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Abstract: Recognizing Modes of Driving Railway Trains (MDRT) can help to solve railway freight
transportation problems in driver behavior research, auto-driving system design and capacity
utilization optimization. Previous studies have focused on analyses and applications of MDRT,
but there is currently no approach to automatically and effectively identify MDRT in the context of
big data. In this study, we propose an integrated approach including data preprocessing, feature
extraction, classifiers modeling, training and parameter tuning, and model evaluation to infer
MDRT using GPS data. The highlights of this study are as follows: First, we propose methods
for extracting Driving Segmented Standard Deviation Features (DSSDF) combined with classical
features for the purpose of improving identification performances. Second, we find the most suitable
classifier for identifying MDRT based on a comparison of performances of K-Nearest Neighbor,
Support Vector Machines, AdaBoost, Random Forest, Gradient Boosting Decision Tree, and XGBoost.
From the real-data experiment, we conclude that: (i) The ensemble classifier XGBoost produces the
best performance with an accuracy of 92.70%; (ii) The group of DSSDF plays an important role in
identifying MDRT with an accuracy improvement of 11.2% (using XGBoost). The proposed approach
has been applied in capacity utilization optimization and new driver training for the Baoshen Railway.

Keywords: freight railway; modes of driving railway trains; pattern recognition; ensemble classifier;
Bayesian optimization; GPS trajectory data

1. Introduction

1.1. Background

With the increasing demands of diversification and individuation, quality improvements in
railway freight transportation services have received an unprecedented amount of attention from
operators of railway systems. From a planning perspective, quality railway freight transportation
services must be built on precise information or knowledge that reflects the characteristics of the
railway system [1,2]. For this reason, data mining has become one of the most important areas in the
field of railway research. In these repositories of information or knowledge, the operators eagerly
want to know the Modes of Driving Railway Trains (MDRT) [3].

MDRT are the results of driving autonomy. For the purpose of ensuring the robustness of railway
systems, operators of railways give autonomy to drivers in the driving processes (This phenomenon
even exists in the highly information-influenced High-speed Railway System of China). Under these
circumstances, drivers are able to drive the trains according to their experience and basic constraints.
Although robustness is ensured, the resulting driving diversity makes railway operations unpredictable
since different types of driving modes have different impacts on the efficiency, feasibility, etc. of the
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railway system [3–6]. For example, MDRT existing in sections (the connecting parts of adjacent
stations) make the running time multivariate, even in the same running plan. If operators have little
understanding of MDRT (e.g., setting running time as a constant value instead of a multivariate dataset
with different contexts), the resulting plans are inaccurate and remain largely unimplemented.

Although a good understanding of MDRT can contribute to the study of driver behavior
habits [3,7–9], auto-driving system design [3], and capacity utilization optimization [10,11], building a
MDRT set is difficult in the context of big data; traditional methods have certain limitations in terms
of scale and continuous learning. This paper is motivated by finding an approach to identifying
MDRT automatically. Once the train has completed a portion of the work, its trajectory data will be
immediately identified and stored. After a certain period of accumulation, the operator can analyze
the MDRT in terms of proportion and internal characteristics. The information obtained can be used
for multivariate running time calculations (for planning) or driver driving strategy extraction (for new
driver training).

In China, locomotives now have built-in GPS devices with the deployment of a set of railway
controlling systems (e.g., Train Operation Dispatching Command System (TDCS), and Central Traffic
Control (CTC), etc.). Benefiting from this development of railway information systems, we can use
GPS trajectory data as proxies to identify MDRT [12]. Recognizing train modes from GPS trajectory
data has many advantages, such as being low cost [13], having few spatiotemporal limitations [14],
abundant information [12–14], and maturing techniques [15–18]. This paper focuses on finding a
proper approach (including data preprocessing, feature extraction, classifiers modeling, training
and parameter tuning, and model evaluation) to identify modes of driving railway trains from GPS
trajectory data.

1.2. Related Works

In existing studies, the analyses and applications of concepts similar to MDRT are hot spots in
railway data mining [3,7–11]. A multi-phase analyzing framework [3] was built to support many
complex railway studies such as large-scale micro-simulation [7] and timetable optimizations [9].
However, these studies focused on the applications of MDRT, and there was a lack of an approach to
automatically and effectively identify MDRT in a big data context. Inspired by a relatively new area
called transportation mode detection, we will propose a data-mining-based approach to fill this gap.

Transportation mode detection is actually a group of applications of supervised-learning
classification methods [19]. A technical framework for researching detection includes four
components [12–14,19–25]: (i) Data preprocessing; (ii) Feature extraction and selection; (iii) Classifier
identifications; (iv) Evaluations and analyses. A proper combination of methods in these four
components determines the quality of identification.

A set of discriminative features plays a vital role in identifying modes. In existing studies,
global features [19,21,25–29], local features [12,30], time-domain features [26], frequency-domain
features [25,26] and specific features [19,28,31–33] were extracted through corresponding methods.
Among these features, global features focus on describing whole characteristics of trajectory parameters
(e.g., speed, acceleration, etc.) including average values (i.e., mean, absolute mean, median, mode),
variance, standard deviation, percentiles, skewness, and kurtosis [21] Conversely, local features focus
on describing local characteristics of trajectory parameters. For example, Deng et al. [30] proposed
a random forest based method to split the trajectory into segments and obtain features including
the mean, standard deviation, and slope from the interval part of the trajectory. In addition, feature
sinuosity and deviation, which are extracted from each parameter profile of segment data by a profile
decomposition algorithm, were proposed by Dodge et al. [12]. The combination of global features
and local features has shown a high level of performance (only 0.0923 misclassification rate) in the
research [21].

