
 International Journal of

Geo-Information

Review

Analysis and Applications of GlobeLand30: A Review

Jun Chen 1,*, Xin Cao 2,3, Shu Peng 1 and Huiru Ren 1

1 National Geomatics Center of China, Beijing 100830, China; pengshu@nsdi.gov.cn (S.P.);
renhr.12b@igsnrr.ac.cn (H.R.)

2 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University,
Beijing 100875, China; caoxin@bnu.edu.cn

3 Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal
University, Beijing 100875, China

* Correspondence: chenjun@nsdi.gov.cn; Tel.: +86-10-6388-1088

Academic Editor: Wolfgang Kainz
Received: 16 May 2017; Accepted: 17 July 2017; Published: 27 July 2017

Abstract: GlobeLand30, donated to the United Nations by China in September 2014, is the first
wall-to-wall 30 m global land cover (GLC) data product. GlobeLand30 is widely used by scientists and
users around the world. This paper provides a review of the analysis and applications of GlobeLand30
based on its data-downloading statistics and published studies. An average accuracy of 80% for
full classes or one single class is achieved by third-party researchers from more than 10 countries
through sample-based validation or comparison with existing data. GlobeLand30 has users from
more than 120 countries on five continents, and from all five Social Benefit Areas. The significance of
GlobeLand30 is demonstrated by a number of published papers dealing with land-cover status and
change analysis, cause-and-consequence analysis, and the environmental parameterization of Earth
system models. Accordingly, scientific data sharing in the field of geosciences and Earth observation
is promoted, and fine-resolution GLC mapping and applications worldwide are stimulated. The
future development of GlobeLand30, including comprehensive validation, continuous updating, and
monitoring of sustainable development goals, is also discussed.

Keywords: global land cover; analysis; accuracy; status and change; cause and consequence;
sustainable development goals

1. Introduction

Land cover refers to the biophysical material over the surface of the Earth and immediate
sub-surfaces and man-made structures [1]. In the last three centuries, and particularly the past few
decades, humans have extensively modified the Earth’s land cover because of continuing population
and economic growth. Although these changes enabled the provision of critical material goods
or resources (i.e., food, fiber, shelter, and freshwater) for immediate human needs, they have also
undermined environmental conditions, ecosystem services, and human welfare in the long run [2–4].
For example, the expansion of cropland or urbanization at the cost of forests results in an increase of
atmospheric carbon dioxide or urban heat islands [5]. Moreover, land cover changes have significant
impacts on ecosystem structures and functioning, greenhouse gases (GHG) emissions, continental and
global atmospheric circulation, nutrient and hydrological cycles, biogeo-chemical cycles, as well as
biodiversity [4,5]. Reducing negative impacts of land cover change on our planet while sustaining the
production of essential resources has become a major concern and challenge for policy-makers and the
scientific community around the world [2,6,7].

Land cover and change information is fundamental for understanding the state, trends, drivers,
and impacts of different land activities on social and natural processes, as well as designing
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transformations towards sustainable development [8–10]. A number of global land cover (GLC)
datasets had been developed and used in environmental change studies, Earth system simulation,
sustainable development, and many other areas [11–13]. These applications can be classified into three
groups. The first is generic statistical analysis, which derives spatially-referenced and quantitative
information from the land cover datasets, including acreage statistics and geographic distribution (i.e.,
the extent and patterns), magnitude and type of change (i.e., expansion, shrinkage or intensification,
actual areas altered) [4,14]. Such studies provide insight into the state, patterns, and changes of the
main land cover classes. The second group addresses how the land cover pattern forms, that is, global
divergence of artificial surface [15] and local urban expansion patterns [16], as well as how the land
cover change affects the environment, such as the evaluation of ecosystem services [17,18], estimates of
carbon dioxide evasion [19], impact on the terrestrial water cycle [20], and so on. The third incorporates
land cover information into earth system models to simulate the climate, biological, geochemical
processes, as well as to forecast future environmental conditions and their consequences [4,6].

Reliable GLC data at higher spatial, temporal, and thematic resolutions is the key to success for
many applications. Previous coarse spatial resolution (300 m–1 km) GLC datasets did not provide
sufficient spatial and thematic details of land activities, and has limited their usability in both scientific
analysis and forecasting, policy debate, and political decisions [21,22]. Given the free availability
of Landsat and similar resolution satellite data, a few 30 m GLC datasets had been developed and
released in the past few years, including a decadal-scale global forest cover change data [23], and
a wall-to-wall GLC data product (GlobeLand30) that shows change in ten land cover types and ten
years [24]. These 30 m GLC datasets provide more details of land cover patterns, permit the detection
of land cover change at the scale of most human land activities, and enable a better understanding
of landscape heterogeneity, as well as increase the performance of modeling and simulations [14,21].
They have stimulated the analysis and application of land cover and change in the past few years.

This paper takes GlobeLand30 as an example to review the state-of-the-art of the analysis and
applications of the 30 m GLC datasets and to discuss the future directions. Section 2 provides a
brief introduction of GlobeLand30 data product and its accuracy analysis. The user distribution and
application fields of GlobeLand30 are analyzed in Section 3. Section 4 presents three different types
of applications, including status and change analysis, cause and consequence analysis, and coupling
analysis with models. Section 5 discusses the future development and application of GlobeLand30.

