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Abstract: Comprehensive surface soil moisture (SM) monitoring is a vital task in precision
agriculture applications. SM monitoring includes remote sensing imagery monitoring and in situ
sensor-based observational monitoring. Cloud computing can increase computational efficiency
enormously. A geographical web service was developed to assist in agronomic decision making,
and this tool can be scaled to any location and crop. By integrating cloud computing and the
web service-enabled information infrastructure, this study uses the cloud computing-enabled
spatio-temporal cyber-physical infrastructure (CESCI) to provide an efficient solution for soil moisture
monitoring in precision agriculture. On the server side of CESCI, diverse Open Geospatial Consortium
web services work closely with each other. Hubei Province, located on the Jianghan Plain in
central China, is selected as the remote sensing study area in the experiment. The Baoxie scientific
experimental field in Wuhan City is selected as the in situ sensor study area. The results show that
the proposed method enhances the efficiency of remote sensing imagery mapping and in situ soil
moisture interpolation. In addition, the proposed method is compared to other existing precision
agriculture infrastructures. In this comparison, the proposed infrastructure performs soil moisture
mapping in Hubei Province in 1.4 min and near real-time in situ soil moisture interpolation in an
efficient manner. Moreover, an enhanced performance monitoring method can help to reduce costs
in precision agriculture monitoring, as well as increasing agricultural productivity and farmers’
net-income.

Keywords: soil moisture monitoring; remote sensing; in situ sensors; cloud computing; cyber-physical
infrastructure; web service

1. Introduction

1.1. Sensor Web and Soil Moisture (SM) Monitoring in Precision Agriculture

The concept of precision agriculture (PA) is based on the presence of temporal and spatial
within-field variability in soil and crop characteristics [1,2]. The concept combines information
technology with agricultural principles to manage this spatial and temporal variability in the
agricultural production process [3,4]. By using more advanced technology, PA is possible and
can be put into practice [5]. Soil moisture (SM) plays an important role in describing geo-gas
energy transformation, water circulation and many climatic and hydrological processes [6], such as
streamflow forecasting [7], runoff, erosion control [8], SM and the interactions between meteorological
phenomena [9]. SM is essential to PA because the SM condition is vital to the crop quality and yield.
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To help monitor crops precisely and instantaneously, spatial sensor webs have been widely
used for comprehensive and persistent SM monitoring and disaster-warning applications in land,
ocean, atmosphere, and ecological environments. The monitoring of SM with sensors, commonly
aboard satellites, is an active research area [10,11]. In addition to the use of in situ sensors in SM
monitoring [12,13], Earth Observation data (EOD) are also widely applied in SM monitoring [14,15].
The Open Geospatial Consortium (OGC)’s Sensor Web Enablement initiative defines a sensor web as an
infrastructure enabling access to sensor networks and archived sensor data that can be discovered and
accessed using standard protocols and interfaces [16]. Unlike a sensor network, a sensor web hides the
underlying device layers, network communication details, and heterogeneous sensor hardware [17].

1.2. Existing Precision Agriculture (PA) Geospatial Cyber-Physical Information, Infrastructure, and Problems

The growth of crops is a dynamic and comprehensive process; thus, more attention should be
paid to PA monitoring. Diverse crop monitoring demands in PA involve monitoring stations, aerial
photography, satellites, and in situ sensors. However, the approaches to monitoring agriculture are
difficult and not comprehensive because agricultural areas are large and the capability and timeliness
of sensor monitoring are limited.

Cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced
instruments and data repositories, visualization environments, and people. All these components
are linked by software and high-performance networks to improve research productivity and enable
breakthroughs that are not otherwise possible [18,19].

The cyberinfrastructure-based Geographic Information System (GIS) has emerged as a
fundamentally new form of Geographic Information System that comprises a seamless integration of
CI, GIS, spatial analysis, and modeling capabilities. Cyberinfrastructure-based GIS will likely lead to
widespread scientific breakthroughs and broad societal impacts [20–22] by enabling the analysis of
large spatial data sets, computationally intensive spatial analyses and modeling, and collaborative
geospatial problem solving and decision making conducted simultaneously by a large number of
users [23–25].