Moreover, from the point of view of signal analysis, time-domain and frequency-domain features
were used in mode detections [25,26]. Two time-domain features, zero-crossing rate and number of
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peaks extracted from the time-domain, were proposed by Elhoushi et al. [26]. As time domain features
are easily affected by noise and interference, the current research has focused more on the frequency
domain. Frequency-domain features were obtained through DFT (Discrete Fourier Transform) [25],
Short-time Fourier Transform (STFT) [26] or Fast Orthogonal Search (FOS) [26]. The results of these
studies show that features in the time domain and frequency domain could help to improve accuracy.

In addition, some specific features were proposed for the purposes of improving accuracy of
classification, such as average rail location closeness [19], estimated horizontal accuracy uncertainty [20]
and average proximity to bus, tram, or train network [28]. The design of a specific features extracting
method should be based on characteristics of transportation options. A good combination of the
features mentioned above could help improve accuracy of detection.

As to classifiers, many studies have introduced different classifiers into transportation mode
detection, such as Decision Tree [14,19,24,26,34], K-Nearest-Neighbor (KNN) [21,34,35], Support
Vector Machines (SVM) [12,14,21,34], Artificial Neural Network (ANN) [20,28,33], Fuzzy Logic [13,28],
Hidden Markov Models [25,27], and Bayesian Network [19,36,37]. In addition, ensemble classifiers
have become a hotspot in the field of transportation mode detections since ensemble classifiers are a
combination set of weak learners, which are superior to a single stronger learner [21,38]. Representative
ensemble classifiers include XGBoost [39,40], Random Forest (RF) [19,21,30,34], Adaboost [41–43].
Another advantage of using ensemble classifiers is that these methods can conduct feature selection,
which performed better than the PCA method [21].

Although prior studies achieved a great deal, our goal faces certain challenges; the most significant
one is as follows: The existing studies focused on detecting modes from different transportation options.
However, our study aims to identify different driving modes in one method of transportation, where
the commonness and characteristics of modes are much more complex than those in existing studies.
Thus, for the best performance in identifying MDRT, we want the following: (i) A method to extract
new features according to railway characteristics; (ii) the most suitable classifier based on performance
comparisons of different classifiers.

The proposed approach has been applied in capacity utilization optimization and new driver
training of Baoshen railway: (i) the approach constructed a MDRT collection where obtained
a multivariate parameter set of running time, so that operators can make distinct plan for
different situations; (ii) new drivers can learn different modes and enhance their ability to cope
in different situations.

The remainder of this paper is organized as follows: In Section 2, methods of data preprocessing,
feature extraction, classifiers modeling, training and parameter tuning, and model evaluation are
elaborated in detail. Among these, one of the highlights of this study is that we propose a method
for extracting DSSDF combined with classical features for the purpose of improving performance
identification. In Section 3, a real-data experiment is conducted, where we fulfill the following tasks:
(i) Finding the optimal value of ns, i.e., determining the most suitable extraction method for DSSDF;
(ii) Evaluating performances of classifiers by different indicators and finding the most suitable classifier
for identifying MDRT; (iii) Evaluating and comparing performances of different combinations of
features and classifiers. In Section 4, discussions and conclusions about the experiment, as well as key
points for future research, are presented.

2. Methodologies

In this paper, we propose an integrated approach to identify MDRT using GPS data. The main
modules of our identification methodologies are shown in Figure 1 and include data preprocessing
(discussed in Section 2.1), feature extraction (discussed in Section 2.2), classifiers modeling (discussed in
Section 2.3), training and parameter tuning (discussed in Section 2.3), and model evaluation (discussed
in Section 2.4). Raw GPS data were first preprocessed (including data cleaning and representation) into
data segments, and then four groups of features were extracted before using the ensemble classifiers
(AdaBoost, Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting) and
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single classifiers (K-Nearest Neighbor and Support Vector Machine) to identify MDRT. In order to
obtain more reliable, stable and accurate models, techniques such as k-fold cross validation and
Bayesian optimization were utilized. In addition, an evaluation system was built to represent the
performances of features and classifiers. Each step is detailed in the following sections.
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Figure 1. Main Modules of the Methodologies for Identifying Modes of Driving Railway Trains
(MDRT).

2.1. Preprocessing

To achieve a better performance, two data preprocessing techniques were employed in this study.
First, we removed the duplicate data in the dataset as some GPS points were recorded more than
once due to recording errors on the GPS device. Second, according to common sense, we removed
some outlier trajectories that were deemed abnormal. For instance, if the average speed of a trajectory
exceeds the designed speed, we identified it as an abnormal trajectory and removed it from the dataset.

2.1.1. Modes of Driving Railway Train

MDRT are utilized in the field of railway transportation, which is a relatively niche area as
compared to existing areas of transportation mode detection. To obtain a more intuitive understanding,
Figure 2 is used to illustrate MDRT by trajectories of parameter speed/distance.
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Figure 2 shows 12 different modes in MDRT as examples, where the horizontal axis represents
distance (measured from the starting station) and the vertical axis represents speed (km/h). These
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distinct modes are summarized from the actual production processes, which carry information of
actual driving habits, reactions to signals and device characteristics. For example, mode 11 is a type of
driving that starts from a station, does not speed up to the maximum speed, and passes by the next
station by the main track. The details of other modes will be illustrated in Section 3.1. Compared to
existing transportation modes, MDRT are more inclined to describe differences and commence at the
level of microcosmic driving operation. Thus, the number of modes in MDRT is much more than that
of existing mode detections.

