to identify individual trees in each
experimental row. The tree identification was based on the watershed algorithm [13,14], a segmentation
method for separating connected blobs. Using the segmented trees as an image mask and the three
bands, the images were analyzed using the vegetation indices (VI) shown in Table 2. Zakaluk and
Ranjan [15] also used similar VI to analyze RGB images of potato plants. Then, the VI were calculated
from the pixels of the individual trees from the five experimental rows. The canopy area of each tree
(in pixels) was also calculated. Matlab and the Digital Image Processing toolbox were used for image
processing and analysis.
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Table 2. Vegetation indices for image analysis.

Vegetation Index Equation

(1) Green Ratio (GR) GR “ G
NIR

(2) Enhanced Normalized Difference Vegetation Index (ENDVI) ENDVI “
NIR`G´2pBq
NIR`G`2pBq

(3) Intensity (I) I “ NIR ` G ` B

(4) Normalized Difference Green Near Infrared Index (NDGNI) NDGNI “ NIR´G
NIR`G

(5) Saturation (S) S “
I´3pBq

I

3. Results and Discussion

3.1. Individual Tree Identification

An image processing algorithm was developed to identify individual trees and facilitate the
analysis of the vegetation indices of the five irrigation methods. The algorithm starts with identifying
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the individual rows (Figure 8). The row is then segmented and the canopy concavity of the tree is
detected. Based on the shape of the tree, the regional maxima is identified and then the result is used
to divide the row. The data from the row division and the concavity detection are used as inputs to the
watershed algorithm to identify individual markers and separate the individual trees. In this example,
45 out of 49 trees were identified. Results from the other experimental rows showed that over 90% of
the trees were recognized. The average vegetation index of the individual trees was then calculated
using the tree identification result as an image mask.
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3.2. Vegetation Index Analysis

The five vegetation indices of each tree were calculated. Figure 9 shows the relationship between
the averages of the vegetation indices with respect to the irrigation method. These vegetation indices
are similar to some of the vegetation indices used for predicting the leaf water potential of potato
plants [15] using only RGB. The green ratio index (Figure 9b) shows that Full Drip has the highest
value as compared with the other irrigation methods, followed by Full Sprinkler, 65% Drip, 50% Drip,
and 50% Sprinkler. Although there is no significant difference between the 65% Drip, Full Sprinkler,
and 50% Drip, there is a significant difference between the Full Drip system and the 50% Sprinkler,
which shows that the green ratio has a potential to show an anomaly in the field in terms of water
input. This could be attributed to the fact that chlorophyll reflects green and absorbs blue and red
bands. The green band also has a linear association with nitrogen. The intensity index (Figure 9c)
shows differences in index values; however, it did not demonstrate a relationship with the different
irrigation methods. As compared to the green ratio index, the ENDVI (Figure 9a) shows a similar trend
with the Full Drip having the highest index value and the 50% Sprinkler having the lowest. A statistical
analysis conducted on the ENDVI values showed that there is significant difference between the Full
Drip and the 65% Drip and the 50% Drip. The Full Drip has a higher ENDVI value as compared
with the Full Sprinkler but is not significantly different. As compared to the green ratio equation, the
ENDVI amplifies the chlorophyll reflection by adding both the NIR and green bands and subtracting
the blue band. Healthier plants reflect higher green and NIR. When a plant is stressed, reflectance of
NIR is significantly decreased. A study conducted by Fallahi [16] showed that water stress symptoms
were observed in the ground for water deficient trees. They also demonstrated that the drip system
has a significantly lower consumption than the sprinkler system. This means that the ENDVI is more
sensitive to the changes in water input as compared with the green ratio. A false color image using
the ENDVI (Figure 10) was generated with the values of ENDVI ranging from 0 to 1. A high value of
ENDVI indicates a higher input of water. The ENDVI false color image clearly shows the variability
within the experimental rows, which could provide a hint to a farmer that there is an anomaly in the
field, in this case the water input. It can be observed that the portions with high water input (Full Drip
and Full Sprinkler) have higher ENDVI values and that the tree groups with water deficit have lower
ENDVI values. On the other hand, the NDGNI follows the same pattern as the green ratio index and
only shows a significant difference between Full Drip and 50% Sprinkler. The saturation index shows
a different pattern where the 50% Sprinkler has the highest index value and the Full Drip has the
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lowest index value. It is interesting to note that the saturation index has the same numerator as the
ENDVI. Future work will involve the study of these vegetation indices with respect to material input
such as nitrogen.
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3.3. Tree Canopy Area Analysis

The tree canopy area for each tree was determined by counting the number of pixels for each
corresponding blob in the experimental rows. Figure 11 shows that the Full Sprinkler has the highest
average area followed by Full Drip, 65% Drip, 50% Drip, and 50% Sprinkler. There is no significant
difference between the deficit irrigation methods. This exhibits a good relationship between the canopy
area and water input. The difference in tree canopy size can also be observed from the images, even
without further processing. These images could be helpful to the farmers because this is difficult to
observe on the ground. Ground scouting requires more time and labor. In addition, the result of
identifying the canopy area in combination with the vegetation index analysis, such as the ENDVI,
can provide farmers with information that would show abnormalities within their field. Future study
with canopy area analysis would include the estimation of the leaf area index [10], a common index
associated with the physiological process of plants. The C-MAP would be an added tool that farmers
could utilize in managing their field.
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Based on the results from the VI analysis and tree canopy area analysis, the C-MAP has a very
high potential for helping farmers in crop management. The advantages of this remote sensing
tool over the other alternatives are lower cost, less time needed for field scouting, and less labor
resource requirements. With the decreasing cost of small UAVs and computers, the cost of owning
this remote sensing platform is within reach for most farmers. This will help farmers in field scouting,
which is generally time-consuming and labor-intensive. Replacing field scouting with C-MAP will be
economical for farmers. Several UAV companies have also developed very user-friendly applications
that work on smart phones and tablets. These applications will help bridge the technological barrier
for using this type of technology.

