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Abstract: Volunteer geographical information (VGI), either in the context of citizen science or the
mining of social media, has proven to be useful in various domains including natural hazards, health
status, disease epidemics, and biological monitoring. Nonetheless, the variable or unknown data
quality due to crowdsourcing settings are still an obstacle for fully integrating these data sources in
environmental studies and potentially in policy making. The data curation process, in which a quality
assurance (QA) is needed, is often driven by the direct usability of the data collected within a data
conflation process or data fusion (DCDF), combining the crowdsourced data into one view, using
potentially other data sources as well. Looking at current practices in VGI data quality and using
two examples, namely land cover validation and inundation extent estimation, this paper discusses
the close links between QA and DCDF. It aims to help in deciding whether a disentanglement can
be possible, whether beneficial or not, in understanding the data curation process with respect to
its methodology for future usage of crowdsourced data. Analysing situations throughout the data
curation process where and when entanglement between QA and DCDF occur, the paper explores
the various facets of VGI data capture, as well as data quality assessment and purposes. Far from
rejecting the usability ISO quality criterion, the paper advocates for a decoupling of the QA process
and the DCDF step as much as possible while still integrating them within an approach analogous to
a Bayesian paradigm.

Keywords: data curation; data quality; ISO standard; data fusion; data conflation; citizen
science; crowdsourcing

1. Introduction

Under the generic term of crowdsourcing, data collected from the public as volunteered
geographical information (VGI) is becoming an increasingly important topic in many scientific
disciplines. Social media and big data platforms often supply geolocated information gathered from
the web using dedicated APIs (e.g., Twitter data). Other more participative data collection techniques
identified as citizen science such as bespoke web services and the use of mobile apps allow citizens to
contribute to environmental observations (e.g., www.ispotnature.org, www.brc.ac.uk/irecord) and
report events that can be used in scientific research and policy making [1–3].
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From providing timely information and cheap and densified observations, VGI brings
opportunities for better understanding and monitoring of various societal and natural phenomena.
This added value comes after merging, integrating, and combining the VGI data into a single view,
while possibly reusing other data sources. In this paper, we term this latter process data conflation or
data fusion (DCDF), with the idea of representing a range of methods according to the heterogeneity of
the datasets used and the intended result. A considerable body of literature has discussed data quality
issues associated with VGI data, along with their spatial and a-spatial characteristics [4,5]. Specificities
of quality assurance (QA) when collecting crowdsourced or citizen science data [6–10] are contributing
to better designs on how to qualify data as a single observation or as part of a dataset. Quality assurance
(QA) is defined as a set of data policy, controls and tests put in place in order to be able to meet specific
requirements. In our context, quality controls (QC) are (geo)computational operations that output
quality values according to specified measures and standards. What all the different approaches
agree on is the multidimensional aspect of quality, essential in crowdsourcing and citizen science.
Intrinsically this causes a tendency for the QA and DCDF processes to be entangled, as the ISO19157
usability criterion drives the data curation process (DCP). Usability is defined in the ISO19157 standard
as the degree of adherence of a dataset to a specific set of requirements, involving the other quality
elements or not, and is derived from an overall quality assessment. Data curation (DCP) is defined as
the collection of organised settings and actions within a system that are in place along the data life
cycle from its capture to its storage and management, including during its usage. Based on two well
defined purposes taken from the literature with a few methodological approaches (see Sections 1.1
and 1.2), the paper explores what this entanglement is and, whether or not remedies to it can be
proposed if we can identify why and where these two processes may become entangled. We frame our
discussion using the framework elaborated in the COBWEB (Citizens Observatory WEB) project and
the experience gained from that [11]. The European FP7 COBWEB project (www.cobwebproject.eu)
proposed a survey design tool including an authoring tool to combine different quality controls (QC)
within a workflow that will serve as a QA for each particular case study [9–12]; the data collected and
then qualified through the QA workflow is finally made available for a DCDF within a completed data
curation process [12–15].

QA and DCDF are two fundamental processes, which form part of the DCP that can be performed
by a human or a computer or a combination of the two through a series of steps, so each of them can
be a represented by a workflow. Within the COBWEB framework these workflows are represented
using the Business Process Modelling Notation (BPMN) standard and are composed of automated
processes [9,11,15,16]. QA is devoted to ensuring data quality and produces metadata information
either at the single record or full dataset level. For example, a QA can provide a classification
correctness (ISO1957) value (e.g., percentage of agreement) for a land cover type given by a volunteer
after looking at a picture of the area or a value for the absolute accuracy (ISO1957) (e.g., 68% circular
error) for an inundation extent derived from the data capture of a flood limit from a citizen using a
specific mobile app. The DCDF is devoted to the use the VGI data to derive a secondary data product.
For the two studied examples this corresponds to determining a land cover map from historical data
and changes observed by volunteers or the probability of a location being flooded at a chosen time
using citizen’s evidence and the satellite imagery available, both around this chosen time. The QA
and DCDF entanglement takes its source from the stakeholder conceptual approach to the study to be
put in place, which is influenced by several semantic overlaps concerning quality, validity, goals of
the study, etc. that we explore in the paper. In practice, even though generic QCs provide the logic
and reasoning of attaching a quality that clarifies the uncertainty on data captured, the workflow
composition of the QA is mainly driven by the future use of the data. It is also possible for the quality
elements to be assessed within the DCDF algorithm itself, either included in the QA (the conflated
data is a by-product) or completely separated (the data quality is a by-product). This is reminiscent of
a statistical modelling approach in which, after or during the model fitting, the error distribution is
derived and attached to each observation.