These modes are difficult to identify. In the actual production process, operators once used the
running time to distinguish MDRT. However, this method is inefficient; many modes are very close
in running time. In addition, the inner phases of these modes are complex. For example, mode 8
has two unfixed-location parts of acceleration, which need to be labeled manually. For this reason,
methods based on driving phase analyses [3,7,9] in studies could not be used to identify MDRT
directly; the traditional method requires a large amount of manual processing, which will restrict
pattern recognition under the condition of large data size.

To improve the accuracy of identification of MDRT, we propose a method to extract specific
features named Driving Segmented Standard Deviation Features (DSSDF). The idea of extracting
DSSDF is from the measures of driving deviations from running plans. From Figure 2, we find two
groups of modes: 0–3 stop in both Station 1 and Station 2 (stop-stop). 4–11 stop only in Station1
and pass Station2 (stop-pass). We call these two stop strategies Running plan 1 and Running plan 2,
respectively. From the aspect of planning, each running plan corresponds to an idea driving trajectory
called Planed Traction Curve (PTC). The proposed features are designed depending on the difference
between PTC and MDRS. The details of extracting DSSDF are shown in Section 2.2.2.

2.1.2. Representation and Segments of Trajectory Data

We proposed a three-level representation framework to formulate trajectory data for our study,
which contains not only a set of notations but also clear definitions for the inner-relationship between
elements according to mode identification. In this framework, tracks are the most primitive forms of
GPS trajectory data submitted from GPS sensors. Segments are the data the proposed identifications
focus on. In addition, trips are the connections between tracks and segments. We use Figure 3 to
illustrate the three-level (track-trip-segment [13,14]) framework for representing trajectory data.
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As to the track, it is in large volume and continuous [25] since the GPS sensors in locomotives
work ubiquitously. A track is a sequence of GPS points denoted by track = {P1, P2, · · · , Pm}, where
GPS point Pi is formatted as lat, lon, t, v, h, acc, where: lat represents the latitude; lon represents
longitude; t represents the timestamp of the sensor data submitting; v represents the current ground
speed of the device; h represents the direction of travel; and acc represents the accuracy level of
the latitude and longitude coordinates. Distance, speed, and acceleration can be obtained using the
Haversine formula [36]. In the context of railway freight transportation, the track is the whole GPS
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trajectory of train movements including running in sections, operating in station, and repaired in depot.
A track is too large-scale and complex to be analyzed, and therefore, decompositions of trajectory data
are necessary.

After decomposing, we obtain components of the track: trips and activities [13]. We define
track = {trips, activities}. Trips by railway are the GPS sub-trajectories between two terminal stations
corresponding to moving tasks (e.g., an operation line on timetable), and activities are the connections
between trips (activities are corresponding to tasks in terminal stations). The key of detecting trips is
finding activities. In the view of GPS data, if without signal loss, activities are defined as GPS points
whose speeds are close to zero [18] or bundles of GPS points that are very close to each other [44,45]
or a large change in the direction of the trajectory. Otherwise, if there are single losses (e.g., at
an underground station, etc.), activities are defined as silence intervals, where no GPS points are
summited. Therefore, there are three criteria for detection of activities in situations with or without
signal loss, from aspects of density, speed-satisfied-time or time difference between two consecutive
GPS points [13,14].

As to what constitutes a segment, it is defined as a subset of trip. In the railway context,
segments correspond to data in sections (between two adjacent stations). We denote segments as
Se = {Pa, Pa+1 · · · Pb} = {d1, d2, · · · dN}, where b− a + 1 = N and N is the number of data points in a
segment trajectory. The threshold based rule [19] and single loss based rule [13,19,46] are utilized to
generate segments. To differentiate the stops in stations and the stops in signal range outside stations,
we preset space ranges for each station. If the rules above are activated in the range, the train stops
in stations. Otherwise, the train stops at signals. To describe the pattern recognition method more
straightforwardly, in the remainder of this study, we also call segments data samples.

Based on segments, parameters (or profiles) such as speed, acceleration, and turning angle can
be obtained. These parameters are key carriers of knowledge that could characterize the movement
behavior and physics of the driving. Each parameter from a segment can be expressed as a time series
X = {x1, x2, · · · xN}. In this study, we used two parameters, speed and acceleration, for extracting
features, which is discussed in the following Section 2.2.

2.2. Feature Extraction

Feature extraction plays an important part in Feature engineering, which have great impacts
on the performance of classifiers. In this subsection, we first presented classical extracted features
including: Global Statistical Features (GSF) and Local Statistical Features (LSF), as well as Time-Domain
and Frequency-Domain Features (TDFDF). Then, we proposed a new group of features named
Driving Segmented Standard Deviation Features (DSSDF). DSSDF are based on railway transportation
characteristics, which are designed for improving identification accuracy. The following explains each
group of features in detail.

2.2.1. Classical Features

GSF [21,24,29] refer to descriptive statistics for data samples, which makes the samples more
comparable. LSF [12] is extracted by profile decomposition and reveals more detail in movement
behavior. TDFDF can represent characteristics from time-domain analysis and frequency-domain
analysis [25,26]. We illustrate these features in Table 1.