2. GlobeLand30 and Accuracy Analysis

2.1. Data Product

GlobeLand30 is an open-access 30 m resolution global land cover data product that was developed
by the National Geomatics Center of China [25]. It comprises ten land cover types, including
water bodies, wetlands, artificial surfaces, cultivated lands, forests, shrublands, grasslands, and
barren lands (Figure 1), for the years 2000 and 2010. The codes and definition of the ten classes
are listed in Table 1. They were extracted from more than 20,000 Landsat and Chinese HJ-1
satellite images with a pixel-object-knowledge (POK)-based operational mapping approach, and
an overall classification accuracy of over 80% was achieved [24,26]. On 22 September, China donated
GlobeLand30 to the United Nations (UN) as a contribution towards global sustainable development
and combating climate change [27]. The GlobeLand30_2010 products were registered at DOI system as
DOI:10.11769/GlobeLand30_2010.db, as well as the Global Land Surface Water and Artificial Surface
Covers registered as DOI:10.3974/db.2014.02.01 and DOI:10.3974/db.2014.02.02, respectively.
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Figure 1. Map of GlobeLand30 (2010). 

Table 1. Classification, codes, and definition of each land cover type of GlobeLand30. 

Code Type Definition 

10 Cultivated land 
Land used for agriculture, horticulture and gardens, including paddy fields,  

irrigated and dry farmland, vegetable and fruit gardens, etc. 

20 Forest Land covered by trees, vegetation covers over 30%, including deciduous and coniferous 
forests, and sparse woodland with cover 10–30%, etc.  

30 Grassland Land covered by natural grass with cover over 10%, etc. 

40 Shrub land Land covered by shrubs with cover over 30%, including deciduous and evergreen shrubs, 
and desert steppe with cover over 10%, etc.  

50 Wetland 
Land covered by wetland plants and water bodies, including inland marsh, lake marsh, 
river floodplain wetland, forest/shrub wetland, peat bogs, mangrove and salt marsh, etc. 

60 Water bodies Water bodies in land area, including river, lake, reservoir, fish pond, etc. 

70 Tundra 
Land covered by lichen, moss, hardy perennial herb and shrubs in the polar regions, 

including shrub tundra, herbaceous tundra, wet tundra, and barren tundra, etc. 

80 Artificial 
Surfaces 

Land modified by human activities, including all kinds of habitation, industrial and mining 
area, transportation facilities, and interior urban green zones and water bodies, etc. 

90 Bare land 
Land with vegetation cover lower than 10%, including desert, sandy fields, Gobi,  

bare rocks, saline and alkaline land, etc. 

100 
Permanent 

snow and ice Lands covered by permanent snow, glacier and icecap. 

GlobeLand30 data adopts raster data format for storage, with the non-destructive GeoTIFF 
compression format and the 256-color 8-bit indexed pattern. The WGS84 coordinate system, UTM 
projection and six-degree zoning are adopted. GlobeLand30 is organized into data tiles following 
two different latitude situations, that is, a size of 5° (latitude) × 6° (longitude) within the area of 60° N 
and 60° S, and a size of 5° (latitude) × 12° (longitude) within the area of 60° to 80° degrees north and 
south of the equator. A total of 853 data tiles cover the world in total, as shown in Figure 2. 

Figure 1. Map of GlobeLand30 (2010).

Table 1. Classification, codes, and definition of each land cover type of GlobeLand30.

Code Type Definition

10 Cultivated land Land used for agriculture, horticulture and gardens, including paddy fields,
irrigated and dry farmland, vegetable and fruit gardens, etc.

20 Forest Land covered by trees, vegetation covers over 30%, including deciduous
and coniferous forests, and sparse woodland with cover 10–30%, etc.

30 Grassland Land covered by natural grass with cover over 10%, etc.

40 Shrub land Land covered by shrubs with cover over 30%, including deciduous and
evergreen shrubs, and desert steppe with cover over 10%, etc.

50 Wetland
Land covered by wetland plants and water bodies, including inland marsh,

lake marsh, river floodplain wetland, forest/shrub wetland, peat bogs,
mangrove and salt marsh, etc.

60 Water bodies Water bodies in land area, including river, lake, reservoir, fish pond, etc.

70 Tundra
Land covered by lichen, moss, hardy perennial herb and shrubs in the polar

regions, including shrub tundra, herbaceous tundra, wet tundra, and
barren tundra, etc.

80 Artificial Surfaces
Land modified by human activities, including all kinds of habitation,

industrial and mining area, transportation facilities, and interior urban
green zones and water bodies, etc.

90 Bare land Land with vegetation cover lower than 10%, including desert, sandy fields,
Gobi, bare rocks, saline and alkaline land, etc.