4. Conclusions

A monitoring system (the Crop Monitoring and Assessment Platform) based on a small unmanned
aerial system equipped with a multispectral camera was developed. The monitoring system was
tested on an experimental apple orchard with five different irrigation methods. The image processing
and analysis was based on five vegetation indices; ENDVI, GR, I, NDGNI, and SAT. Results showed
that all the vegetation indices except for I show a significant difference between the Full Drip and
the 50% Sprinkler systems. Among all the vegetation indices, the ENDVI proved to be a better
indicator because it showed a significant difference between Full Drip and the other water deficit
methods. A pseudo-color image of the ENDVI demonstrated that it can show abnormalities within
the field. This result shows the potential of C-MAP as a monitoring tool to assess orchard variation,
and specifically variation in water input. Further tests will be conducted to quantify the correlation
between vegetation indices and other material input.
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Abbreviations

The following abbreviations are used in this manuscript:

B Blue Band
CMOS Complementary Metal-Oxide Semiconductor
ENDVI Enhanced Normalized Difference Vegetation Index
G Green Band
GR Green Ratio
I Intensity
NDGNI Normalized Difference Green Near Infrared Index
R Red Band
SAT Saturation
UAV Unmanned Aerial Vehicle
VI Vegetation Index

References

1. Colby, S.; Ortman, J.M. Projections of the Size and Composition of the U.S. Population: 2014 to 2060.
United States Census Bureau. Available online: https://www.census.gov/content/dam/Census/library/
publications/2015/demo/p25-1143.pdf (accessed on 4 April 2016).

2. Lan, Y.; Thomson, S.J.; Huang, Y.; Hoffmann, W.C.; Zhang, H. Current status and future directions of
precision aerial application for site-specific crop management in the USA. Comput. Electron. Agric. 2010,
74, 34–38. [CrossRef]

3. Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing technologies for precision specialty
crop production. Comput. Electron. Agric. 2010, 74, 2–33. [CrossRef]

4. Sugiura, R.; Noguchi, N.; Ishii, K. Remote-sensing technology for vegetation monitoring using an unmanned
helicopter. Biosyst. Eng. 2005, 90, 369–379. [CrossRef]

5. Kondo, N.; Ting, K.C. Robotics for Bioproduction Systems; ASAE: St Joseph, MI, USA, 1998.
6. Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial

imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013,
91, 106–115. [CrossRef]

7. Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous
unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [CrossRef]

8. Johnson, A.K.L.; Kinsey-Henderson, A.E. Satellite-based remote sensing for monitoring Baath land use in
the sugar industry. Proc. Aust. Soc. Sugar Cane Technol. 1997, 19, 237–245.

9. MikroKopters. Available online: https://www.mikrokopter.de/en/home (accessed on 9 May 2016).
10. Corcoles, J.I.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa

L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [CrossRef]
11. Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating plant traits of grasslands

from UAV-acquired hyperspectral images: A comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 2015,
4, 2792–2820. [CrossRef]

12. Pajares, G. Overview and current status of remote sensing applications based on Unmanned Aerial Vehicles
(UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [CrossRef]

13. Qi, X.; Xing, F.; Foran, D.J.; Yang, L. Robust segmentation of overlapping cells in histopathology specimens
using parallel seed detection and repulsive level set. IEEE Trans. Biomed. Eng. 2012, 59, 754–765. [PubMed]

https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf
https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf
http://dx.doi.org/10.1016/j.compag.2010.07.001
http://dx.doi.org/10.1016/j.compag.2010.08.005
http://dx.doi.org/10.1016/j.biosystemseng.2004.12.011
http://dx.doi.org/10.1016/j.compag.2012.12.002
http://dx.doi.org/10.1016/j.biosystemseng.2010.11.010
https://www.mikrokopter.de/en/home
http://dx.doi.org/10.1016/j.biosystemseng.2013.02.002
http://dx.doi.org/10.3390/ijgi4042792
http://dx.doi.org/10.14358/PERS.81.4.281
http://www.ncbi.nlm.nih.gov/pubmed/22167559


ISPRS Int. J. Geo-Inf. 2016, 5, 79 11 of 11

14. Bulanon, D.M.; Burks, T.F.; Kim, D.B.; Ritenour, M.A. A Multispectral imaging system for citrus fruit
detection. Environ. Control Biol. 2010, 48, 81–91. [CrossRef]

15. Zakaluk, R.; Sri Ranjan, R. Predicting the leaf water potential of potato plants using RGB reflectance.
Can. Biosyst. Eng. 2008, 50, 1–7.

16. Fallahi, E.; Fallahi, B.; Shafii, B.; Neilsen, D.; Neilsen, G.H. The impact of long-term evapotranspiration-based
water scheduling in various irrigation regismes on tree growth, yield, and fruit quality at Harvest in Fuji
Apple. J. Am. Pomol. Soc. 2011, 65, 42–53.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2525/ecb.48.81
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	Target Orchards
	Unmanned Aerial System
	Image Acquisition System
	Image Acquisition
	Data Analysis

	Results and Discussion
	Individual Tree Identification
	Vegetation Index Analysis
	Tree Canopy Area Analysis

	Conclusions