www.cobwebproject.eu
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Acknowledging and trying to identify the sources of this entanglement, this paper discusses
the advantages or disadvantages that may arise when integrating or separating the QA and DCDF
processes and proposes recommendations. Reminding us that potentially more robust DCDFs will
make use of the quality information established for the VGI data used, it can be understood that
entanglement (of the QA and DCDF processes) may become problematic (it is not the purpose of this
paper to describe these consequences). Two examples, described below, of VGI data collection and
usage serve as the basis of exploring these possible entanglements. The interest is not in the results of
the examples or to identify if one method is better but rather on the designs and approaches used and
how these translate into the potential entanglement.

1.1. Land Cover Validation Example

This example is taken from a recent study of VGI for land cover validation [17–20] in which,
using the Geo-Wiki platform [21], volunteers were performing multiple ratings of satellite images
as land cover classes. For this study on data quality [19], the 65 volunteers labelled 269 sites from a
series of images and, when attributing a land cover type, volunteers also declared how confident they
were (input using a slider with a label, e.g., ‘sure’). The derivation of the land cover class-specific
accuracies per volunteer (producer’s accuracies) and of the land-cover classes estimation from posterior
probabilities were possible using a Latent Class Analysis (LCA) model estimation (see [22] for a recent
review on using LCA to assess the accuracies of new ‘diagnostic tests’ without a gold standard in the
context of medical applications).

1.2. Flood Inundation Extent Estimation Example

This example concerns three different approaches for estimating flood inundation extent using
VGI data. Two methods used crowdsourcing from social media, Twitter [23] and Flickr [24,25]; the third
used a citizen science approach for volunteered reporting of flood inundation via a mobile phone
application originating from a case study from the COBWEB project. For the social media Twitter
example, geo-tagged tweets were analysed to extract information of potential inundation and to look
for inundated areas, e.g., ‘London road flooded!’, possibly combined with the geolocation of the tweets.
Then, a flood model (shock-capturing hydrodynamic simulations, abbreviated to hydroDyn in Section 4
using a terrain model (DEM) of the area was run to estimate an inundation extent. In the social media
Flickr example [25], a cumulative viewshed of the photo locations were used as evidence for flood
extent alongside evidence from Earth Observation (EO) data, Modified Normalised Difference Water
Index (MNDWI), and topography (slope and elevation) to give a posterior probability flood map.

For the COBWEB citizen science approach, a mobile app was designed to allow the capture
of a geo-located estimation of a partial flood/inundation limit line (swipe-line) using the citizen’s
drawing on the photo taken and the line of sight (LoS) base-point position derived from the DEM
and the citizen’s mobile phone orientations [16,26]. This partial inundation limit (with its accuracy
derived from LoS accuracy) was used within a pouring-rolling-ponding algorithm [26,27] until the
water level reached that swipe-line, therefore giving an estimation of the inundation extent from that
single observation with uncertainty from error propagation (using DEM and partial limit uncertainties).
The QA workflow undertaken after each data capture is given in Section 4, where after each QC (a ‘task’
in the workflow), metadata concerning quality were created or updated [10,13].

2. Semantic Discourse

Entanglement is apparent in language when commonly talking about quality and validity.
The word ‘quality’ itself often refers to a level of quality, namely good quality or bad quality in
relation to what the item is used for or how useful it I; ‘these tyres are of good quality as they will make
40,000 km’ or ‘these tyres are of good quality as they reduce the braking distance by 20%’. A QA is then
designed to test those very features and set values to the quality indicators, which are, here, completely
linked to the performance in the future usage. Note also that making 40,000 km may not be entirely
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compatible with reducing the braking distance by 20%, so good quality can be a relative concept.
For the spatial data quality standard ISO19157, the usability criterion helps to define and quantify
the level of quality based on specific requirements declared to meet a certain degree. Nonetheless,
those requirements may appear within separate usability reports and not using all quality elements
per se. Therefore, the DCDF, considered he future usage of the data, appears to be the determinant in
the evaluation of specific quality elements, but not all are involved in usability quality reports.

Looking at spatial data such as Open Street Map data (OSM) (www.openstreetmap.org) for a
given area, one could declare OSM of good quality if, when using the map, a person did not get
lost, say, between his/her house and another location, e.g., to a dentist appointment. So the quality
would be evaluated without consideration of (i) the completeness of OSM for the road network that
is not directly used during routing (considered as a DCDF of a crow-fly line and the road network)
or of (ii) its absolute spatial accuracy (see the ISO19157) and ‘did not get lost’ being considered the
quality or validity when using the DCDF. Only a relative accuracy (see the ISO19157) and a topological
consistency (see the ISO19157) would be required in order ‘not to get lost’, and completeness is enough
to find a path (though not necessarily the shortest).

2.1. Data Quality of the End-Result

The QA should be concentrating on evaluating qualities of the measurements attached to that
tyre. A conclusion such as ‘this is a good tyre’ comes from estimating the value of a specific attribute
after testing, e.g., how tender the rubber is. The value recorded can mean good or bad for braking
or mileage. Note here the discourse is in danger of slipping away, as there is a mix between (a) the
value of the attribute itself, which may mean good quality or bad quality intuitively; (b) the accuracy
of that value, which is needed to be able to test the tenderness itself; and (c) the value of that statistical
testing. The data, a feature or a characteristic of the feature may imply a conformance or a usability met
(or not), but only by knowing the accuracy attached is it possible to decide if the quality requirement is
met (or not).