100 Permanent snow
and ice Lands covered by permanent snow, glacier and icecap.

GlobeLand30 data adopts raster data format for storage, with the non-destructive GeoTIFF
compression format and the 256-color 8-bit indexed pattern. The WGS84 coordinate system, UTM
projection and six-degree zoning are adopted. GlobeLand30 is organized into data tiles following two
different latitude situations, that is, a size of 5◦ (latitude) × 6◦ (longitude) within the area of 60◦ N
and 60◦ S, and a size of 5◦ (latitude) × 12◦ (longitude) within the area of 60◦ to 80◦ degrees north and
south of the equator. A total of 853 data tiles cover the world in total, as shown in Figure 2.
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Figure 2. Data tiles of GlobeLand30. 

2.2. Accuracy Analysis 

The accuracy of GlobeLand30 had been evaluated by third-party researchers from more than 
ten countries for its all classes or one single class via sample-based validation or comparison with 
existing land cover products [28–30]. At the country/region level, a satisfactory overall accuracy was 
estimated as 82.4% for China [31], 80% for Italy [29], 77.90% for all of Iran [14], 80.1% for Nepal [32], 
and 89.7% for Kyiv Oblast, Ukraine [33]. Yang et al. [31] evaluated the accuracy of seven land cover 
products over China, namely, International Geosphere-Biosphere Program Data and Information 
System’s land cover dataset (IGBP DISCover), The University of Maryland land cover dataset 
(UMD), Global Land Cover 2000 dataset (GLC2000) from the European Commission’s Joint Research 
Center (JRC), Moderate Resolution Imaging Spectroradiometer (MODIS) land cover products 
MOD12Q1 and MCD12Q1, Global Map–Global LC (GLCNMO) dataset from the International 
Steering Committee for Global Mapping, Climate Change Initiative land cover dataset (CCI-LC) 
from European Space Agency (ESA), and GlobeLand30; they found that GlobeLand30-2010 has the 
highest overall accuracy (82.4%). Arsanjani et al. [28] reported that GlobeLand30 has high 
agreements with CORINE (92.52%), Urban Atlas (85.43%), OpenStreetMap (74.24%), and ATKIS 
(85.23%) in Germany. Mozak [34] found that GlobeLand30 product overlap with a degree of 77% 
with GLC-Share product in Continental Portugal. However, a lower overall accuracy with 46% for 
the GlobeLand30-2010 was found in Central Asia, that is, Kazakhstan, Tajikistan, Turkmenistan, 
Uzbekistan, and Kyrgyzstan [35]. The major classification error might originate from the confusion 
between bare land and grassland [33,36] because of discrepancies of land cover type definitions. 
Table 2 lists the accuracy assessment results for GlobeLand30 in the literature. 

Accuracy assessment has also been conducted for certain single land cover types of 
GlobeLand30. Manakos et al. [30] found that land surface water of GlobeLand30 overlaps 91.9% of 
the reference data in Thessaly, Greece, whereas the coarser-resolution products are restricted to 
lower accuracies. Lu et al. [37] compared cropland class of five global cropland datasets in circa 2010 
of China, including GlobeLand30, Finer Resolution Observation and Monitoring GLC dataset 
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[38] evaluated the accuracy of cropland for GlobeLand30, MODIS land cover product, GlobCover2009, 
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2.2. Accuracy Analysis

The accuracy of GlobeLand30 had been evaluated by third-party researchers from more than
ten countries for its all classes or one single class via sample-based validation or comparison with
existing land cover products [28–30]. At the country/region level, a satisfactory overall accuracy was
estimated as 82.4% for China [31], 80% for Italy [29], 77.90% for all of Iran [14], 80.1% for Nepal [32],
and 89.7% for Kyiv Oblast, Ukraine [33]. Yang et al. [31] evaluated the accuracy of seven land cover
products over China, namely, International Geosphere-Biosphere Program Data and Information
System’s land cover dataset (IGBP DISCover), The University of Maryland land cover dataset (UMD),
Global Land Cover 2000 dataset (GLC2000) from the European Commission’s Joint Research Center
(JRC), Moderate Resolution Imaging Spectroradiometer (MODIS) land cover products MOD12Q1 and
MCD12Q1, Global Map–Global LC (GLCNMO) dataset from the International Steering Committee
for Global Mapping, Climate Change Initiative land cover dataset (CCI-LC) from European Space
Agency (ESA), and GlobeLand30; they found that GlobeLand30-2010 has the highest overall accuracy
(82.4%). Arsanjani et al. [28] reported that GlobeLand30 has high agreements with CORINE (92.52%),
Urban Atlas (85.43%), OpenStreetMap (74.24%), and ATKIS (85.23%) in Germany. Mozak [34] found
that GlobeLand30 product overlap with a degree of 77% with GLC-Share product in Continental
Portugal. However, a lower overall accuracy with 46% for the GlobeLand30-2010 was found in
Central Asia, that is, Kazakhstan, Tajikistan, Turkmenistan, Uzbekistan, and Kyrgyzstan [35]. The
major classification error might originate from the confusion between bare land and grassland [33,36]
because of discrepancies of land cover type definitions. Table 2 lists the accuracy assessment results for
GlobeLand30 in the literature.