Korduan et al. proposed an interoperable geo-data infrastructure for PA [26]. A spatial data
infrastructure was established due to organizational, juridical, and technical limitations. By using the
OGC Web Mapping Service and Web Feature Service to implement a spatial data infrastructure for PA,
the different actors in our scenario would benefit in several ways, including reducing data redundancy,
reducing data transformation, reducing communication efforts, improving workflow, etc.

Zhang et al. developed a web-based remote sensing data dissemination system to provide end
users with easy and free access to a variety of imagery and products in near real-time [27]. With it,
users have access to satellite and aerial imagery that is not only geo-referenced and atmospherically
corrected but also in near real-time.

Mahmoud developed the United Arab Emirates Soil Information System, a web-based repository
of soil data with geographical representation. This system provides descriptive, quantitative, and
geographical data in a simple interface to disseminate value-added soil information gathered from
soil surveys. This information allows decision makers, policy formulators, land use planners, and
agriculturalists to efficiently manage soil resources [28].

1.3. Contribution and Organization

Cloud computing technology and distributed database clusters provide new ways of thinking and
computing [29]. The objective of this article is to provide a cloud computing-enabled spatio-temporal
cyber-physical infrastructure (CESCI) that enables efficient SM monitoring to help overcome the
aforementioned obstacles. The focus of this paper is enhancing the monitoring performance of the
approach based on remote sensing and in situ sensors. By applying modern technology to monitoring,
EOD SM mapping performance has been improved, and in situ sensor observations can be analyzed in
near real-time. Based on cloud computing technology, the CESCI framework is described in Section 2.
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Two experiments are conducted in Section 3 to validate the flexibility of the proposed framework,
including an in situ sensor scenario and a remote sensing-based scenario. The merits are discussed in
Section 4.

2. Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Infrastructure (CESCI)

2.1. CESCI Framework

To design the framework, three properties must be considered: availability, scalability, and
high-performance computing. In this context, the CESCI is split into two distributed parts. One
is the CESCI request and response server, which acts as a CESCI server layer, and the other is the
cloud environment layer, which is responsible for completing the task. Figure 1 shows the overall
architecture of the CESCI, which consists of the following components: the application layer, business
layer, basic layer, and physical layer. In addition to the application layer and the physical layer, the
business and basic layers are enabled by cloud computing implementation. The basic layer provides
the basic operating environment.
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Figure 1. Architecture of the cloud computing-enabled spatio-temporal cyber-physical information infrastructure.

As described in Figure 1, the application layer can perform large-scale mapping, on-the-fly
statistical analysis, etc. In the study, on-the-fly refers to near real-time. Unlike previous applications,
CESCI facilitates large-scale mapping, which involves large spatial ranges, such as Hubei province, the
state of Florida, or China. Moreover, in situ sensor observations can be analyzed on the fly, and CESCI
can meet the computational demands of massive sensor observations.
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The cyber-physical layer is a web service infrastructure strengthened by cloud computing
mechanisms containing the business layer and basic layer. Combined with the computation model and
storage system, the web service achieves higher performance than previous methods. Many software
frameworks based on cloud environments have been developed, such as Hadoop [30], Spark [31], and
Storm [32]. Due to its popularity and stability, a Hadoop cluster was selected as the experimental
basic cloud environment. Dean and Ghemawat [33] first introduced MapReduce. This model uses two
core steps to process a task. One is the map phase, in which a key/value pair is processed to generate
a set of intermediate key/value pairs, and the other is the reduce phase, in which all intermediate
values associated with the same intermediate key are processed. Unlike traditional SM interpretation,
the model in this paper is adjusted through experimentation to improve the performance of SM
management. Third-party algorithms are imported here to accomplish the specific tasks of the web
service. Considering other cloud computing technologies, such as Spark and Storm, the framework
should be adjusted, the Hadoop cluster should be replaced with Spark or Storm results, and the
map/reduce phases should be replaced with flatmap/join or spout/bolt. Considering the cloud
computing platform, such as Amazon EC2 [34] or Windows Azure [35], implementation should be
deployed on the cloud computing platform while the framework remains unchanged. The storage
center refers to a distributed database infrastructure. A distributed database provides faster query
speed, higher scalability, and lower cost for storage and query requirements of large volumes of EOD
and massive observations. The MongoDB database is robust. Jiang presented a new, readily available
distributed storage system called MyStore based on an optimized clustered MongoDB for unstructured
data [36].