ISPRS Int. J. Geo-Inf. 2018, 7, 308 7 of 27

Table 1. Features of Global Statistical Features (GSF), Local Statistical Features (LSF) and Time-Domain
and Frequency-Domain Features (TDFDF).

ID G-Name (ID) 1 Name Notation R 2

1

GSF (1)

Mean u = ∑ yi/N

[21,29]

2 Standard deviation σ =
√

1
N ∑i(xi − u)2

3 Mode mo = Mode(X)

4 Median me = Median(X)

5 Max 3 values
Min 3 values

ma3 = Max3(X)
mi3 = Min3(X) 3

6 Value Range vr = Max1(X)−Min1(X) 3

7 Percentile tuple perc = (perc25, perc75)
4

8 Interquartile Range |perc| = perc75 − perc25
4

9 Skewness s = N
(N−1)(N−2)

(
∑N

i=1(xi − u)/σ
)3

10 Kurtosis k = 1
N

(
∑N

i=1(xi − u)/σ
)4
− 3

11 Coefficient of variation cv = σ/u

12 Autocorrelation
coefficient

auto = c1/c0
ck = 1

N ∑N−k
i=1 (xi − u)(xi+k − u)

13 Stop rate sr = |ps|/dis
[24]14 Velocity change rate vcr = 1

dis ∑N
i=2 I{(xi − xi−1) ≥ ξs} 5

15 Trajectory length dis = d(X)

16

LSF (2)

Mean length of each
decomposition class lu0−3 = 1

nxs0−3
∑nxs0−3

i=1 Len
(

xs0−3
i

)
6

[12]

17
Length standard
deviation of each
decomposition class

lσ0−3 =

√
1

nxs0−3
∑i

(
Len
(

xs0−3
i

)
− lu0−3

)2
6

18 Proportion of each
decomposition class lp0−3 = 1

N ∑nxs0−3
i=1 Len

(
xs0−3

i

)
6

19 Change times ct = ∑ nxs0−3 − 1 6

20
TDFDF (3)

Median crossover rate
mcr =

1
N−1 ∑N−1

i=1 I{(xi −me)× (xi−1 −me) < 0} 5
[25,26]

21 Number of peaks

peak =

∑N−2
i=1 I{sign(xi − xi−1) > sign(xi+1 − xi)} 5

sign(a) =


+1 (a > 0)
0 (a = 0)
−1 (a < 0)

22 Short-time Fourier
transform

st f tk = ∑∀i xiwie−j 2πki
N

wi =

{
1 (0 < i ≤ N − 1)

0 otherwise
1 Group Name (ID); 2 References; 3 Maxk(X) and Mink(X) are the maximal and minimal k values of points in X;
4 perck is the kth percentile of X; 5 I{x} is the indicator function; 6 nxs0−3 represents the number of decomposition

segments of classes 0− 3. xs0−3
i represents the ith decomposition segments. Len

(
xs0−3

i

)
calculates the length of

decomposition xs0−3
i .

2.2.2. Driving Segmented Standard Deviation Features (DSSDF)

Although the classical features were proved efficient in the field of transportation mode
detection [21], these features still cannot effectively represent MDRT; modes in MDRT are differentiated
by microscopic driving details (e.g., some modes have two acceleration phases, and some modes have
two breaking phases, etc.). Specific features with rich information are needed in this study. Thus, we
designed DSSDF, which measures deviations between modes and each Planed Traction Curve (PTC)
of running plans (as discussed in Section 2.1.1) to improve the quality of identification of MDRT.

As a complex system, railway requires many plans or benchmarks to ensure the efficiency and
feasibility of operation. In terms of train driving, the PTC is the most important benchmark (PTC is the
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ideal driving curve designed by the railway design department by means of an experience summary
or Newtonian mechanics calculation [5]). Trajectories in each mode would obey a certain distribution
in parts or whole scales. If we measure the differences between a trajectory and the PTC by a certain
way, the identifications might obtain more information and thus be more accurate.

Driving Segmented Standard Deviation Features ssd
(
si, pj

)
measures the differences between a

sub-segment and the sub-PTC corresponding to the same distance sub-range si of running plan pj.

ssd
(
si, pj

)
= DTW

(
X(si)

, PTC(si ,pj)

)⋃
i

X(si)
= X,

⋃
i

PTC(si ,pj)
= PTCpj , and

⋃
si = S (1)

where X(si)
is the sub-segment and S is the distance range corresponding to a target parameter. si

is the ith (0 ≤ i < ns, ns represents the number of sub-segments) sub-range of the distance range S.
PTC(si ,pj)

is the sub-PTC of PTCpj . PTCpj is the PTC of running plan pj. (0 ≤ j < np, np represents

the number of running plans). DTW
(

T(si)
, PTC(si ,pj)

)
is a function measuring similarity between X(si)

and PTC(si ,pj)
by the method of Dynamic Time Warping (DTW). The details of DTW can be found in

Keogh et al. [47]. The number of PTCs depends only on existing running plans, which can be found in
railway plans.