Accuracy assessment has also been conducted for certain single land cover types of GlobeLand30.
Manakos et al. [30] found that land surface water of GlobeLand30 overlaps 91.9% of the reference
data in Thessaly, Greece, whereas the coarser-resolution products are restricted to lower accuracies.
Lu et al. [37] compared cropland class of five global cropland datasets in circa 2010 of China, including
GlobeLand30, Finer Resolution Observation and Monitoring GLC dataset (FROM-GLC), GlobCover,
MODIS Collection 5, and MODIS Cropland. The results showed that the overall accuracy of cropland
of GlobeLand30 is 79.61%, which is highest in the five products. Chen et al. [38] evaluated the accuracy
of cropland for GlobeLand30, MODIS land cover product, GlobCover2009, and FROM-GLC in Shaanxi,
China, and the overall accuracy for GlobeLand30 is 80.63%.
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Table 2. Examples of accuracy evaluation of GlobeLand30 from published articles.

Scale Region Classes for Evaluation Accuracy References

Sub-continental
Central Asia 10 classes 46.0% Sun et al., 2016 [35]
East Africa Cropland 83.1% Jacobson, 2015 [39]

National

China 10 classes 82.4% Yang et al., 2017 [31]
Iran 10 classes 77.9% Arsanjani et al., 2016b [28]
Italy 10 classes 80.0% Brovelli et al., 2015 [29]

Nepal 10 classes 80.1% Cao et al., 2016 [32]
Portugal 10 classes 77.0% Mozak, 2016 [34]

China Cropland 79.6% Lu et al., 2016 [40]
China Forest 87.0% Wang et al., 2015 [41]

Regional

Siberia, Russia 10 classes 86.9% Zhang et al., 2015a [42]
Kyiv Oblast, Ukraine 10 classes 89.7% Kussul et al., 2015 [33]

Henan Province, China 10 classes 81.5% Ma et al., 2016 [43]
Thessaly, Greece Water 91.9% Manakos et al., 2015 [30]

Shaanxi province, China Cropland 80.6% Chen et al., 2017 [44]

3. User Analysis

3.1. Geographical Distribution

GlobeLand30 has been downloaded by more than 7000 users since its release for open access
in 2014. Over 5000 users are registered in the GlobeLand30 data platform [25]. The other
users downloaded data from Global Change Research Data Publishing and Repository [45]. The
downloading frequency of GlobeLand30 data tiles is shown in Figure 3, where the darker color
represents the higher downloading frequency, and the areas with slashes represent the countries
with registered users. Higher downloading is concentrated in developing countries (such as those in
Africa and Asia), thereby accounting for over 72%. Kenya, Tanzania, and Uganda have the highest
downloading frequencies in Africa. The areas with the highest frequencies in Asia are in South and
South East Asia, especially in India, Pakistan, Nepal, Myanmar, Thailand, and Laos. One reason might
be the limited high quality and open access land cover datasets in these areas. The other reason is that
some of these areas are of interest or are hot spots. For examples, GlobeLand30 datasets have been
used to land cover studies, and disaster mapping and assessment in Nepal and Myanmar [15,46,47].
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As of April 2017, users from over 120 countries have downloaded GlobeLand30. The top ten
countries with the most user numbers are China, the U.S., India, the UK, Germany, Canada, France,
Brazil, The Netherlands, and Russia. Most of the users come from universities, research institutions,
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and government departments. More specifically, more than half of users are from the laboratories of
universities, such as Harvard University, Princeton University, the University of Heidelberg, Peking
University, and so on. One in every four users of GlobeLand30 are from scientific research institutions,
such as the Joint Research Centre of the European Commission, the Institute for Global Environmental
Strategies, the Helmholtz-Centre Potsdam-German Research Centre for Geosciences, and so on. Many
UN agencies and non-governmental organizations are also users of GlobeLand30. For example,
the UN Field Operation Department has used GlobeLand30 to assist the analysis and development
of peacekeeping action plans in 18 countries. The UN Economic and Social Commission for Asia
and the Pacific used GlobeLand30 to support drought management and land degradation. The UN
Environment Programme’s World Conservation Monitoring Centre (UNEP-WCMC) used GlobeLand30
for the land cover analysis for the protected areas worldwide.

3.2. Application Fields

GlobeLand30 data has been widely used in a number of Social Benefits Areas (SBAs), including
climate change adaptation, biodiversity and ecosystem sustainability, disaster resilience, energy
and mineral resources management, food security and sustainable agriculture, infrastructure and
transportation management, public health surveillance, sustainable urban development, water
resources management, and so on. Table 3 summarizes its applications in these SBAs based on
the user registration information. The biodiversity and ecosystem is the largest application area and
comprises over 26% in all research areas. The second largest application area of GlobeLand30 is
sustainable urban development, accounting for nearly 16% of all applications. The applications in
disaster resilience, food security and sustainable, and water resources management have proportions
of over 10%.

Table 3. Major application fields of GlobeLand30.