The physical layer is a set of in situ sensors and transmission devices deployed in the soil or
between crops and sensors aboard satellites. These sensors transfer measurements of environmental
conditions (e.g., air humidity and SM) through electronic signals. The data are then extracted regularly
by the upper gateway service. Therefore, the physical layer is the basic layer that supports other CESCI
components. In addition, EOD are an important data source. These data include optical satellite data
and radar data and are provided by passive remote sensing or active remote sensing.

2.2. Kernel Map/Reduce Algorithm for Remote Sensing Imagery Mapping

In the process of remote sensing imagery mapping, imagery processing can be performed in
parallel. Similar to the Hadoop map/reduce workflow, the interaction workflow in the Hadoop
environment is divided into map and reduce parts. To accomplish the workflow, the standard OGC
web service should be introduced. Yue et al. combined the Sensor Observation Service (SOS) [37] and
Google Fusion Table to achieve collaborative management of SM and made observations that can be
visualized and analyzed on demand via a scalable SOS [38]. The OGC published the Web Processing
Service (WPS) in 2007 to define standardized interfaces that facilitate the publishing, discovery, and
binding of geospatial processes by clients [39]. Chen et al. proposed a cloud computing-enabled WPS
framework for EOD processing [40].

Figure 2 shows the map/reduce workflow for EOD. The workflow displayed in Figure 3 divides
the processing procedure for EOD into two sub-processes: mapping and mosaic. Mapping refers to
single image mapping based on the SM inversion index. The SM inversion process can be paralleled
on several independent machines. However, the single SM inversion results should be mosaicked to
generate a complete, large-scale SM mapping result. The general tool employed is the Geospatial Data
Abstraction Library (GDAL) [41]. The SM mapping process is completed in the map phase, and the
mosaic process is completed in the reduce phase. The SM mapping index can be the Perpendicular
Drought Index, Modified Perpendicular Drought Index [42], Normalized Difference Vegetation Index
(NDVI), or Green Normalized Difference Vegetation Index [43].
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The map/reduce algorithm for EOD mapping is shown in Algorithm 1. The whole algorithm
is divided into four steps: configure, map, reduce, and execute. In the algorithm, the execute
request triggers the map/reduce implementation to insert the EOD sets. Using the map/reduce
application, a new job is created. As shown in Algorithm 1, the job runs the doConfiguration(PathHDFS,
IPHadoop, URLSOS) function to configure the parameters of the job. The map function is implemented
by the setMap(EODtn, fSM) function. The reduce function is executed through the setReduce(STtn,
fMosaic) function. The InsertionOutput information is written into the output file through the
setOutput(InsertionOutput) function in the reduce phase. The steps in the program are shown
in Algorithm 1.

Algorithm 1: Flow of the map/reduce algorithm for mapping EOD

Input: current EOD observation EODtn

Output: Insertion result ExecuteOutput indicated by JobStatus
Use: WebProcessingService(DatatnInput, AlgorithmIDEOD, ResponseFormat) inherits the data access
object for WPS implementation

doConfiguration(PathHDFS, IPHadoop, URLSOS) configures PathHDFS and IPHadoop
setMap(EODtn, fSM) sets the map function in the map/reduce process
setReduce(STtn, fMosaic) sets the distributed database parameters
setOutput(InsertionOutput) sets the InsertionOutput status information of the result

STEP 1: Inherit the mandatory interface of WPSEOD implementation using the function
WebProcessingService(DatatnInput, AlgorithmIDEOD, ResponseFormat), i.e., implement the necessary
function embedded in the InsertObservation interface. WPSEOD represents the OGC standard web
service that is used to process EOD and generate EOD mapping.
STEP 2: Start configuring the parameters of the input path of the Hadoop Distributed File System
(HDFS)’s Internet Protocol (IP) address for entry into the Hadoop cluster environment. Create a
new job, utilizing the parameters such as IP and port number configured above. HDFS represents
the storage layer in the file system.
STEP 3: Obtain the set of objects STtn from EODtn using the get4(EODtn) function. The
implementation of the get4(EODtn) function is based on the Observation & Measurement
encoding model with the help of SOSEOD. SOSEOD represents the OGC standard
web service used to access EOD.
STEP 4: Implement the map setMap(EODtn, fSM) function, achieving EODtn SM mapping via the
fSM function. The decomposition algorithm fSM is called here. After data preprocessing, including
geometry correction and radiation correction, EODtn can be mapped via the SM computation
model. The specified SM computation model is referenced here. By invoking the application
program interface (API) of ArcGIS and the Environment for Visualizing Images (ENVI) tools, SM
mapping can be accomplished. ArcGIS and ENVI contain the specific API needed to process the
EOD and obtain the SM mapping result.
STEP 5: Combine the regional and partial SM maps into a large-scale SM map via the ENVI IDL
interface using the setReduce(STtn, fMosaic) function. The fMosaic function refers to the image
mosaicking process. The InsertionOutput status information indicated by JobStatus is generated last
using the setOutput(InsertionOutput) function. Furthermore, the statistical result will be inserted
into the MongoDB database via the SOS data insertion interface and the SOS web address.