The purpose of the QA is mainly this a posteriori evaluation of the accuracy of the data. It is
the controlling aspect of the quality assurance (workflow of QCs). Concerning QA, the common
language and the practice in manufacturing, both refer to an a priori set of procedures assuring a level
of quality and an a posteriori set of controls and tests, assuring that the target values have been met
within an acceptable level of variability, i.e., of uncertainty. Those target values define the validity with
a confidence level defined, for example, by a marginal level of uncertainty. Good or bad quality should
come only in the usability criterion as a degree of conformance to a set of requirements and depends
on both a priori and a posteriori types of quality assurance settings.

Thus when considering the fitness for the purpose of conditioning the QA, one would need to put
this in plural amongst a range of plausible purposes. Nevertheless, the discourse can also be: ‘I need
this quality element to be evaluated to know the quality of the end-result’, i.e., the routing DCDF to the
dentist appointment, requiring travel time, for which at least the distance and its accuracy would also
be needed. This is where one can get a feel of the benefit of a disentanglement, which is where the good
or bad input quality becomes linked to a specific purpose from error propagation estimation. More
precisely, the data quality, the ‘error of measurement’, and the ‘uncertainty about the data’ impacts
on this usability assessment (uncertainty analysis). Here the error propagation helps to point out a
distinction between the intrinsic concepts within quality, accuracy, precision, and uncertainty.

Uncertainty analysis and sensitivity analysis will help to decide if the quality of VGI data is
an important factor in the confidence of the DCDF end-result and therefore if it is important to be
concerned about any entanglement at all. This therefore supposes that either a separate QA is able to
estimate the data quality of the VGI data beforehand, or a rough estimate of this quality enables a test
of the sensitivity. Then, uncertainty analysis, focusing on estimating the output uncertainty knowing
the input uncertainty and sensitivity analysis, focusing on estimating the part of the output uncertainty

www.openstreetmap.org
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due to a specific input uncertainty, can take place (see also Section 3.2). Both, sensitivity analysis and
uncertainty analysis can be viewed as paradigms of error propagation.

2.2. What Is Good and Bad Quality in Crowdsourcing for Environmental Spatial Data?

‘Good and bad tyres exist’. For spatial data, either for the land cover data or the flood inundation
extent examples, each single VGI data observation is to be compared to a potential (current or historical)
ground truth, which has its own uncertainty. Thus, the (in)accuracy may be due to a bad measurement
and/or to an imprecise measurement. The classification made by a volunteer for each land cover was
attached with a self-assessment of the ‘precision’ of the attribution. In the case of the flood inundation
app, the citizen may aim a bit too far over the edge of the water line or move the device when taking the
picture, e.g., shaking because of a cold wind. These represent types of inaccuracies that can be encoded
using the thematic accuracy or relative position accuracy elements of the ISO19157 standard, but
ambiguous definitions may incline the stakeholder to pool all into one quality when using the direct
definition such as: “how close this is to what is accepted or known to be true”. Section 4 discusses this
aspect further.

Note that when using a DEM, the accuracy of position for a particular elevation collapses with
the accuracy of that elevation. However, in practice only the vertical accuracy for a given resolution is
used. This can have an impact on both the DCDF and on the QA for the inundation extent, but this is
not of direct concern here.

For the land cover type classification, the potential confusion from the volunteer in understanding
the different written descriptions of the land cover types refers to another type of uncertainty, namely
the data quality due to the volunteer (the citizen sensor). ‘Trust’ often encapsulates the data quality
from a volunteer; for the land cover validation example the self-assessment, e.g., “sure”, is part of a
trust assessment. In the COBWEB QA, three different type of qualities are looked for: (i) the producer
quality model (ISO1957 quality); (ii) the consumer quality model (http://www.opengeospatial.org/
projects/groups/gufswg), i.e., feedback qualities [28]; and (iii) the stakeholder quality model (Table 1).

Table 1. Quality elements for the COBWEB (Citizens Observatory WEB) stakeholder quality (CSQ)
model [9,10].

Quality Elements COBWEB Stakeholder Quality (CSQ) Definitions

Vagueness Inability of the volunteer to make clear-cut choices (i.e., lack of classifying capability)

Ambiguity Incompatibility of the choices or descriptions made by the volunteer (i.e., lack of
understanding and of clarity)

Judgement Accuracy of choice or decision made by the volunteer in a relation to something known to
be true (i.e., perception capability and interpretation)

Reliability Consistency in choices/decisions (i.e., testing against itself)

Validity Coherence with other people’s choices (i.e., against other volunteers knowledge)

Trust Confidence accumulated over other criterion concerning data captured previously
(i.e., linked to reliability, validity, and reputability)

These latter elements can be understood as qualifiers of a citizen as a sensor in ‘functioning’ and
will impact on observations captured by this citizen now and later. They will also impact on other
quality evaluations, i.e., a dependence sometimes precluding evaluations [6]. Within the COBWEB QA
system, a citizen volunteer can be registered (anonymously), and its quality values can be updated
from her/his survey participations with the different QA workflows used.