Research Fields Proportion of
Each Field University Institute Government NGO UN Other

Climate Change 7.51% 38.62% 31.29% 7.32% 9.32% 3.06% 10.39%
Biodiversity and Ecosystem 26.94% 48.85% 32.26% 0.59% 3.19% 1.15% 13.96%

Disaster Resilience 13.69% 73.78% 10.30% 9.72% 1.68% 2.26% 2.26%
Energy and Mineral

Resources Management 5.33% 29.46% 29.46% 20.64% 4.32% 0.00% 16.14%

Food Security and
Sustainable Agriculture 10.09% 48.86% 16.25% 3.87% 12.39% 6.24% 12.39%

Infrastructure and
Transportation
Management

3.84% 48.96% 26.56% 2.08% 12.24% 0.00% 10.16%

Public Health Surveillance 4.06% 40.39% 38.67% 3.94% 5.67% 5.67% 5.67%
Sustainable Urban

Development 15.98% 64.21% 19.59% 6.38% 2.44% 1.00% 6.38%

Water Resources
Management 12.53% 59.38% 19.39% 7.50% 1.84% 0.64% 11.25%

Proportion of each
organization

100.00%
(Sum) 53.88% 23.81% 5.72% 4.62% 1.96% 10.02%

Note: The italic figures mean the relative proportion of each organization in this research filed, and the sum of each
line is 100%.

The number of users from universities and institutes has exceeded 75% of all users. Roughly 60%
of applications of GlobeLand30 in laboratories of universities are found in biodiversity and ecosystem,
energy and mineral resources management, and sustainable urban development. One of the reasons
for this use is the ability of the 30 m land cover dataset to represent ecologically-relevant features
at multiple spatial scales, thereby making it a powerful tool for studying ecological environment
distributions [48]. Beijing Normal University used GlobeLand30 to analyze the impacts of land cover
change on ecosystem service values over a 10-year period and summarized that the negative impacts
of urban expansion on ecosystem services can be offset by positive changes to natural landscapes,
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because a change in ecosystem service value depends on the interaction of changes of various land
cover types over time [49]. Given that reliable information on cities’ changes at a global scale will
become increasingly important with climbing urban populations [50], Peking University investigated
the spatial-temporal variation of habitat quality patterns of Beijing-Tianjin-Hebei area based on the
analysis of GlobeLand30 from 2000 to 2010 [51].

Many research institutions have used GlobeLand30 for biodiversity and ecosystem, sustainable
urban development, water resource management, and climate change. For instance, the National
Geomatics Center of China analyzed the distribution of built-up areas, change rate, and increased
proportion on a global scale by GlobeLand30 [52]. The National Climate Center of China used
GlobeLand30 as a basic input parameter in the Beijing Climate Center Climate System Model
(BCC_CSM) to assess the effects of land cover dataset on land surface and climate simulations [53].

Government departments mainly used GlobeLand30 for analysis and research in disaster
resilience, energy and mineral resources management, and sustainable urban development. Most
applications in Non-Governmental Organizations (NGOs) and the UN are food security and sustainable
agriculture, biodiversity and ecosystem sustainability, and public health surveillance. Timely and
accurate geographic information on the global cropland extent is critical for applications in the fields of
food security and agricultural monitoring. Thus, Waldner et al. [54] advocated for a shared definition
of cropland, as well as validation datasets that are relevant for the agricultural class by studying
different land cover data.

4. Application Analysis

GlobeLand30 provides useful information with higher spatial resolution for different research
fields. These include quantifying land use for each watershed in Panamanian drainage basins [55];
identifying types of sampling sites based on the hydrology and land-use characteristics to monitor
contaminants in river sediments [46–57], discriminating fire types from MODIS active fire products,
such as forest fire, grassland fire, agricultural burning and so on [58]; assessing flooded arable land of
a major flood in Myanmar [46]; selecting eddy-covariance flux towers with relatively homogenous
land cover in the light use efficiency models to simulate GPP [59]; analyzing habitat of bats in Lao PDR
and Cambodia [60–62]; and providing validation sources to evaluate the classification performance of
the water body extraction from MODIS eight-day products [62]. In particular, GlobeLand30 data has
been used to derive useful information about the status and change of land cover, to examine their
causes and consequence analysis, and to explore future development scenarios.

4.1. Status and Change Analysis

The status and change of land cover at global, regional or local scales has been studied using
GlobeLand30 and with spatial statistical analysis approaches. At the global scale, Cao et al. [63] used
GlobeLand30’s water layer data to analyze the distribution of global open water and change from 2000
to 2010. Two indicators, namely, water body percentage and the coefficient of spatial variation, were
calculated to reflect the characteristics of spatial distribution pattern and dynamic change for global
open water resources. Results show that the total area of land surface water is roughly 3.68 million km2

(2010), which occupies 2.73% of the Earth’s land surface. Similarly, Chen et al. [52] calculated global
artificial surface areas at country and continental scales, and analyzed its change between 2000 and
2010. The result shows that the total area of the global built-up areas is 1.1875 million km2 in 2010,
covering 0.88% of the total area of the global land surface; the area of global built-up areas increased to
57,400 km2 with the variation rate of 5.08% from 2000 to 2010. China and the United States are the top
two countries with the largest increased built-up areas, which account for roughly 50% of that of the
global total. In addition, 50.26% of the total increased built-up areas comes from arable land.