2.3. Kernel Map/Reduce Algorithm for in Situ Sensors

In SM monitoring, in situ sensors are diverse and different from each other. These characteristics
make them essential for providing seamless observations of SM. As the numbers of sensors and the
observation frequency increase, the amount of observation data becomes enormous, making on-the-fly
statistical analyses difficult to accomplish. Figure 3 shows the map/reduce workflow for in situ sensors
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in the proposed framework. The workflow divides the in situ sensors’ observational data sets into two
sub-processes: partial-statistic computation and overall-analysis computation. The partial-statistic
computation is completed in the map phase, and the overall-analysis computation is completed in the
reduce phase in the map/reduce workflow.

In the algorithm, the Execute request triggers the map/reduce implementation to insert the in situ
sensors’ observational data sets. Using the map/reduce application, a new job is created. As shown
in Algorithm 2, the job runs the doConfiguraion(PathHDFS, IPHadoop, URLSOS) function to configure the
parameters of the job. The map function is implemented by the setMap(In-situObservationtn, fpartial-statistic)
function. The reduce function is executed through the setReduce(STtn, foverall-statistic) function. The
InsertionOutput information is also written into the output file through the setOutput(InsertOutput)
function in the reduce phase. To briefly review the principles and components of the Hadoop process,
the design of the map/reduce algorithm for an in situ sensor is described in Algorithm 2.

Algorithm 2. Flow of the map/reduce algorithm for an in situ sensor-based statistical analysis

Input: Current in situ sensor observation In-situObservationtn

Output: Insertion result ExecuteOutput indicated by JobStatus
Use: WebProcessingService(DatatnInput, AlgorithmIDin-situ, ResponseForm) inherits the data access
object for WPS implementation

doConfiguration(PathHDFS, IPHadoop, URLSOS) configures PathHDFS and IPHadoop
setMap(In-situObservationtn, fpartial-statistic) sets the map function in the map/reduce process
setReduce(statistictn, foverall-statistic) sets the distributed database parameters
setOutput(InsertionOutput) sets the InsertionOutput status information of the result

STEP 1: Inherit the mandatory interface of WPSin-situ implementation using the function
WebProcessingService(DatatnInput, AlgorithmIDin-situ, ResponseForm), which involves implementing
the necessary function embedded in the InsertObservation interface. WPSin-situ represents the OGC
standard web service used to process the in situ sensor observations.
STEP 2: Start configuring the parameters of the input path of the HDFS’ Internet Protocol address
for entry into the Hadoop cluster environment. Create a new job, utilizing parameters such as IP
and port number, as configured above.
STEP 3: Insert the in situ sensor observation sets into the SOS address automatically via the data
insertion interface of the SOS. The observation sets are encoded with the Observation & Measurement
encoding model. The in situ sensor observations can be inserted into the MongoDB in this step. The
SOS represents the OGC standard web service used to access the in situ sensor observations.
STEP 4: Obtain the set of objects STtn from EODtn using the get4(In-situObservationtn) function with
the help of SOS. The get4(In-situObservationtn) function is implemented based on the Observation &
Measurement encoding model. The spatial and temporal ranges can be specifically set in the
following steps.
STEP 5: Implement the map function setMap(In-situObservationtn, fpartial-statistic), yielding the
In-situObservationtn statistic via the fpartial-statistic function with WPS. The statistic algorithm
fpartial-statistic is invoked here to compute the partial statistic result. The statistical algorithm
fpartial-statistic is implemented in Java or C#. The partial statistic refers to a partial in situ sensor
observational data set statistic.
STEP 6: Combine the partial statistic result and the overall statistic result using the function
setReduce(statistictn, foverall-statistic). STtn represents the spatiotemporal parameters in foverall-statistic,
which is the function used to generate the overall result of all the in situ sensor-based observation
sets. The analysis algorithm foverall-statistic is developed in Java or C#. The InsertionOutput status
information indicated by JobStatus is generated last with the setOutput(InsertionOutput) function.
Overall statistic refers to the overall in situ sensor observational data set statistic.
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2.4. Web Service Operation Flow in SM Monitoring

