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Abstract: Mangroves are valuable contributors to coastal ecosystems, and remote sensing is
an indispensable way to obtain knowledge of the dynamics of mangrove ecosystems. Due to the
similar spectral features between mangroves and other land cover types, challenges are posed since
the accuracy is sometimes unsatisfactory in distinguishing mangroves from other land cover types
with traditional classification methods. In this paper, we propose a classification method named the
multi-feature joint sparse algorithm (MF-SRU), in which spectral, topographic, and textural features
are integrated as the decision-making features, and sparse representation of both center pixels and
their eight neighborhood pixels is proposed to represent the spatial correlation of neighboring pixels,
which can make good use of the spatial correlation of adjacent pixels. Experiments are performed
on Landsat Thematic Mapper multispectral remote sensing imagery in the Zhangjiang estuary in
Southeastern China, and the results show that the proposed method can effectively improve the
extraction accuracy of mangroves.
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1. Introduction

Remote sensing technology has been widely used in various fields, such as military, agriculture,
forestry, environmental monitoring, geology, and so on [1]. With the rapid development of remote
sensing technology, the spectral resolution, temporal resolution, and spatial resolution of remote
sensing images have been greatly improved. Mangroves [2,3] are a precious type of woody plant which
grow in tropical and subtropical coastal areas. Due to the continuous expansion of human habitats,
the area of mangroves is decreasing. The detection and analysis of the distribution of mangroves are
important for their protection. Due to their special growth environment, remote sensing technology
now gives people a new way to map and monitor the dynamic change of mangroves. Classification
is the core issue in the application of mangrove remote sensing images. In classification, there are
two main methods: supervised and unsupervised [4]. Remote sensing image classification methods
are mainly based on supervised methods, such as support vector machine (SVM) [5], maximum
likelihood method (ML) [6], and so on. In addition, a number of algorithms also have been proposed
for classification, such as the object-based remote sensing image analysis approach [7,8].

Due to the similar spectral features between mangroves and other vegetation, such as agricultural
land and forests, the phenomena of the “same object with the different spectrums” and “different
objects with the same spectrum” are widespread in spectral images. As a result, misclassification and
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leakage points are common, which leads to a low classification accuracy. It is significant to find new
ways to improve the classification accuracy of mangroves.

In recent years, sparse representation theory has aroused great concern. Wright et al. [9] first
proposed sparse representation classification (SRC) for face recognition applications. Recently, sparse
representation has been widely used in remote sensing image classification [10,11]. In classification,
SRC assumes that a pixel can be compactly represented by a few number of atoms (columns) in
an over-complete dictionary (redundant set) [12,13]. Since the remote sensing image usually has
many homogeneous regions, and its neighboring pixels around the regions are made up of the same
material [14], combining the spatial information of the four nearest neighbors, Chen et al. [15] proposed
a joint sparse representation classification (JSRC) method.

In this paper, we propose a multi-feature joint sparse method for the classification of mangrove
remote sensing images, which is nested somewhere between pixel-based and object-based approaches.
In this approach, in addition to spectral features, both geographical features and image features are
integrated as the decision-making features. The proposed sparse model considers not only the test pixel,
but also the similarity between the test pixel and the neighboring pixels. Finally, the experiments are
performed on Landsat Thematic Mapper (TM) multispectral remote sensing imagery in the Zhangjiang
estuary of Southeastern China. The results show that the proposed method can effectively improve the
classification accuracy of mangrove remote sensing imagery.

The rest of this paper is arranged as follows: Section 2 introduces the sparse representation
theory; the multi-feature joint sparse model for classification algorithm is presented in Section 3;
the experimental results are given in Section 4; and finally, the conclusions are summarized in Section 5.