Potentially, a trusted expert will be attributed with a lower uncertainty, say, in declaring the
presence of a plant species in an unexpected area. However, if its reliability is low, this will increase
the uncertainty. When raising concerns within a given QC about an observation getting low quality
values for a range of quality elements, the CSQ values will be updated in consequence and similarly
when a QC reveals greater confidence in the captured observation.

http://www.opengeospatial.org/projects/groups/gufswg
http://www.opengeospatial.org/projects/groups/gufswg
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It is also common sense that a large (‘bad’) position uncertainty of the point where a volunteer
is standing may not be a problem when assessing a land cover type during a field survey session
for a citizen science study (different from the example in Section 1.1) if the area was retrospectively
considered homogeneous (e.g., after an image segmentation). For the flood app inundation extent,
the vagueness of the annotation associated with the picture of the water line may be less important
than the line itself. In contrast, if the same citizen is capturing land cover classes, his/her past
vagueness values may make this data more uncertain. Thus there may be also entanglement due to
the dependencies in the quality dimensions according to the data captured.

2.3. Trustworthiness and Data Quality

There is agreement in the literature that VGI data quality usually lacks a defined quality and
this limits the use of citizen science data [2,4,5,8,29,30]. Hence, there is often an attempt to bypass
data quality from trustworthiness. This is as if the trust encapsulates the entire potentiality of quality.
As experts are trusted, the trusted volunteer may change status and become an ‘expert’, making the
stakeholder have a new view on the VGI data, as all now coming from experts. This is notwithstanding
findings that even when trust is important, experts also make mistakes [20]. In citizen science projects,
peer participants and trusted participants often help in identifying and validating the observations
provided by new volunteers [31,32]. This peer verification enables some control and constitutes
a form of QA by crowdsourcing [8] the data and indirectly the volunteer who captured the data.
Peer verification and expert verification, as potential mechanisms to generate or increase trust, are not
without issues [20,33]. When the volume of data to be verified becomes too large, peer verification or
expert verification is likely to introduce human errors. A parallel can be made with Wikipedia, which
allows successive editing of an article with the objective of ensuring convergence to a common shared
vision. In this latter mechanism, the ‘data’ itself is subject to improvement and the information about
quality is somehow left in the series of multiple edits [33,34]. For citizen science, most of the time the
data will not be as modifiable as in Wikipedia, it will have a quality identifiable from the used QA,
and then, depending on the levels of quality and reliability attributed, the data will be re-used or not
and validated or not. Even so multiple citizen science observations about the same realm (geolocated
and time stamped) can allow a similar process as Wikipedia’s successive editing, by then increasing
the trustworthiness of the data this time (OSM data follow this principle [29]). Along this specific
data curation process there is, therefore, an implicit quality assurance process [10,35]. Note that the
consumer quality model, based on feedback (intentional or not), can contribute to establishing or
modifying the trust in the data and therefore the trustworthiness of the volunteers who contributed to
the data.

Trust and trustworthiness are therefore qualities highly correlated to the other data quality
elements. When an expert or a volunteer is trusted, so is the data captured by this trustee person, and
reversely the trust accumulated on data, crowdsourced quality, or from other evidences, feeds back to
the trust in the volunteers who contributed [6,30,36,37].

2.4. Evidence, Provenance and Confidence

These three terms echo the decision-making process and the necessary elements that are looked
for to perform it [6,28,38]. Providing evidence can be compared to a DCDF as contextualising
different sources of information into compelling, intelligible, unified new information. Implicitly
the evidence conveys an improved quality as the process of gathering this evidence contains the idea
of validating the information during the conflation (DCDF). Another DCDF may be involved in fact
when ‘confronting multiple evidence’, which implies a knowledge of the quality of each evidence
linked to their provenances or a targeted quality that increases the confidence. From this viewpoint,
the DCDF would need the QA to have been operated, and, vice versa, a DCDF may be needed within
the QA process itself. Confronting different pieces of information however, may appear distinct from
the decision-making process and so from a DCDF too.
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These different situations correspond to the general approach chosen in COBWEB [19,24,25,27],
with a QA workflow composition from a repository of QCs belonging to the seven pillars of quality
controls (see Table 2). Each observation captured is successively confronted with other pieces of
information in order to explore and improve the various dimensions of data quality. The QA workflow
can be considered a metaquality of information, constituting a provenance for the metadata on data
quality of the VGI data. Even though chaining of the QCs can be different from the ordering in Table 2
(and more complex workflows can be used), it conveys the idea of refining the quality elements and
therefore increasing the confidence throughout the workflow, e.g., the QA workflow in Section 4 for
the citizen science’s flood inundation extent case study.

Table 2. The Seven Pillars of Quality Controls in Crowdsourcing [9,10].

Pillar Name Pillar Description

1. LBS-Positioning
Location, position, and accuracy: Location-Based-Services focusing on the position of the
volunteer and of the targeted feature (if any), local conditions, or constraints, e.g., authoritative
polygon, navigation, routing, etc.

2. Cleaning
Erroneous entries, mistakes, malicious entries: Erroneous, true mistakes, intentional
mistakes, removals, and corrections are checked for the position and for the attributes. Feedback
mechanism can be an important part of this pillar if the mistakes can be corrected.

3. Automatic
Validation

Simple checks, topology relations, and attribute ranges: Carries further the cleaning
aspects by validating potential good contributions. Its aim is towards positive rewarding with
more inclusive rules than with Pillar 2, focusing more on excluding rules.