We illustrate the measurements of ssd
(
si, pj

)
with 4-folds (ns = 4) and 1 PTC in Figure 4. In this

illustration, two parameter trajectories, speed and time, are taken into account. From the aspect of
distance range, trajectories and PTCs are divided into 4 sub-ranges (distance sub-ranges 1, 2, 3, 4).
Therefore, we extract 8 DSSDF from this example (e.g., in distance sub-range 1, there are two features
calculated by DTW

(
T1(1), PTC(1,1)

)
corresponding to origin-cube curve and blue-cube curve as well

as DTW
(

T1t(1), PTCt(1,1)

)
corresponding to yellow-triangle curve and gray-triangle curve) and so on

for the other 6 DSSDF. If there is more than one PTC (multiple running plans), differences between a
trajectory and any PTC should be measured.
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Figure 4. Illustration of 4-fold Driving Segmented Standard Deviation Features (DSSDF). This figure
shows the correspondences between sub-segments.

If we just set ns = 1, and only 2 DSSDF could be extracted, the result might be inaccurate.
Conversely, if we set ns too large, the calculation cost might be very high. As a key control parameter,
the number of sub-segments ns plays an important part in identifications of MDRT. A proper value of
ns should be found before training classifiers.

As to the criteria of determining the sub-segment, we used signal ranges as the basic units for
starting a new sub-segment. In addition, we used a greedy search method that assumes that drivers
have more details about driving when leaving and entering stations than when cruising in the middle
of a section to generate sub-segments. After enter ns, this search method begins by setting the signal
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range nearest to the arrival station as a new sub-segment; after that, set the signal range nearest the
departure station. In addition, set the second nearest signal range to the arrival station as the third
sub-segment. This iteration does not stop until ns is achieved. Although this method is rough, its
efficiency and interpretability are acceptable in practical applications. The determination process of ns

will be discussed in Section 3.3.

2.2.3. Features Summary

A summary of the features discussed above is shown in Table 2. In Figure 5, we plotted the
distribution of six example-features (of 12 modes) mentioned above. However, we found it difficult
to differentiate between the different modes using only one feature. Nevertheless, these features can
provide useful information in identifying MDRT when they are combined.

Table 2. Feature Summary.

ID Descriptors Feature Description Number

1 GSF
u, σ, mo, me, ma3(3), mi3(3), vr, perc(2),
|perc|, s, k, cv, auto. For each parameter (2). 18× 2 = 36

sr, vcr, dis. 3

2 LSF lu(4), lσ(4), lp(4), ct. For each parameter (2). (4 + 4 + 4 + 1)× 2 = 26

3 TDFDF mcr, peak, st f t. For each parameter (2). 3× 2 = 6

4 DSSDF ssd (ns). For each parameter (2). ns × np × 2 = 2·np·ns

SUM (36 + 3) + 26 + 6 + 2ns
= 71 + 2·np·ns
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2.3. Classifiers Modeling and Parameter Tuning

2.3.1. Classifiers Modeling

In this study, Ensemble classifiers (AdaBoost [48,49], Random Forest (RF) [50], Gradient Boosting
Decision Tree (GBDT) [51,52], and eXtreme Gradient Boosting (XGBoost) [39,40]) and single classifiers
(K-Nearest Neighbor (KNN) [21,34,35,53] and Support Vector Machine (SVM) [54,55]) were modeled
to identify MDRT. The details can be found in their respective references.

As to the implementations of classifiers, the KNN, SVM, AdaBoost, RF, and GBDT models were
implemented in the Python software along with “scikit-learn” package. In addition, the XGBoost
model was implemented in the Python software along with “XGBoost” package.
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2.3.2. Parameter Tuning

In machine learning, parameter tuning (also called hyperparameter optimization) is the problem
of choosing a set of optimal hyperparameters for a learning algorithm [38,56]. Grid search [57,58],
Random search [59,60], Bayesian optimization [61–64], and Gradient-based optimization [65] are four
existing methods of tuning parameters. In practice, Bayesian optimization has been shown to obtain
better results in fewer evaluations compared to grid search and random search due to the ability to
reason with respect to the quality of experiments before they are run [61–64]. Therefore, we chose
Bayesian optimization to conduct parameter tuning. The details of Bayesian optimization can be found
in references [61–64].

The tuning parameters of each classifier and the setting of parameter ranges for parameter tuning
are shown in Table 3.

Table 3. Parameter Ranges for Parameter Tuning.

Classifier Parameter Range Notes

KNN “n_neighbors”: (1, 15) n_neighbors (int): Number of neighbors to get.

SVM “C”: (0.001, 100)
“gamma”: (0.0001, 0.1)

C (float): Penalty parameter C of the error term.
gamma (float): Kernel coefficient for ‘rbf’, ‘poly’ and
‘sigmoid’.

Ada “n_estimators”: (10, 250)
“learning_rate”: (0.001, 0.1)

n_estimators (int): The maximum number of estimators
at which boosting is terminated.
learning_rate (float): Learning rate shrinks the
contribution of each classifier by ‘learning_rate’. There is
a trade-off between “learning_rate” and “n_estimators”.

RF
“n_estimators”: (10, 200)
“min_samples_split”: (2, 15)
“max_features”: (0.1, 0.999)

n_estimators (int): number of trees in the forest.
min_samples_split (int or float): The minimum number
(int) or percentage (float) of samples required to split an
internal node.
max_features (int or float): The number or percentage of
features to consider when looking for the best split.