2. Sparse Representation Classification

According to the basic theory of sparse representation, each pixel in the remote sensing image can
be represented by a linear combination of a few atoms in an over-complete dictionary. Let x ∈ RB be a
B-dimensional target pixel which belongs to class i, and D = [D1, D2, . . . , DN ] be an over-complete
dictionary which is consists of all the training samples of a total of N classes. The target pixel x can be
represented as:

x ≈ D1α1 + . . . + Diαi + . . . + DNαN =

[D1 . . . Di . . . DN ]︸ ︷︷ ︸
D

[α1 . . . αi . . . αN ]︸ ︷︷ ︸
α

T = Dα (1)

where α = [α1, α2, . . . , αN ] is the sparse coefficient matrix. For dictionary D, the sparse coefficient
matrix α in Equation (1) can be recovered by the following optimization problem:

∧
α = arg min‖x− Dα‖0 s.t ‖α‖0 ≤ L (2)

where Di is the sub-dictionary of the over-complete dictionary D associated with class i and the αi is
the sparse coefficient vector of class i. ‖•‖0 is l0 norm that represents the number of non-zero elements.
L denotes the sparseness. Considering the possible errors in the entire dataset, the l0 norm problem
can be solved approximately by the following equation:

∧
α = arg min‖x− Dα‖2 s.t ‖α‖0 ≤ L (3)

Equation (3) is an non-deterministic polynomial hard (NP-hard) problem (a certain number of
operations can be used to solve the problem that can be solved in polynomial time), and we usually
find an approximate solution with some methods. At present, the common methods include base
pursuit (BP) [16], orthogonal matching pursuit (OMP) [17], simultaneous orthogonal matching pursuit
(SOMP) [18], and so on. Once the sparse coefficient vector is obtained, we can label the target pixel x
by the minimal reconstructed residual. Equation (4) shows this:
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class(x) = arg min
i

ri(x)

= arg min
i
‖x− Di

∧
αi‖2

(4)

where ri(x) denotes the reconstructed residual corresponding to the class i.

3. Multi-Feature Joint Sparse Model for Classification

3.1. Feature Selection

Spectral features, geographical features, and image texture features are integrated to be the
decision-making features, which have been proven to be efficient for the classification of remote
sensing images [19]. The proposed method selects 12 features for each sample, which are composed
of the spectra of the TM image: band 1–band 5 and band 7, normalized difference vegetation index
(NDVI), digital elevation model (DEM), and four texture features based on the Gray-level co-occurrence
matrix (GLCM).

Mangroves have a special growth environment that is mainly distributed in intertidal zones,
which are constrained by topographic factors [20,21]. According to the integrated visual interpretation
of the field investigations, Google Earth, the TM, and the ASTER DEM images, we found that
mangroves were not distributed above 8 m elevation in the study areas. Therefore, the digital elevation
model (DEM) can be used to exclude non-mangrove pixels that have similar spectral attributes with
mangrove pixels, but were above the elevation limiting line.

NDVI represents the vegetation coverage index. The introduction of NDVI is also helpful to
distinguish between green vegetation and non-green vegetation. Deering [22] proposed the NDVI,
and it is defined as the ratio of the subtraction and addition of two bands, the near-infrared band and
the red band, within visible light:

NDVI =
NIR− R
NIR + R

(5)

where NIR denotes the reflection intensity of the near-infrared band and R denotes the reflection
intensity of the red band. When the vegetation coverage of the pixel is larger, the NDVI is higher.

Texture contains important information about the structural arrangement of the surface and its
relationship to the surrounding environment. Leen-Kiat Soh et al. formulated 10 features of GLCM
in [23]. The mean feature reflects the degree of rules of the image texture; the variance feature describes
non-homogeneous characteristics of the image, which means the variance characteristic statistic value
is small for the homogeneous region; the dissimilarity feature reveals the total amount of local gray
scale changes in images; the second moment feature represents the roughness of the texture [24]. When
mangroves are evenly distributed, their texture is fine and smooth, and their texture structure changes
little, while other green vegetation is coarse and rippled which lacks continuity on the image texture,
and the local change of texture structure is relatively large. This paper takes four of the features (mean,
variance, dissimilarity, and second moment) to be the texture features, which are experimentally
proven to be useful for mangrove classification. The gray-level co-occurrence matrix (GLCM) of NDVI
was generated by ENVI 4.5. ENVI is a software application used to process and analyze geospatial
imagery. It was developed by Exelis Visual Information Solutions (Exelis VIS) which is located in
Boulder, Colorado, USA.