4. Authoritative
Data Comparison

Comparison of submitted observations with authoritative data: Either on attributes
or position performs a statistical test, a (fuzzy) logic rule based test, qualifying the data
captured, or reversely qualifies the authoritative data. Knowledge of the metadata of the
authoritative data is paramount.

5. Model-Based
Validation

Utilising statistical and behavioural models: Extends Pillar 4 testing to modelled data,
e.g., physical model, behavioural models, and other volunteer contributed data within the same
context. This may use intensively fuzzy logics and interactions with the volunteer within a
feedback mechanism of interactive surveying. (If some tests are similar to Pillar 4, the outcome
in quality elements can be different)

6. Linked Data
Analysis

Data mining techniques and utilising social media outputs: Extends Pillar 5 testing to
using various social media data or related data sources within a linked data framework. Tests
are driven by a more correlative paradigm than in previous pillars.

7. Semantic
Harmonisation

Conformance enrichment and harmonisation in relation to existing ontologies:
Level of discrepancy of the data captured to existing ontology or crowd agreement is
transformed into data quality information. In the meantime, data transformation to meet
harmonisation can take place.

For example, in Pillar 3, ‘Automatic Validation’, an attribute value can be compared to a ‘range of
values’ given by an expert, and then, in Pillar 4, ‘Authoritative Data Comparison’, can be matched to a
previously observed distribution. Moreover, the rejection or acceptation of the measurement as valid
(assigning an accuracy), performed in the last QC, will take into account the previous assessment.

The stakeholder authoring the QA will decide whether to chain these specific QCs from Pillar 3
to Pillar 4, or vice versa, as well as any other available QC from all pillars. As part of the whole data
curation process, the chosen QA workflow designed can be traced back to the series of QCs within
these pillars.

The process of providing and selecting the evidence is strongly linked to the quality assessment
but also illustrates the entanglement with a DCDF, as this QA is designed as supporting the evidence
(for the DCDF). This data curation step is only a weak entanglement, as the pieces of evidence are
kept apart (no fusion is yet taking place). Therefore, registering the whole provenance of the data
obtained after the DCDF, entailing the list of data evidence and their data quality, encompasses the QA
workflow process as well. Within this data curation process, the VGI data are part of the evidence,
e.g., different citizen sciences surveys in the same area.
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As discussed in the previous section, the a priori QA and therefore the ‘design of experiment’ is
also part of the provenance. Both a priori QA and a posteriori QA comprehend the provenance and, as
such, would be recorded in the metaquality (ISO 19157). The QA workflow will produce values for the
quality elements from all three quality models (see Section 2.2) but relates itself to a metaquality from
a producer viewpoint.

Obviously reusing the crowdsourced data for a DCDF or reusing the data produced by this
DCDF will carry the provenance and confidence in the new evidence, the conflated evidence by then
perpetuating the metadata chain and therefore entangling the quality information retrospectively,
i.e., propagating any previous entanglement into the new usage. This is important as we suppose
that any DCDF will make use of the established quality of the data to perform its algorithm (‘best
estimation’). The traceability of quality using the provenance encoded using the QA workflow and the
DCDF workflow may become quite complex with multiple entanglements, while still providing the
necessary information.

3. Data Curation Process

However entangled the QA and DCDF processes are, they take place as part of the data curation
process (DCP). The data lifecycle can be very different depending on the crowdsourcing study and the
potential reuse of the data in the short and longer term. Therefore, enabling easy data and metadata
access at various stages is important. At this point some questions arise concerning the status of a single
data point captured by a citizen and a collection of citizen captured data as part of the same or a similar
survey, i.e., a dataset. As an example of Quality Assurance used in biological monitoring, the National
Biological Network (NBN) in the UK (www.nbn.org.uk) has in place the ‘NBN Record Cleaner’
(http://www.nbn.org.uk/Tools-Resources/Recording-Resources/NBN-Record-Cleaner.aspx). This
corresponds to some aspects in cleaning (Pillar 2 in Table 2) and conformance (Pillar 7 in Table 2).
Several of these ‘controls’ may be better seen as part of the data capture tool, e.g., a mobile app, such
as for the date format. These types of QCs are often relatively independent of the future usage of the
data, as either their aim is ‘correcting’ mistakes or using standards of encoding (including ontology of
the domain and species thesaurus, for example).

3.1. Design of Experiment

Crowdsourcing surveys are performed for specific objectives; therefore, the information to be
collected is often designed with those objectives in mind. A protocol of an experiment would contribute
to identify sources of variability and quality with several constraints and requirements. This leads to a
QA needing to be implemented either: (1) at the data capture level, e.g., within the mobile app; (2) as a
QA a priori, controlling within a preventative manner; or (3) within a QA a posteriori, thus controlling
and assessing under a correcting and comparing manner. For social media crowdsourcing, part of the
experimental design appearing as an a priori QA is the crawling and mining required to extract the
data according to chosen relevance criteria, e.g., keyword matching and bounding box queries. This
is the case for the flood inundation examples using Twitter [23] and Flickr [25]. Depending on the
completeness of the semantic matching put in place, this a priori QA may be inseparable conceptually
from a DCDF. Note that here the lack of control of the design of the experiment is compensated by
the intrusion of this DCDF and by the greater number of observations expected than in a citizen
science study (see also Section 4), i.e., expecting to get a better quality level from say ‘averaging’ over a
large sample.