GBDT
“n_estimators”: (10, 250)
“learning_rate”: (0.1, 0.999)
“subsample”: (0.1, 0.9)

n_estimators (int): The number of boosting stages to
perform.
learning_rate (float): learning rate shrinks the
contribution of each tree by ‘learning_rate’.
subsample (float): The fraction of samples to be used for
fitting the individual base learners.

XGBoost

“min_child_weight”: (1, 10)
“colsample_bytree”: (0.1, 1)
“max_depth”: (5, 10)
“subsample”: (0.5, 1)
“gamma”: (0, 1)
“alpha”: (0, 1)
“eta”: (0.001, 0.1)

min_child_weight (int): Minimum sum of instance
weight (Hessian) needed in a child.
colsample_bytree (float): Subsample ratio of columns
when constructing each tree.
max_depth (int): Maximum tree depth for base learners.
subsample (float): Subsample ratio of the training
instance.
gamma (float): Minimum loss reduction required to
make a further partition on a leaf node of the tree.
alpha (float): L1 regularization term on weights
eta (float): Boosting learning rate.

2.4. Evaluation Methods and Cross-Validation

2.4.1. Evaluation Indicators

An appropriate evaluation framework could help to estimate performance. Basically, samples in
classification problems are divided into four categories: true positives; true negatives; false positives;
and false negatives. These four categories are shown in Figure 6 as (3), (4), (5), and (6), respectively.
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Based on these four categories, an evaluation system is established. The arrangement of the indicators
in Figure 6 portrays the relationship between them. For example, indicator Recall (10) is calculated
from condition positive (1) and true positive (3). Thus it is arranged in row 3 column 1. Indicators in
this evaluation system were widely used in existing studies to represent performance [19,21,25,27,28].
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In this study, we used PPV, TPR, F1-score, ACC, confusion matrix and Receiver Operating
Characteristic curve (ROC, whose x-axis is FPR and y-axis is TPR, in Figure 6), which are marked blue
in Figure 6 to evaluate performances of proposed features and classifiers.

2.4.2. K-Fold Cross-Validation

K-fold cross validation is a technique used to obtain more reliable, stable and accurate models
in machine learning. In k-fold cross validation, the original samples are randomly partitioned into
k equal parts; of the k parts, a single part is used as the validation dataset, and the remaining k-1
subparts are used as the training dataset to construct the model. This procedure is repeated k times,
where a different validation dataset is chosen each time, before the final accuracy of the model is equal
to the average accuracy obtained each time. All samples are used for both training and validation,
and each sample is used for validation exactly once [21]. For example, a dataset has 10 samples.
If we use five-fold cross validation to train a model, this dataset will be divided into 5 parts (each
with 2 samples), named 1–5. The training process has 5 rounds. In the first round, part 1 is used as
the validation dataset, and parts 2–4 are used as the training dataset to construct the model. In the
remaining rounds, parts 2–4 are used as validation dataset, respectively. The final accuracy of the
model is equal to the average accuracy obtained each round.

The k-fold cross-validation was embedded in the classifier training processes of our experiment,
which can guide parameter tuning processes by estimated generalization performance [60].

3. Results and Discussion

3.1. Experiment Data

A dataset of trajectories over a period (of seven years from January 2009 to January 2013) from
a section (Dongsheng–Aobaogou) in Baoshen Railway, Inner Mongolia, China was collected for
validating the performance of the models (shown in Figure 7). This dataset contains 20,349 trajectories
(approximately 13.94 trajectories per day) produced by 103 locomotives. Almost all the trajectories were
recorded densely; i.e., the locomotives use an event-based recording mechanism to record trajectories.
That is, if an event occurs (e.g., speed change, gear change), the locomotive submit one record (one
data point) to the database.
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Figure 7. Illustration of Experiment Data. (a) The distribution of trajectory data. The Data in section
Dongsheng–Aobaogou are used in this experiment; (b) Examples of parameters (profiles) of used data;
(c) Planed Traction Curves (PTCs) i and ii in this experiment, corresponding to two running plans:
stop-stop and stop-pass.

In this experiment, 12 modes (the representative trajectories are shown in Figure 7b) were
identified, and 2 PTCs (i.e., PTC i and PTC ii) corresponding to two running plans (shown in Figure 7c)
are used to extract DSSDF. Modes 0–3 stop in both stations (stop-stop). 4–11 stop only in departure
station and pass arrival station (stop-pass). The details of these 12 modes are summarized as follows:
(1) Mode 0 tries to conduct PTC i; (2) mode 1 slows down in advance; (3) mode 2 slowly moves forward,
and the speed does not increase to the speed limit; (4) mode 3 first moves forward at low speed and
then accelerates to the speed limit; (5) model 4 tries to conduct PTC ii and passes through the main
track; (6) mode 5 passes the station after a large proportion of deceleration; (7) mode 6 slows down
a little in advance and passes the station; (8) mode 7 slowly moves forward, and the speed does not
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increase to the speed limit. In addition, it then passes the station; (9) mode 8 accelerates to the speed
limit and starts to decelerate and then re-accelerates and passes the main track; (10) mode 9 accelerates
to the speed limit and starts to decelerate and passes at low speed; (11) mode 10 passes the station
through a side line; (12) mode 11 slowly accelerates and then passes through the main track.