In the texture calculation, we use a 3 × 3 moving window and take the average value of the four
directions (0◦, 45◦, 90◦, 135◦).

3.2. Joint Sparse Model Classification

The traditional sparse model considers only the features of each pixel itself, while ignoring the
spatial correlation between neighboring pixels. In the remote sensing image, neighboring pixels usually
belong to the same materials [25]. Hence, the joint sparse model considers the sparse representation of
both target pixels and their eight neighborhood pixels, as shown in Figure 1. The joint pixel matrix can
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be expressed as X = [x1, x2, .., x9], where the first pixel is the target pixel, and the rest of the columns
are the neighboring pixels around the target pixel. The comparison between sparse and joint sparse is
shown in Figure 2. Figure 2a shows the sparse model, and Figure 2b shows the joint sparse model.
The joint pixel X can be linearly represented by the over-complete dictionary:

X = [x1 x2 . . . xT ] = [Dα1 Dα2 . . . DαT ]

= D[α1, α2, .., αT ]︸ ︷︷ ︸
α

= Dα (6)

where T are neighbors in the spatial domain. For a given training sample dictionary D, the sparse
coefficient matrix α can be calculated though the following constraint problem:

α = arg min‖α‖row,0 s.t Dα = X (7)

where ‖α‖row,0 represents the numbers of non-zero rows of α. The solution of l0 norm is an NP-hard
problem. Due to the sparseness of α, the above problem can be solved approximately by Equation (8):

α = arg min‖α‖row,F s.t Dα = X (8)

where ‖•‖F denotes the Frobenius norm. In this paper, we use the simultaneous orthogonal matching
pursuit (SOMP) to solve Equation (8). When the sparse coefficient matrix is recovered, we can label the
target pixel x by the minimal reconstructed residual, shown by Equation (9):

class(xi) = arg min
i=1,..,N

ri(X)

= arg min
i=1,...,N

‖X− Diα
i‖F

(9)

where αi denotes the portion of the recovered sparse coefficient matrix α associated with class i.
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3.3. The Procedure of the Multi-Feature Joint Sparse Model

Under the constraint of the multi-feature joint sparse model, the classification result of the
proposed algorithm will achieve the best classification results when the sparsity L is set as one.
The K-SVD (K-Singular Value Decomposition) algorithm [26] is used to train the sample data of each
category in the proposed method. K-SVD is an iteration algorithm that alternates between sparse
coding based on the current dictionary and a process of updating the dictionary atoms to find a better
dictionary. It is found that, when the sub-dictionary size of each class is set as 100 and the number of
training iterations for each class sample is set as 50, the algorithm can obtain the optimal dictionary.
The computational complexity of the multi-feature joint sparse model algorithm (MF-SRU) method
depends on the processing of dictionary training and the calculating of the sparse coefficient. In this
case, the maximal complexity of training the dictionary is almost approaching into the O(n3), and the
calculating complexity of the sparse coefficient is O(B × n × T) (B: feature dimension, n: the number
of samples, T: the number of neighborhood pixels). Normally, B and T are smaller than the n value.
Therefore, the maximal complexity with the proposed method is considered as O(n3). The specific
steps of the MF-SRU method are described in Algorithm 1.

Algorithm 1: MF-SRU

Input: the set of labeled pixels X = {xi

∣∣∣xi ∈ RB, 1 ≤ i ≤ n} , number of classes N, sparsity level L, the
sub-dictionary di size K, and the number of iterations to train each class sample T0.
Output: l matrix, which records the labels of the all pixels.