SM management in PA can be divided into two patterns: EOD and in situ sensors.
The experimental CESCI server consists of several WPS servers and an SOS server. The WPS servers
are implemented from the 52˝ North WPS, with some improvements, namely, the addition of Hadoop
processing for SM computation and an in situ data statistic function. The default database of the 52˝

North SOS is the PostgreSQL database. Thus, the data observation class should be improved and
support the MongoDB.

The web service operation flow is shown in Figure 4. In PA, the deployment of agricultural sensors
is critical to obtaining continuous and real-time observations of crops. SM management is designed
to achieve on-the-fly statistical analysis of the in situ sensor observations. The SOS can publish data
in an open manner using the InsertObservation interface. Therefore, clients on the web can access
agricultural data measured in monitored farmland using this SOS. First, the CESCI client delivers the
GetCapabilities request to query useable and suitable processes on the server side. The client then
obtains the optional and mandatory parameters required by the process through the DescribeProcess
interface. The Execute operation is then called to execute this process. Then, JobTracker is triggered to
submit the job to the Hadoop NameNode. The job contains the ID, name, process ID, input parameters,
and output parameters. By invoking the appropriate algorithm for remote sensors or in situ sensors, the
system generates the SM mapping result or the statistical results for in situ sensor observations in the
Hadoop environment. In the map/reduce phase, the write process will be repeated at the NameNode
and DataNode. The data submitter writes the EOD mapping results or analysis results of the in situ
sensor observations to the Hadoop HDFS. The SM mapping and mosaic process is completed in this
phase. Then, the result is inserted into the SOS via the data insertion interface. Finally, the entire job
is terminated.
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3. Experiments

3.1. Experimental Environment

Before the experiment, the distribution environment is established. We employ the Hadoop
framework based on the complete distribution method. This framework uses five computers and
one switching hub and consists of one name node and four data nodes. The same OS (CentOS 7.0)
and Hadoop version 2.6.0 are installed on each node. The configuration of each node is i3 2100 (3.1
GHz), with 8GB RAM. The cluster uses the same hardware as is used in the Hadoop framework. In the
Hadoop environment, there are four data nodes and one name node. The Hadoop cluster is deployed
on five computers, including one master node and four slave nodes.

3.2. In the Context of Remote Sensing: Earth Observation data Vegetation Index (VI) Mapping

In the context of remote sensing, the chosen study area is Hubei province. GF-1 wide field of
view (WFV) 1A imagery is one of the products of the GF-1 satellite, which was recently launched by
China in 2013. Handling such large volumes of data from across Hubei province is difficult and time
consuming; thus, the proposed CESCI method can be applied here.

Although the VI is not an explicit indicator of SM in most remote sensing cases, VI can generally
reveal the SM distribution [44]. As McNally stated, NDVI provides a best guess of soil moisture
prediction. NDVI and other remote sensing vegetation indexes can be used to provide early warning
for natural hazards such as droughts and floods, which are linked to food insecurity. In the VI mapping
experiment, the original data sources are the GF-1 WFV 1A images. To monitor vegetation growth, the
VI should be calculated to understand the vegetation. Vegetation in the VI always yields positive values,
whereas snow and water yield negative values; thus, VI calculations are important for understanding
crop yield [45]. Among the possible VIs, the most widely used VI is the NDVI. Yagci et al. evaluated
the effect of crop rotation between corn and soybeans on the accuracy of NDVI-based agricultural
drought monitoring in Iowa, USA [46]. Satellite remote sensing has become a popular approach used
to analyze agricultural droughts based on terrestrial vegetation health conditions using the NDVI. The
NDVI formula is as follows.