In this dataset, 1/3 of trajectories were labeled with their modes in each segment. The dataset
was separated into a training set (consisting of 70% of the data) and a testing set (30% of the data).
The distribution of the number of different categories is shown in Table 4. As the distribution of the
different categories was unbalanced, it was unreasonable to base our evaluation on accuracy alone,
despite this being commonly done in the previous literature. Furthermore, it was difficult to evaluate
the performance of the model based on a single measure as these measures are sometimes the same.
Thus, in our study, different evaluation elements were used, including PPV, TPR, F1-Score, ROC curve
and confusion matrix. We used accuracy (ACC), which is obtained from five-fold Cross-Validation, to
tune the parameters (by Bayesian optimization) [21].

Table 4. The distribution of MDRT in this experiment.

Mode ID Trajectory Number Mode ID Trajectory Number

0 1218 6 441
1 1029 7 1050
2 42 8 546
3 462 9 252
4 84 10 1176
5 294 11 189

SUM 6783

3.2. Experiment Scheme

We extracted four groups of features from 6783 trajectories, including GSF (indexed by 1), LSF
(indexed by 2), TDFDF (indexed by 3), and DSSDF (indexed by 4), and then used six types of classifiers
(KNN, SVM, Ada, RF, GBDT, and XGBoost) to identify MDRT. In this experiment, we need to fulfill
the following tasks: (i) Finding the optimal value of ns, i.e., determining the most suitable extraction
method for DSSDF; (ii) Evaluating performances of classifiers by different indicators; (iii) Evaluating
and comparing performances of different combinations of features and classifiers.

As to task (i), we extracted DSSDF and used XGBoost to determine the optimal value of ns for
the purpose of improving performance identification in the following tests. A candidate set of ns

{1, 2, 3, 4, 5, 6} was used to extract a set of DSSDF and fed to XGBoost. A curve of indicator ACC was
presented for selecting the optimal value of ns. In the processes of trainings with different features,
Bayesian optimization and five-fold cross-validation were used to tune parameters so that the XGBoost
classifier was in a good situation. The optimal value of ns would be used in the following trainings.

As to task (ii), we analyzed the performances of six classifiers including two types of single
classifiers and four types of ensemble classifiers aggregated with the complete feature group
combinations (i.e., {GSF, LSF, TDFDF, DSSDF}, denoted by “1234”) by indicators ROC(AUC), ACC,
PPV, TPR, F1-score. Two single classifiers formed the control group as a basis for measuring the
performances of the ensemble classifiers. Bayesian Optimization and five-fold cross-validation were
used to tune the parameters of each classifier.

As to task (iii), we evaluated different combinations of the six classifiers and feature groups
(i.e., the non-empty power set of set {GSF, LSF, TDFDF, DSSDF}) by indicator ACC to analyze
matching relationships between features and classifiers. In addition, the efficiency of DSSDF was
evaluated quantitatively here. Bayesian Optimization and five-fold cross-validation were used to
tune parameters.

As to parameter tuning, we used the Bayesian Optimization method in the Python software along
with the “Bayesian-Optimization” package. The parameters were set as: “n_iter”: 25 and “init_points”:
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5, which means the tuning has an initialization with 5 parameter points and 25 iterations. When tuning
parameters, “int” type parameters were converted to “real” type fed to Gaussian Process of Bayesian
optimization and were converted back to “int” type fed to classifiers.

3.3. Determination the Optimal Value of ns

As discussed in Section 2.2, the extractions of DSSDF are controlled by parameter ns. In this
subsection, we conducted an experiment that fed different DSSDF with different ns to XGBoost and
then selected the optimal ns according to identification performance (evaluated by indicator ACC).

We measured different DSSDF from the ns collection {1, 2, 3, 4, 5, 6} (in this section, there are 6
signal ranges) and then trained XGBoost (tuning parameters by Bayesian Optimization with indicator
ACC). The Results are shown in Figure 8. We find that 4 is the best value of ns.
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Figure 8. The Impact of Number of Sub-segments ns on ACC (XGBoost).

3.4. Classifiers Performance Evaluations

3.4.1. K-Nearest Neighbor

Figure 9a and Table 5 show the changes in ACC in the process of parameter tuning, which was
obtained using Bayesian optimization and five-fold cross-validation. From Table 5, we can see that the
highest ACC was achieved when K was 5.43, 5.28, 5.18, 5.75 5.74, 5.00 (5), and the value was 74.1%.
The ROC curve is plotted in Figure 9b, and the confusion matrix is presented in Table 6. The weighted
mean of AUC was 0.85. The F1-score was 74.9%. The PPV was 77.7%. The TPR was 72.9%. These
indicators show the poor performance of KNN, which led to the conclusion that this classifier is not
suitable for differentiating MDRT.
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Figure 9. Parameter Tuning Process and Receiver Operating Characteristic (ROC) of
K-Nearest-Neighbor (KNN), where (a) Description of the parameter tuning process of KNN, where
y-axis is ACC and x-axis is iteration; (b) ROC of KNN.

Table 5. Parameter Tuning Process of KNN Classifier.