For citizen science studies, a driver for quality of the data will also be reflected in the simplicity or
complexity of the study design and the design of the interface used [3,39]. A human factor is to be
considered here and will also be captured using the quality elements in Table 1. A pilot study designed
to capture these elements would help to minimise them in the real study, i.e., to improve the quality
from the a priori QA.

www.nbn.org.uk
http://www.nbn.org.uk/Tools-Resources/Recording-Resources/NBN-Record-Cleaner.aspx
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A third type of QA occurs in between the a priori and a posteriori stages: the hic et nunc or interactive
QA [40,41]. Two simple QCs providing interactivity are illustrated in Figure 3 for citizen science. One
QC analyses either the distance to the nearest river or detects a large enough patch of water on the
captured photo (Pillar 2 ‘cleaning’ for location quality) and asks the volunteer to get closer if required
(if safe to do so). A second QC then tests the level of contrast in the image (Pillar 3 ‘automatic validation’
for photo quality) and may ask the citizen to take another picture. Some of these hic and nunc QC may
also need to be run exclusively on a server due either to the computational resources needed or to
access timely information from other sources (precluding its use in poor connectivity areas) [40].

As the defined objectives within a design of experiment may imply a range of DCDF already
planned, the various QA can also be entangled with them, as described in Section 2. With the land cover
classification example, the LCA can be performed within an a posteriori QA once the study is finished,
e.g., using a sample size stopping rule. It can also be performed just a posteriori, each time the current
volunteer has finished the survey but using an existing sample of super-raters for comparison, e.g.,
using the top ten raters ranked according to their achieved averaged accuracy (i.e., their producer’s
accuracy, see Section 4.1, [18]) obtained for the same study.

3.2. Storage, Usage, Re-Usage

Data access at various stages of the DCP along with the evolution of the metadata, including
spatial data quality, would be desirable. As mentioned in Section 2, this is of importance when reusing
data with its quality determinants under different contexts. Being aware of the quality elements and
associated metaquality that have already been derived means they then be re-evaluated or utilised
under the new context. A provenance management may be facilitating this flexibility from which the
potential entanglement of QA and DCDF can be identified. For citizen science, it would be beneficial
to be able to assess and have access to the quality elements listed in Table 1, which are evaluated at the
record level for each individual. These elements may be conditioning a QA for newly captured data or
used when conflating with the citizen data (e.g., in Pillar 5 or Pillar 6) but also provide confidence in
the derived data from the DCDF.

In a similar modus operandi, DCDF and error propagation make use of a range of spatial data
quality elements, but DCDF is mostly interested in providing an end-result, an estimate, whereas
error propagation focuses on the achieved accuracy of this estimated end-result. Both make use of the
initial quality evaluation provided by a QA process. Therefore, if the DCP is disentangled, a Bayesian
metaphor could be used to establish prior quality variations from an initial QA of the VGI data that is
then used in a DCDF to provide a series of conditional end-result datasets with the associated error
propagated. Then, two possible follow-up DCPs can be performed: (1) under an ergodicity assumption
(the spatial variation provides an estimate of the point-wise variation), wherein the best matched
a posteriori uncertainty would lead to updating the initial quality for the VGI data for an updated
DCP; and (2) selecting spatially the VGI data with lowest uncertainty of the outcome (but introducing
potential bias), i.e., giving a quasi-null usability for the unselected records, and then a re-iteration
of the DCP. These two situations represent a controlled re-entanglement of QA and DCDF, which
hopefully would converge.

The first iteration represents a sensitivity analysis (see initial discussion in Section 2.1), i.e., looking
at the propagated uncertainty for a range of input quality levels. For example, in the Flickr inundation
extent scenario, some results on a multiway sensitivity analysis seem to suggest that position accuracy
alone can be an important factor in decision-making [23]. Therefore, a proper initial QA can be
paramount to whatever single DCDF is to be performed or whatever iterative DCP process takes place
(see Section 4).

Figure 1 highlights the output variations obtained for each combination of uncertainty levels
set up for the multiway sensitivity analysis [23] of the Flickr inundation extent workflow DCDF [31].
A Monte Carlo uncertainty was run for each combination of input uncertainty. Namely, for each of
the three dimensions of earth observation (MNDWI), topological characteristics (slope and elevation),
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and social data (Flickr position), four levels of uncertainty were chosen; level 1 was 0.5 × sd, level 2
was 1 × sd, level 3 was 2 × sd, and level 4 was 3 × sd, where sd is an initial estimate of the standard
deviation for the current variable of interest.ISPRS Int. J. Geo-Inf. 2017, 6, 78  10 of 17 
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Figure 1. Spatially aggregated output variances for each uncertainty combination level: one-dimensional
plots for each s × t level at each e level (t—topological uncertainty, e—earth observation uncertainty,
s—Flickr position uncertainty).

From a visual examination, earth observation uncertainty (e) shows very similar patterns across
its four chosen levels. The topological factor (t) appears to separate t1 from the others (main effect)
with also a slight interaction with social variation (steepest variation for t1), and social variation
(s) shows gradient effect. This illustrative example demonstrates the role of social variation (Flickr
position accuracy) in the end-result uncertainty assessment of the DCDF of flooding inundation extent
estimation. The multiway multidimensional analysis of the spatial variations in the sensitivity results
showed that the cumulative viewshed has a high uncertainty only at the edges of the view threshold
but mostly for high position uncertainty [24]. Retrospectively, this was greatly dependent on the local
amount of Flickr data (metaquality) with an acceptable position accuracy (1 × sd).