NDVI “
ρNIR ´ ρR
ρNIR ` ρR

(1)

However, the first formula is utilized in the study. The mosaic process can be the achieved in the
reduce step of the map/reduce process. GDAL can be utilized in the mosaic implementation. Different
maps covering different spatial areas are combined into one map covering the whole study area. This
method can be paralleled with the reduce implementation. Figure 5 shows the MapReduce process
used to map the NDVI in Hubei province. First, EODs are geometrically and radiometrically calibrated.
Then, the map portion of the map/reduce process is performed. Single preconditioned EOD are used
in the NDVI mapping via the application interface (API) ENVI/IDL. In the reduce portion of the
map/reduce process, single NDVI maps are mosaicked to achieve a complete NDVI map via the API
GDAL. The setMap(), setReduce(), setOutput(), and WebProcessingService() functions are defined as
shown in Figure 5. In the setMap() function, the HDFS route, IP, and the NDVI mapping function are
set. In the setReduce() function, the mosaic function is set. In the WebProcessingService() function, the
NDVI mapping function and mosaic function are implemented.

Through CESCI, the EOD can effectively and efficiently be used for SM mapping. Figure 6 shows
the specific performance testing. The time consumption associated with mapping the NDVI using
the WPS implementation with a single node based on 128GB and 154GB is 41.2 min and 46.2 min,
respectively. The time consumption of CESCI with five nodes is 11.8 min and 13.4 min using 128GB
and 154GB, respectively. Hence, the efficiency of CESCI is two times higher than that of the WPS with
a single node.
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Figure 6. Time consumption associated with mapping the NDVI in Hubei province using the
WPS (single node), CESCI (five nodes), CESCI (four nodes), CESCI (three nodes), and CESCI
(two nodes) methods.

3.3. In the Context of in Situ Sensors: Near Real-Time Analysis

In the context of in situ sensors, the town of Baoxie, which is located in a typical rural area
near Wuhan City in Hubei province, China, is selected as a case study. Figure 7 shows the scientific,
experimental area, and the date of the experiment is 26 May 2015. Approximately 30 agriculture-related
sensors are deployed at an automatic station in a 20 m ˆ 40 m scientific, experimental field (center
location at 114˝31135.61”E, 30˝28112.98”N) located in the town of Baoxie, China. SM sensors are
deployed in different horizontal planes at three different depths (10 cm, 30 cm, and 40 cm). The
meteorological and SM sensors used in this agricultural field are managed and maintained by the
Geospatial Sensor Web Common Service Management Platform [47], which allows users to retrieve
real-time and historical agriculture-related measurements and map SM in the field.

As Figure 7 shows, the automatic station integrates two meteorological stations and one soil
measurement station. SM sensors are used at the soil measurement station. Using GPRS and other
hardware devices, the real-time observations are transmitted to the Sensor Web Common Service
Management Platform.
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In PA, the meteorological sensor observations can be seamless and uninterrupted. However,
statistically analyzing the observations in a timely fashion is challenging. Statistical analysis of
the geographical data is necessary and meaningful. Improving the timeliness associated with
understanding a farm’s evolution and variations, which contain abundant information, is challenging.
In summary, the integration of cloud computing technology and PA is possible and essential. By
utilizing cloud computing technology, the timeliness of PA analysis will be improved. PA analysis
involves extreme value computation, abnormal value selection, and mean value computation. After
analyzing the results of this study, we have reached the following conclusions, as listed in Table 1.
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Table 1. Case design of the statistical analysis in the map/reduce process.

Function Map part (split0 < splitk < splitm, observation[0]~observation[m ˆ n]) Reduce part

Max Value
max[splitk] = observation[splitk ˆ n]; max = max[split0];
for (i = 1; i++; i < n) for (i = split1; i++; i < splitm)
if (observation[splitk ˆ n + i] > max) max[splitk] = observation[splitk ˆ n + i]; if (max[i] > max) max = max[i];

Min Value
min[splitk] = observation[splitk ˆ n]; min = min[split0];
for (i = 1; i++; i < n) for (i = split 1; i++; i < splitm)
if (observation[splitk ˆ n + i] < mix) mix[splitk] = observation[i + splitk ˆ n]; if (min[i] < min) min = min[i];

Mean Value

sum[splitk] = observation[splitk ˆ n]; sum = mean[split0];
for (i = 1; i++; i < n) for (i = split1; i++; i < splitm)
sum[splitk] = sum[splitk] + observation[splitk ˆ n + i]; sum= sum + mean[i];
mean[splitk] = sum[splitk]/n; mean = sum/m;