Areas, landscape indexes, and conversion matrix were used to analyze the status and change
of land covers at the country/regional scale. Putrenko [64] calculated the Shannon index from
GlobeLand30 to reveal the diversity of land cover types in administrative regions of Ukraine.
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Yang et al. [65] derived the conversion matrix, change rate, and landscape indices from GlobeLand30
to analyze land cover change, especially the loss of cultivated land for the Bohai Rim, China between
2000 and 2010. Results indicate that cultivated land obviously reduced and was mainly converted to
artificial surfaces, grasslands, water, and forests in this region, and the fragmentation of cultivated
land increased. Cao et al. [32] calculated and compared the areas of forest, shrub, grassland, wetland,
cropland, artificial surface, bare land and ice/snow in GlobeLand30 and a new NepalCover-2010.
The landscape indices were used to demonstrate the spatial pattern of land cover types.

At the local scale, landscape metrics were derived from GlobeLand30 to quantify the landscape
structure and to reveal the spatial details of land covers. Six landscape metrics are calculated for
25 cities in Yangtze River Delta, China from the artificial surface class of GlobeLand30, including total
urban area (CA), number of urban patches (NP), largest patch index (LPI), mean perimeter-area ratio
(PARA MN), mean Euclidean nearest neighbor distance (ENN MN), and traffic coupling factor (CF)
with a spatial pattern analysis program FRAGSTATS 4.2 [66,67]. These metrics were used to analyze
the relationship between urban forms and air quality. Chen, Zhu et al. [68] derived seven landscapes
from GlobeLand30 in Nanjing, China for each of the nine PM2.5 stations with radii of 0.5, 1.0, 2.0, 3.0,
4.0, 5.0, and 6.0 km and applied FRAGSTATS to compute the metrics, such as green cover, forest cover,
grassland cover, and edge length. These metrics were then used to quantify the spatiotemporal change
of PM2.5 concentration and its empirical relationship with vegetation and landscape structure.

4.2. Cause and Consequence Analysis

Global urban areas, croplands, and plantations have enlarged dramatically in recent years, and
have seriously impacted resources sustainability, food security, ecological diversity, and climate
change [2]. For example, clearing of tropical forests for cultivation or grazing is responsible for
12–26% of the total emissions of carbon dioxide to the atmosphere [69,70], and land use changes can
significantly modify regional and global climate [3,71]. Furthermore, 20–30% of the total available
surface water on the planet is withdrawn for irrigation [72], and nitrogen fixation via fertilizer
production and crop cultivation currently equals, or even exceeds, natural biotic fixation [73,74].
GlobaLand30 offers a detailed portrait of such land covers, and enables researchers to understand
how the current pattern forms, and the impact of GLC on the environment. Domain-specific data and
methodologies need to be included in the cause and consequence analysis.

One of the examples is the cause and consequence analysis of human settlement expansion at the
global scale [15]. Several indicators were derived from the artificial surface layer of GlobeLand30, such
as the artificial surface area per capita, population per unit area of artificial surface, gross domestic
product (GDP) per unit area of artificial surface, relative population increase to artificial surface
increase, and relative GDP increase to artificial surface increase. These indicators were used to reveal
the artificial surface use efficiencies pattern, relationship with population and GDP, and the change
during 2000–2010 at the country level. Results show that the use efficiency of artificial surfaces has
distinct regional discrepancies (Figure 4), in which Canada and the United States are categorized as
having abundant resources, but low land use efficiency, and South Korea, Japan, and Switzerland
are characterized by limited resources but high land use efficiency. Yu et al. [16] calculated the urban
expansion intensity index (UEII) based on the ratio of the region’s newly-appeared urban land areas
to the total area within each ring from the city center. By plotting the UEII by distance to city center,
a lognormal curve model was used to fit the curve. The fitting parameters were further used to
calculate shape indexes of the curves, and their relationship among Chinese cities was analyzed.
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GlobeLand30 was also used to reveal the impact of GLC on regional biogeochemical circle and
ecosystem. Lu, Jiang et al. [40] extracted land-use transitions in China from GlobeLand30 2000 and
2010 products, including transitions among forest, grassland, cropland, and artificial surface, and then
evaluated the effects of land cover change on N deposition based on the estimated N deposition data
from NO2 column remote sensing data (Global Ozone Monitoring Experiment, GOME, and Ozone
Monitoring Instrument, OMI) and the GlobeLand30 dataset. The coupling effects of N deposition and
land cover change on carbon budgets in China was also assessed based on a terrestrial ecosystem
process-based model IBIS (Integrated Biosphere Simulator). Ende [75] used the land use regression
model to simulate air pollution by using land use data from the Corine land cover dataset or the
alternative GlobeLand30 in Bangkok and Mexico City. The response variable in the regression model is
air pollution, and the explanatory variables are land use, traffic density, and topography. Kim et al. [76]
used GlobeLand30 to calculate carbon budget in North Korea, and analyzed the future carbon budget
in scenarios of climate change. Wang and Zhao [77] evaluated the ecological environment quality
in Shaanxi, China, by calculating a synthetical ecological index from GlobaLand30-based biological
richness index and vegetation coverage index at the 250 m level. Kühling et al. [78] calculated
proportion of grassland in total area of district/province in the Western Siberian grain belt, and then
calculated the grassland intensity for every year (1996–2013) as the product of grazing livestock density,
the proportion of grassland per province/district area, and the proportion of grazing livestock units
kept by households. Ge et al. [79] computed the ratio of the sum of the area of rivers, lakes, and
reservoirs to the total area, which is an index to describe the fundamental ecological conditions of
malaria transmission. Ding et al. [80] computed the percentage of seven land-use types, namely, forest,
farmland, urban, grass, shrub, wetland, and water within each watershed of the upper Mekong River
Basin, China to analyze the responses of functional traits and diversity of stream macroinvertebrates
to environmental and spatial factors.
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4.3. Coupling Analysis with Earth System Models