Considering a DCDF with an uncertainty assessment of the results to be a good practice, the better
we can perform the QA to estimate the input uncertainty, the more confidence we can put into the
output uncertainty. Therefore, either a disentangled situation or eventually a re-entanglement iterative
process, as described above, is desirable.

4. Is a Disentanglement Possible?

In the previous sections, entanglement situations have been identified as taking source either
from the underlined semantics when describing and designing a case study or when implementing a
case study and focusing primarily on its goal and usage. Whilst QA principles and the usage of the
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data within a DCDF mean that these two curation steps operate in tandem, the multiple dimensions
of quality and time of assessment (a priori QA, a posteriori QA, and hic et nunc QA) offer flexibilities
to the curator. He or she may choose to make the crowdsourced citizen science data of narrow
usage, that is specifying its quality only for a narrow focus, or of larger focus when looking for a
larger quality spectrum when describing the data (including its fitness for purpose). Under narrow
focus, entanglement may be less problematic, reducing the QA to a few qualities with very specific
requirements (usability on this narrow usage), though reducing the usability (see Section 3.2 example).
However, limiting the future usage of the VGI data in this narrow focus may bring us back to the initial
statement of ‘lack of credibility for VGI data’, in the sense of a lack of metadata on data quality. Trying
to qualify the data with a large spectrum of qualities may naturally dis-entangle QA and DCDF, as
some quality assessments will occur without future usages at hand.

Coming back to the usage of the data and of its metadata on data quality, the two types of
examples chosen (of relatively narrow focus) are driven apparently from different ends: (1) the land
cover classification (Section 1.1), using LCA as a means to generate the accuracies for each rater
(a volunteer) but in the meantime estimating the land cover classes for each photo from its observed
pattern of agreements and maximum a posteriori (MAP) probabilities; and (2) the flood inundation
extent (Section 1.2), estimated after an uncertainty evaluation of the input takes place, leading to an
uncertainty attached to the inundation extent using error propagation. Note that each single data
captured (the land cover type given per each volunteer for a land cover) can be retrospectively given
an uncertainty, and the accuracy for that volunteer is given the consensus obtained from the LCA
model for that land cover (the MAP). The descriptions for these two types of example seem similar, but
the data life cycles present different situations (see Figure 2). The Twitter example does not explicitly
refer to the propagated uncertainty, but a similar paradigm was achieved with the Flickr example.
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In Figure 2, for the land cover classification, the LCA model provides a posteriori QA of the whole
VGI survey collection and, following our categorisation in Table 2, could be a QC belonging to Pillar 5
(“model-based validation”). Yet, the LCA approach appears to entangle QA and DCDF strongly, as
both accuracies and consensus land cover classes are produced within the same algorithm. However,
from the self-QA taking place, part of the QA can be disentangled, e.g., “selecting” data only with the
label “sure”. As already discussed in Section 3.1, another curation process (DCP) could potentially
perform a QA for each single volunteer once his/her survey is finished, e.g., running the LCA with a
selection of previous super-raters and him/her as the new rater. Nevertheless, it cannot be used to give
an uncertainty of the new single observation (the attributed land class at that location) captured from
this volunteer except if using a posterior uncertainty derived from a “previous reference study” (see the
LCA derived accuracies [18,19]). This “previous reference study”, representing a pseudo-authoritative
data (for a Pillar4 QC) or modelled reference data (for a Pillar5 QC), can be past observations of that
current study, therefore using the (past) posterior probability for the class attributed by this new rater
at that location. This reference study can also be a study judged similar to that of the current study, this
time using a sort of modelled uncertainty of observing that class from a majority of the raters agreeing
on it.

The inundation extent from the citizen science example presents a more typical DCP with a
pre-established QA, as in Figure 3. Uncertainty evaluation from direct QCs (Pillar 1, Pillar 2, and
Pillar 4) are used, followed by a QC in Pillar 5 based on a physical process model. The latter can
be seen as an internal single-observation DCDF using a DEM with its uncertainty to output as an
inundation extent with an uncertainty. This elaborated single-observation (an inundation extent) is
not a real DCDF as it is using only one single record and taking it to derive an uncertainty using
error propagation from the position accuracy, which is attached to the estimated extent for this single
observation. In the DCP, the “real” DCDF comes when “aggregating” the n estimations of inundation
extents once the QA of Figure 3 is performed for each of the n citizen’s captured data. This was done
by ensemble estimation, intersecting N times the n volunteer flood inundation extents estimated (each
time modulated from their own uncertainty) [26]. For this DCP workflow, the QA and DCDF are well
separated and so disentangled.

The Twitter example is more a DCP reducing to a DCDF, as the QA operated is mostly an a priori
QA, linked here to a wide selection of Tweets (Pillar 2). An a posteriori QA refining this selection
(Tweets with a potentially wrong GPS reading and semantic analysis that would fit in Pillar 7 and
Pillar 2) could also be taking place. This would result in a “cleaning” driven QA, i.e., in or out of the
dataset. Then the estimation of the inundation extent after the conflation of partial extents derived
from the selected Tweets would be performed. Thus no real entanglement and a more traditional
approach to selecting relevant data for the analysis is performed without a return to the qualification
of the initial data. This study was focused on checking retrospectively the potential validity of the
method of estimating the inundation extent from tweets and the hydrodynamic model [23]. In Figure 2,
the QA existing for the Twitter data example is a second selection of tweets from testing wrong GPS
readings and semantic analysis for the categorisation/elimination of some tweets [23]. The data life
cycle for the Flickr data example is similar to this latter in terms of the QA approach.
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for the User, the Observation, or the Authoritative data.