Most Often Appearing
Value (MOAV)

MOAV[splitk] = observation[splitk ˆ n]; MOAV = MOAV[split0];
for (i = 1; i++; i < n) for (i = split1; i++; i < splitm)
if (frequency.(observation [splitk ˆ n + i]) > frequency.(MOAV[splitk])) MOAV[splitk] =
observation[splitk ˆ n + i];

if (frequency.(MOAV[i]) > frequency.(MOAV))
MOAV = MOAV[i];

Abnormal Value (AV)

AV[splitk] = observation[splitk ˆ n];

None
for (i = 1; i++; i < n)
{if (! (Valuemin ď observation[splitk ˆ n + i] ď Valuemax)) return observation[splitk ˆ n + i];
continue;
}
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The max value is the maximum value in in situ observations, the min value is the minimum value,
the mean value is the mean value, and the most often appearing value is the value with the highest
rate of occurrence. Changing over time, the value is hard to quantify and determine. Taking value
calculation as an example, the map part refers to the max value calculated by circulation in a single
data block, and the reduce part refers to the max value calculated by circulation in a max value data
block. The map part and reduce part can determine the max value of all in situ observations.

Figure 8 shows the main page of the Geospatial Sensor Web Common Service Platform and
the visualization of SM and meteorological observations based on CESCI. The SM curve values are
recorded in table form at the bottom of the window. By invoking the SOS interface, the data stored in
the SOS will be displayed in the left panel. The left panel shows the SM and meteorological sensors
used in the CI. The center of Figure 8 is a map view that displays the geological location of the selected
sensor in the left panel. The max values, mean values, min values, most common values, and abnormal
values are calculated via the map/reduce algorithm described in Algorithm 1.
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Figure 8. The Geospatial Sensor Web Common Service Platform and the visualization of SM and
meteorological observations based on the proposed CESCI.

Figure 9 shows the observed value, max value, min value, and mean value near real-time
curves from 18:44:33 to 20:53:33 on 1 December 2015. The yellow curve is the observed value curve.
The purple curve is the mean value. The green curve is the max value. The blue curve is the min value.
The max value, min value, mean value, and MOAV can be displayed in near real-time based on the
implementation of the algorithm in Section 2.3. SM monitoring can be conducted in near real-time.
In PA, near real-time monitoring is essential and indispensable.
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Figure 9. The SM value, max SM value, min SM value, and mean SM value near real-time curves.

Monitoring the SM conditions in the scientific experimental area will enable the detection of the
moisture content of the study area. To achieve near real-time SM mapping, the algorithm proposed
in Section 2.2 can be applied. The map phase and reduce phase correspond to the statistic and
analysis processes. SM in the scientific experimental area can be determined by SM interpolation.
The interpolation process can be divided into the map part and reduce part. The SM conditions of
blocks can be interpolated based on the SM values at the four surrounding vertices. The map process
corresponds to the single interpolation. The reduce part corresponds to the joint interpolation process.
Inverse Distance Weighted Interpolation (IDWI), one of the most frequently used spatial interpolation
methods, is relatively convenient, commonly used to for computations, and easy to understand [48].
A sampled point’s neighborhood value is calculated via the IDWI model [49]. Figure 10 shows
an on-the-fly SM map based on the algorithm in Section 2.2. In this manner, the interpolation is
timely. Using the IDWI interpolation method, an SM map can be created to instantly cover the entire
experimental area. When choosing the temporal range, the required SM maps are returned to form an
SM mapping sequence.
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Figure 10. The Web portal, showing an on-the-fly SM map based on the proposed
cyber-physical infrastructure.
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Figure 11 shows the time consumption associated with the interpolation of different numbers of
interpolation points in different methods. The time consumption of IDWI WPS implementation with a
single node for 1080 and 840 points is 89.2 s and 72.1 s, respectively. The time consumption of CESCI
with five nodes is 45.8 s and 35.8 s for 1080 and 840 points, respectively. Hence, the efficiency of CESCI
is higher than that of the WPS with a single node. Absolute real-time displays are difficult. However,
the interpolation of SM and the calculations of max value, min value, and mean value have been
enhanced greatly using CESCI. Thus, in situ sensors and interpolation based on CESCI can effectively
reach near real-time.
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Figure 11. Time consumption of interpolation of different numbers of interpolation points using the
WPS (single node), CESCI (five nodes), CESCI (four nodes), CESCI (three nodes), and CESCI (two
nodes) methods.