(1) Use K-SVD algorithm to learn the dictionary D = [D1, D2, . . . , DN ] ∈ RB×N

For each pixel xi in the mangrove remote sensing image:
(2) Construct the joint pixel X = [x1, x2, .., x9] ∈ RB×9, where xi is the target pixel at the center of the

eight-pixel neighborhood;
(3) Use the SOMP algorithm to obtain the sparsity representation coefficients α of pixel xi by Equation (8);
(4) Compare the reconstructed residual ri to classify the labels by Equation (9);
(5) Continue to the next test pixel;

End For

4. Experimental Results and Analysis

In this section, we evaluate the effectiveness of the proposed algorithm by the following
experiments. The remote sensing data used in this experiments are derived from the LANDSAT
5 TM on 25 September 2006, which is the sampling of the Zhangjiangkou Mangrove Nature Reserve
in Fujian province. The mangrove area is one of the national key nature reserves, and the location is
22◦53′45”~23◦56′00” N; 117◦24′07”~117◦30′00” E, with a total area of 2360 hectares. According to field
investigation in the study area, the land cover types are defined as seven categories. Table 1 lists the
seven land cover types and their descriptions.

Table 1. Land-cover types in classification.

Class Name Land-Cover Class Description

C1 Mangroves Mangrove forests
C2 Upland vegetation Deciduous or evergreen forest land, orchards, and tree groves
C3 Urban areas Residential, commercial, industrial and other developed land
C4 Water Permanent open water, lakes reservoirs, bays, and estuaries
C5 Littoral zone Land in the intertidal zone or the transitional zone
C6 Fallow land Fields no longer under cultivation
C7 Agricultural land Crop fields, paddy fields, and grasslands

In the experiments, 100 points of each land cover type are selected randomly to be the labeled
training samples and the K-SVD algorithm is used to train each class sample. All the experiments are
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conducted by using MATLAB R2013a on a 3.30 GHz machine with 8 GB RAM. The false color composite
of the Zhangjiangkou Mangrove Nature Reserve TM image is shown in Figure 3a. Figure 3b–d show
the classification results of different algorithms, Figure 3b shows the joint sparse representation model
algorithm based on spectrum features (SRU); Figure 3c shows the multi-feature support vector machine
(MF-SVM); Figure 3d shows the multi-feature joint sparse model algorithm (MF-SRU).
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estuary of Southeastern China on 25 September 2006. Classified images derived from (b) SRU,
(c) MF-SVM, and (d) MF-SRU.

After investigating and interpreting, we found that all three methods can obtain better
classification results for water and littoral zones. For the other five land cover categories, SRU and
MF-SVM have heavy misclassification and leakage points. All three methods are able to identify the
major mangrove areas, but a large number of samples of agricultural land and upland vegetation
are wrongly identified as mangroves in SRU and MF-SVM. It seems that MF-SRU is more capable of
differentiating the mangroves from other classes, and it can achieve better results visually.

A confusion matrix is a very effective way to assess the accuracy, in that the accuracy of each
category is plainly described along with both the errors of inclusion (commission errors) and errors
of exclusion (omission errors) presented in the classification. We use a confusion matrix, the overall
accuracy, and the kappa coefficient to evaluate the classification performance of the algorithms. By field
sampling and high-resolution imagery, we take 200 samples randomly for each land cover category as
the ground truth samples to build the confusion matrices. The confusion matrices for classification
results of the three algorithms are listed in Table 2. Overall accuracy, kappa coefficients, and the
commission and omission errors are shown in Tables 3 and 4.
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Table 2. Comparison of the confusion matrices.