The Statistical Analysis Viewpoint

When performing a statistical analysis, the setting is more like a DCDF as we build estimates
by fitting functions on the basis of a collection of information. An a priori QA takes place as part of
the protocol to collect the data, but unlike a data cleaning step that does not retain the quality of a
record but either accepts, corrects, or rejects it, there is no qualifying of each observation or record a
posteriori. A hypothesis on the distribution(s) of the observations may belong to the QA environment,
but the classical hypothesis of independent identically distributed (i.i.d.) is not of ‘interest’ in QA
for crowdsourcing, assuming there exists ‘good’ and ‘bad’ quality data. The situation may be more
like an error measurement model with unequal variances and outlier detection. However, outlier
detection and change detection methods belonging to the statistical domain may be appropriate for a
range of QCs in Pillar 4 and Pillar 5. These QCs would validate a single observation (and quantify the
validation) as belonging to some authoritative data expectation without performing a DCDF per se,
thereby creating no entanglement.

The generic methodology of meta-analysis in medical statistics [42] is similar to a QA followed by
a DCDF approach. The purpose of a meta-analysis is to combine the results from a range of studies
on the same topic. Here, adding a quality based on the designs used, along with the confidence of a
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particular outcome estimated within each study, the meta-analysis computes a new bounded estimate
of that outcome with better power (i.e., “sensitivity index” or producer’s accuracy).

In general, within a statistical DCP approach, the semantic discourse about the QA and DCDF
entanglement can be illustrated statistically by the fact that when taking the measurement of the
volunteers as estimating the ‘truth’, the mean squared error is:

MSE = E[(yt − ŷt)
2] = bias(ŷt)

2 + var(ŷt), (1)

where the equation stands both for ŷt being the observation captured by one volunteer or the resulting
conflation of n volunteers; E(.) is the expectation operator. Optimising or evaluating the accuracy takes
both bias and precision into account, such that:

accuracy2 = bias2 + precision2, (2)

where (in)accuracy is the root mean squared error and precision is the standard error. The bias is
something with which DCDF is most concerned, and the precision comes first when looking at quality,
but both aspects are entangled in this equation. Crowdsourcing relies on a statistical property that
would assure that Equations (1) or (2) are well balanced (when using a so-called sufficient statistic),
according to the law of large numbers (as the sample size increases, the observed bias reduces and the
precision is divided by

√
n). This is an ideal situation when all sampling assumptions are met (i.i.d.).

In the VGI world, [19] it is concluded that for the LCA model applied to volunteers as raters, increasing
their sample size may not be the best solution in achieving high accuracy in estimating the land cover
classes (DCDF aspect), as a few well selected volunteers according to their uncertainty (producer’s
accuracy) could be better. This, raises a potential intrinsic entanglement issue due to the conditional
independence assumption in the LCA model. This constraint, independence of the raters conditionally
to the land cover classes, is not verified for example when «easy land cover type» are correctly labelled
by all but «hard ones» being labeled correctly only by few. Note that in citizen science a smaller sample
size will be expected than in crowdsourcing but usually with better quality (influence of the a priori
QA) and/or with a lot more information as measurements, i.e., collecting more variables that could
help reduce the uncertainty.

5. Final Comments and Conclusions

Designers of scientific studies that make use of citizen volunteers to collect data face a difficult
challenge; credibility comes with being able to critically identify the characteristics of the whole
data curation process. Within this context, Quality Assurance (QA) and Data Conflation or Data
Fusion (DCDF) are two processes that need greater attention with respect to defining their role and
analysing their combined use. QA concerns how data meets a set of requirements, whereas DCDF is
the modelling task that derives a new product or result. Through investigating the conditions that
can often make these two processes entangled, this paper advocates for their separation as the goal
of any data curation design. Even though the usability, one or more reports in the metadata, drives
the need to assess several other quality elements, these quality elements should, as much as possible,
be evaluated without being “entangled” with the DCDF (seen as the future usage). Striving to achieve
this goal will enhance the understanding of the limits of each of these processes in acquiring evidence
and confidence in the data for the designed study.

When designing the whole curation process, a conceptual approach that considers the various
facets of entanglement in modelling and authoring the respective workflows would increase control
for (re-)usability. By providing increased flexibility, greater complexity can be achieved, thereby
enabling more effective use of crowdsourcing and volunteered or citizen derived geographical
information. To this end, a metaquality service orchestrating the interrelation of the QA and the
DCDF workflows could constitute a feedback interface to the scientist and decision-maker organising
the data management requirements and new data collection surveys.
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Dis-entanglement of QA and DCDF appeared beneficial on a rhetorical basis using two illustrative
examples of land cover validation and flood extent estimation, but this could become particularly
useful when considering that data flows are becoming more continuous, forcing regular updates in the
data quality and in the conflated data. As citizen science data may act as timely evidence for various
decisions, including environmental policy, it is only with good management of data and metadata,
and particularly data quality, that citizen science data can fulfil its role of empowering citizens [2,43].
With the rise of the Internet of Things and embedded sensors, citizen science can maximise its impact
from its human dimension only if its data curation is not questionable and is at least transparent.
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