Models have proven to be an important tool, both to conceptualize and test human understanding
of the role of different drivers in land use and land cover change and to explore scenarios of possible
future developments [81,82]. In recent years, study on climate coupling models between the dynamic
mechanism of land cover and environmental change has elicited considerable research interest in
climate change, such as urban expansion and climate change. At present, the direct and indirect effects
of land cover data on climate and climate change are receiving increasing attention. Models that
use land cover information are mainly the climate model, urban change models, and environment
model. For instance, urban expansion has been simulated by coupling one “bottom-up” cellular
automata (CA)-based model and one “top-down” system dynamics (SD)-based model [83]. Here,
we summarized some Earth system models that incorporate GlobeLand30 land cover information to
simulate climate, hydrological cycle, and land surface fluxes.

GlobeLand30 dataset was used in the Beijing Climate Center Climate System Model (BCC_CSM)
to assess the influences of land cover dataset on land surface and climate simulations. Land cover is
one of the most basic input elements of land surface and climate models [52]. GlobeLand30 data was
merged with other satellite remote sensing datasets to regenerate the plant function types (PFT) fitted
for the BCC_CSM. The area-weighted up-scaling approach was used to aggregate the 30 m-resolution
GlobeLand30 data onto the coarser model grids and derive PFT, as well as percentage information.
Results show that with the new LC data products, several model biases between simulations and
observations in the BCC climate model with original LC datasets were effectively reduced, including
the positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative
bias in the Amazon, as well as the negative bias of air temperature in parts of the southern hemisphere.
Therefore, the GlobeLand30 data are considered suitable for use in the BCC_CSM component models
and can improve the performance of the land and atmosphere simulations.

GlobeLand30 was also used as an input data in the Soil and Water Assessment Tool (SWAT) to
model water vulnerability in the Yangtze River Basin, China [35]. Madhusoodhanan et al. [84] assessed
the uncertainties of seven GLC datasets and their propagation into the simulation of land surface fluxes
(LSFs) in India by using a macro-scale land surface model. The GLC datasets, including UMD, IGBP
DISCover, GLC2000, MODIS, GlobeCover, CCI-LC and GlobeLand30, were aggregated to 0.25 degrees
and then input into the variable infiltration capacity (VIC) model to simulate LSFs. The results were
validated by observed stream flow and MODIS-derived global evapotranspiration data. The results
indicated that GlobeLand30 with the least difference in crop fraction has the least bias. These studies
showed that finer-resolution GLC land cover dataset can improve the accuracy of model simulation at
the regional scale.

5. Discussion and Outlook

Based on the data downloading records and published literature, this paper has reviewed the
analysis and applications of GlobeLand30 since its release in 2014. GlobeLand30 has been recognized
by international scientific and user communities, such as being the world’s first wall-to-wall 30 m
GLC data product [85], “a milestone achievement in the Earth observation and open geo-information
access.” [13]. However, GlobeLand30is far from satisfying all user requirements, and the system has
considerable room for improvement, such as more comprehensive validation, continuous updating,
and more value-added applications.

5.1. Comprehensive Validation

The quality or accuracy assessment is an integral part of GLC mapping and applications.
Third-party researchers or users have analyzed the quality of GlobeLand30 via sample-based validation
or comparison with existing land cover or other datasets. An average accuracy of 80% for all classes
or one single class was given by most published papers or documents [14,29,37,86]. Diogo and
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Koomen [87] reported that the quality of GlobeLand30 was at a similar level to CORINE data.
Grekousis et al. [7] summarized the reported accuracy of 23 global and 41 regional LC products,
in which GlobeLand30 products have relatively high overall accuracy (78.6% and 80.3% for 2000 and
2010, respectively) compared with GLC2000 (68.6%), GlobCover2005 (73.1%), GlobeCover2009 (67.5%),
UMD (65.0%), MODIS (71.6%), GLCNMO V2 (77.9%), FROM-GLC (63.69%), GeoWiki hybrid 1 (87.9%)
and so on. GlobeLand30 is then recommended for diverse applications, including climate change
studies, land change research, and ecosystem analysis [28,88]. In particular, GlobeLand30 is considered
a useful product for developing countries or regions in which good land cover maps are difficult to
find [14,89].