Class SRU MF-SVM MF-SRU

C1 C2 C3 C4 C5 C6 C7 Total C1 C2 C3 C4 C5 C6 C7 Total C1 C2 C3 C4 C5 C6 C7 Total

C1 180 20 0 0 0 0 19 219 182 0 0 0 0 0 63 245 183 0 0 0 0 0 36 219
C2 5 102 0 0 0 5 41 153 0 194 0 0 0 31 0 225 2 192 0 8 0 30 0 232
C3 0 12 192 0 0 14 0 218 0 0 170 0 0 15 0 185 0 0 192 0 0 9 0 201
C4 0 0 0 198 5 0 0 203 0 0 0 200 3 0 0 203 0 0 0 192 5 0 31 228
C5 1 0 0 2 195 0 25 223 0 0 0 0 197 0 2 199 0 0 0 0 195 0 1 196
C6 0 2 8 0 0 140 0 150 0 6 28 0 0 154 0 188 0 8 8 0 0 161 0 177
C7 14 64 0 0 0 41 115 234 18 0 2 0 0 0 135 155 15 0 0 0 0 0 132 147

Total 200 200 200 200 200 200 200 1400 200 200 200 200 200 200 200 1400 200 200 200 200 200 200 200 1400

Table 3. Comparison of the overall accuracy and kappa coefficients.

SRU MF-SVM MF-SRU

Overall/% 80.1 88.0 89.1
Kappa 0.768 0.860 0.873

Table 4. Comparison of commission and omission errors.

Class
SRU MF-SVM MF-SRU

Com/% Omi/% Com/% Omi/% Com/% Omi/%

C1 19.5 10.0 31.5 9.0 18.0 8.5
C2 25.5 49.0 15.5 3.0 20.0 4.0
C3 13.0 4.0 7.5 15.0 4.5 4.0
C4 2.5 1.0 1.5 0.0 18.0 4.0
C5 14.0 2.5 1.0 1.5 0.5 2.5
C6 5.0 30.0 17.0 23.0 8.0 19.5
C7 59.5 42.5 10.0 32.5 7.5 34.0

The similarity of spectral features among the upland vegetation, agricultural land, and mangroves
leads to serious misclassification and leakage points. Both Figure 3 and Table 2 show that multi-feature
fusion can greatly reduce the misidentification phenomenon of mangroves. Table 3 shows that the
proposed MF-SRU method yields the best overall accuracy and kappa coefficient. Relative to the sparse
representation classification algorithm based on spectral feature, MF-SRU classification accuracy and
the kappa coefficient were increased by 9% and 0.1 respectively, which means DEM, GLCM textures,
and NDVI features could result in better classification. Additionally, compared with the traditional
remote sensing image classification algorithm, SVM, based on a multi-feature model (MF-SVM), the
overall accuracy and kappa coefficient of the proposed method were increased by 1%, which means
the SRU algorithm could result in better classification. Table 4 shows that the MF-SRU algorithm yields
the lowest mangrove commission and omission errors. In other words, it has the highest recognition
rate and the lowest error rate of mangroves. Relative to the SRU algorithm, the MF-SRU method’s
mangrove commission and omission errors were reduced by 1.5%, and compared with MF-SVM,
the proposed method’s mangrove commission and omission errors were reduced by 13.5% and 0.5%,
respectively. The experiment proves that the proposed method can improve the extraction accuracy of
mangroves effectively.

5. Conclusions

This paper has presented a multi-feature joint sparse model (MF-SRU) method for remote sensing
images. The MF-SRU optimization problem is solved by the simultaneous orthogonal matching
pursuit (SOMP) algorithm. Some of the advantages of the proposed MF-SRU method are as follows:
First, the model considers the spectral features, NDVI, DEM, and texture features of each pixel;
second, the classifier based on joint sparse representation takes full account of the spatial similarity
of neighboring pixels. The experimental results show that the proposed method can achieve a
competitive classification effect, while in the future work, the proposed MF-SRU algorithm could still
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be further improved in some aspects; for example, assigning a different weight of different neighboring
pixels according to the similarity between the test pixel and the neighboring pixels, learning a more
compact dictionary, and designing a fast sparse representation classification method to reduce the
computational complexity.
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