4. Discussion

4.1. Eligible Algorithm for PA Monitoring Based on Remote Sensing and in Situ Sensors

As almost no attempt has been made to introduce cloud computing into PA, we attempt to create
the appropriate combination to propose an eligible monitoring algorithm to effectively monitor the
SM condition, as in Section 2.2 and Section 2.3. Implementation has been achieved in Section 3.2
and Section 3.3. In Section 3.2, the time consumption of NDVI mapping has been decreased by
CESCI. The in situ sensor observations were analyzed in near real-time in Section 3.3. The max value,
min value, mean value, and MOAV can be obtained, and SM interpolation can be achieved in near
real-time. Table 2 shows the CESCI comparisons with other CIs and methods. There are two problems
in PA monitoring as shown in Table 2: (1) the difficulty associated with supporting EOD processing
efficiently to understand the large-scale SM condition due to limited computational capability; and
(2) the incapability of performing near real-time analyses of in situ sensor observations in the context
of SM conditions. However, the SM mapping computational capability is approximately 1.4 min in
Hubei province using the five computational nodes with CESCI. The analysis of in situ observations
in near real-time is presented in Section 3.3. The Service-Oriented Architecture (SOA) is the classic
architecture applied in CI development. Compared with other CIs and methods, CESCI is SOA enabled.
Consequently, PA monitoring with CESCI is effective.
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Table 2. Comparisons with other CIs and methods in PA.

CIs and Methods
Characteristic

SM Mapping
Computational Capability

In Situ Observation
Analysis Timeliness Distributed SOA

CESCI (five nods) 1.4 min/Hubei province Near real-time Yes Yes
Korduan Unsupported Unsupported No No

Zhang Unsupported Near real-time No No
Mahmoud Unsupported Unsupported No No

4.2. High-Efficiency Solution for PA Monitoring

The proposed method can be applied to PA monitoring, including enhancing the SM mapping
capability and conducting near real-time observation analysis, as performed in the experiments.
CESCI addresses the challenge of integrating various interfaces and capabilities by blending remote
sensing technology, cyber-physical infrastructure, and high-performance computing technology.
For SM mapping, CESCI has achieved performance enhancement, as shown in Section 3.2. With
more computational nodes, the performance increases. When dealing with 154GB GF-1 images, the
performance of the five-node method is the highest. For in situ sensors, CESCI attempts to achieve
near real-time analysis of uninterrupted observations in Section 3.3. The max SM value, min SM value,
and mean value calculations can be performed in near real-time, and the interpolation performance of
SM mapping at the experimental site was improved with CESCI. Accordingly, PA monitoring with
CESCI is an efficient approach.

5. Conclusions and Future Work

Cloud computing plays an important role in PA monitoring platform construction due to its
unique advantage associated with data processing, such as in remote sensing image processing
and in situ observation interpolation. Therefore, the application of modern technology to improve
monitoring performance in PA is essential, as performed in the experiments above. The study proposes
the CESCI framework to provide an efficient cyber-physical infrastructure that enables efficient PA
monitoring. In the context of remote sensing, the SM mapping performance is enhanced using the
map/reduce algorithm. In the context of in situ sensors, the map/reduce algorithm is applied to
map sensor-based moisture observations and calculates max/min values and abnormal values in
near real-time. In addition, the near real-time SM interpolation was performed with the map/reduce
algorithm. With enhanced monitoring capability, the cost of PA monitoring will decrease, and the
productivity and income of farmers will increase. In the future, more meaningful functions will be
developed to perform deeper data mining and other cloud computing frameworks will be analyzed,
such as Spark [31] and Storm [32].
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Abbreviations

The following abbreviations are used in this manuscript:

PA precision agriculture
SM soil moisture
EOD Earth Observation data
OGC Open Geospatial Consortium
CI cyberinfrastructure
CESCI cloud computing-enabled spatio-temporal cyber-physical infrastructure
SOS Sensor Observation Service
WPS Web Processing Service
GDAL Geospatial Data Abstraction Library
NDVI Normalized Difference Vegetation Index
WFV wide field of view
VI vegetation indices
API application interface
SOA Service-Oriented Architecture
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