However, these accuracy assessments were conducted either within 10% map sheets selected
from a global scale [24] or in some individual countries [14,86]. Areas remain in which the uncertainty
of GlobeLand30 must be validated and documented. An international validation was initiated by
GEO Global Land Cover Community Activity (GEO CA-01) in 2016 with three tasks to promote more
comprehensive validation of GlobeLand30 and other finer-resolution GLC datasets. First, a technical
specification was formulated to describe the appropriate approaches and procedures for sampling
design, response, and analysis protocols at 30 m resolution and global scales. A landscape shape
index (LSI)-based sampling approach was developed to consider the high spatial heterogeneity of
land cover in large areas [37]. Two web-based validation tools were developed to facilitate online and
collaborative validation processes. One tool is GLCVal [90] developed by the National Geomatic Center
of China, and the other is LACO-Wiki [91] developed by the International Institute for Applied Systems
Analysis (IIASA). Approximately 40 countries have joined this GEO-led activity and completed the
validation for their own territory. More countries are expected to join the validation of GlobeLand30
and other finer-resolution GLC datasets in the near future.

5.2. Continuous Updating

GlobeLand30 has users from more than 120 countries on five continents. As such, GlobeLand30
has been identified as a fundamental geospatial dataset by a number of international organizations,
such as UN Committee of Experts on Global Geospatial Information Management (UN-GGIM) [89],
UNEP [12], and Global Observation for Forest Cover and Land Dynamics (GOFC/GOLD) [90]. This
has promoted data sharing in the field of geo-sciences and Earth observation, and stimulated the
development of finer-resolution global land cover data products in the world [13,90]. However, a
number of new requirements have been put forward by the users, such as more thematic classes, longer
time series, and higher spatial resolution. For instance, GlobeLand30-2010 has ten major land cover
classes, but more classes may be asked by certain applications, such as Ecosystem Accounting [91]
and integrated biodiversity monitoring [12]. A total of 15 classes will be offered by the 2015 version
of Gloebland30 which is under development. Since one single GLC dataset will never be perfectly
suited for all applications either in terms of the legend or the accuracy, developing a new philosophy
for generating land cover products by designing an operational system that can meet varied user
requirements is important [92].

Time-series land cover data products are essential for understanding land cover dynamics,
identifying its trends, as well as assessing social, economic, and environmental impacts. Although
GlobeLand30 has only two base-line years (2000/2010), several other GLC maps with more epoch
series have been developed. One is the CCI-LC product that covers three-epoch series (2008–2012,
2003–2007, 1998–2002) [87,93]. The resolution of CCI-LC data product is relatively coarse (300 m) and
may not reveal certain land cover and its changes. The other time-series GLC map is the annual global
tree cover maps that are produced by Hansen et al. (2013) with a high temporal resolution (annual
forest cover change from 2000 to 2012), but is limited only to the percent tree cover/tree cover change.
The development and provision of time-series 30 m and full class GLC maps is a significant challenge.
This will be implemented by combining the mainstream change detection-based approach with the
rapidly-increasing crowdsourced information [94,95].
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Specific tools and systems need to be developed to support “faster” and operational GLC data
product generation and updating, such as discovering useful alternative and ancillary information
from the deep web [96,97], service relation-driven detection [98,99], trust of volunteered data [100],
integration of crowdsourcing information [101]. At present, GEO is examining the possibility to
develop a so-called “Data Cube” with the flexible classification concept, which will facilitate the
on-demand extraction of land cover classes with deep learning and other data mining algorithms [92].
Another direction is to provide a web-based tool in which can design their own legends online and
generate the desired land cover product [102,103].

5.3. Monitoring Progress towards Sustainable Development Goals (SDGs)

The GlobeLand30 dataset has shown its potential in the status and change analysis, cause and
consequence analysis, as well as the environmental parameterization of earth system models. The
dataset has been listed as one of major GLC datasets to support monitoring progress towards the UN
2030 SDGs through its 230 indicators [88]. As a global and international data product, GlobeLand30
can be used first as a supplement or a potential alternative to national data when the reliable land
cover data of one country is unavailable or lacks the capacity to generate them. Second, natural
disasters, displaced populations, environmental change, water shortages, pandemics, and widespread
malnutrition do not stop at national borders or the water’s edge [104]. GlobeLand30 may have higher
consistency across space, whereas the integration and harmonization of datasets from neighboring
countries might be extremely difficult because of their differences in reference frames, spatial resolution,
thematic types as well as periodicity. Third, global datasets can serve as a sound basis for preparing
global reporting of certain SDG indicators and for visualizing or communicating their global status
and trends to policy-makers and end users.

Methodological development and overall data availability are two challenges that face monitoring
progress towards SDGs with GLC and other geospatial datasets. From the methodological point
of view, analytical models, metrics, and tools need to be developed to compute or derive SDG
indicators/indices from GLC or geospatial data. Sensitivity and uncertainty analysis need also be
considered to test the efficacy and robustness of the computing approaches. As far as the overall data
availability is concerned, a number of technical issues need to be solved to integrate GLC, statistical
data and other geospatial data. For instance, disaggregation approaches will be developed and used
for generating a dataset with a more refined thematic content by combining global data and ancillary
data sources. Aggregation may be used to downscale high-resolution datasets into the desirable scale.
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