I 1 n_n(int) 2 ACC I 1 n_n(int) 2 ACC I 1 n_n(int) 2 ACC

0 5.91 (5) 74.1% 6 13.97 (13) 65.6% 16 1.69 (1) 60.1%
0 2.06 (2) 68.3% 7 4.76 (4) 68.6% 17 5.28 (5) 74.1%
0 10.50 (10) 66.8% 8 11.64 (11) 66.1% 18 5.18 (5) 74.1%
0 3.83 (3) 69.4% 9 6.72 (6) 68.1% 19 5.75 (5) 74.1%
0 7.68 (7) 68.0% 10 5.43 (5) 74.1% 20 5.74 (5) 74.1%
1 15.00 (15) 65.9% 11 8.41 (8) 67.5% 21 6.25 (6) 68.1%
2 12.83 (12) 65.6% 12 9.83 (9) 67.5% 22 5.00 (5) 74.1%
3 7.74 (7) 68.0% 13 4.25 (4) 68.6% 23 5.62 (5) 74.1%
4 1.00 (1) 60.1% 14 14.53 (14) 65.4% 24 5.18 (5) 74.1%
5 9.10 (9) 67.5% 15 12.23 (12) 65.6% 25 5.75 (5) 74.1%

1 Iteration; 2 n_neighbors (the value converted to type “int”).

Table 6. The Confusion Matrix of the KNN Classifier.

KNN
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 80.7 14.6 11.8 4.9 2.9 0.0 4.0 0.7 0.5 0.0 1.9 13.2

77.7

1 10.5 75.5 11.8 22.7 2.9 6.8 5.7 0.7 0.9 0.0 0.4 1.3
2 0.6 0.5 76.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.8 7.3 0.0 68.6 0.0 0.0 0.6 0.5 0.9 2.0 0.2 1.3
4 0.0 0.0 0.0 0.0 67.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0
5 0.2 0.0 0.0 0.0 8.8 72.9 2.3 0.0 0.9 3.0 0.0 0.0
6 1.0 0.7 0.0 0.0 2.9 6.8 60.2 1.0 8.3 2.0 3.8 3.9
7 1.4 0.2 0.0 0.0 0.0 2.5 1.7 69.5 3.2 1.0 14.9 10.5
8 0.4 0.5 0.0 2.7 14.7 5.9 10.2 2.4 76.6 4.0 2.1 3.9
9 0.0 0.0 0.0 0.0 0.0 2.5 3.4 0.0 0.0 87.1 0.0 0.0
10 2.9 0.7 0.0 0.0 0.0 1.7 9.7 25.0 7.8 1.0 76.6 5.3
11 0.4 0.0 0.0 0.5 0.0 0.0 2.3 0.2 0.9 0.0 0.0 60.5

TPR 72.9 F1: 74.9
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3.4.2. Support Vector Machines

Figure 10a and Table 7 show the changes in ACC in the process of parameter tuning, which was
obtained using Bayesian optimization and five-fold cross-validation. From Table 7, we can see that the
highest ACC was achieved when “C” was 0.001 and “gamma” was 0.01, and the corresponding value
was 88.9%. The ROC curve is plotted in Figure 10b, and the confusion matrix is presented in Table 8.
The weighted mean of AUC was 0.97. The F1-score was 88.2%. The PPV was 88.0%. The TPR was
88.5%. These indicators show that although the SVM model performed better than the KNN model,
it still cannot effectively identify MDRT.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  16 of 27 

 

value was 88.9%. The ROC curve is plotted in Figure 10b, and the confusion matrix is presented in 
Table 8. The weighted mean of AUC was 0.97. The F1-score was 88.2%. The PPV was 88.0%. The TPR 
was 88.5%. These indicators show that although the SVM model performed better than the KNN 
model, it still cannot effectively identify MDRT. 

 
(a) 

 
(b) 

Figure 10. Parameter Tuning Process and ROC of Support Vector Machines (SVM), where (a) 
Description of the parameter tuning process of SVM, where y-axis is ACC and x-axis is iteration; (b) 
ROC of SVM. 

Table 7. Parameter Tuning Process of SVM Classifier. 

I 1 C Gamma ACC I 1 C Gamma ACC I 1 C Gamma ACC 
0 43.936  0.03  50.9% 6 0.001  0.03  74.3% 16 0.002  0.08  71.2% 
0 5.636  0.09  88.6% 7 99.999  0.10  78.4% 17 99.996  0.04  85.4% 
0 7.577  0.07  64.6% 8 0.007  0.03  68.5% 18 0.004  0.07  65.7% 
0 43.207  0.08  50.0% 9 0.004  0.03  87.5% 19 100.000  0.00  75.0% 
0 79.405  0.04  52.1% 10 100.000  0.09  59.9% 20 100.000  0.00  51.1% 
1 99.999  0.09  63.8% 11 0.002  0.02  88.6% 21 0.005  0.04  86.8% 
2 0.001  0.04  82.2% 12 0.008  0.07  87.1% 22 0.001  0.07  88.6% 
3 99.999  0.07  76.4% 13 0.004  0.07  88.7% 23 0.002  0.07  88.7% 
4 0.004  0.10  88.6% 14 0.003  0.01  88.8% 24 0.001  0.01  88.9% 
5 99.996  0.09  86.3% 15 0.002  0.08  69.5% 25 0.003  0.06  86.2% 

1 Iteration. 

Table 8. The Confusion Matrix of the SVM Classifier. 

SVM 
A  

0 1 2 3 4 5 6 7 8 9 10 11 PPV 

P 

0 92.2  6.8  0.0  2.7  0.0  0.0  2.8  1.0  0.0  0.0  0.4  3.9  

88.0  

1 5.7  88.1  5.9  5.9  2.9  1.7  2.3  1.0  0.9  1.0  0.4  0.0  
2 0.2  0.0  88.2  0.5  8.8  0.0  0.0  0.0  0.0  0.0  0.0  0.0  
3 0.2  3.4  5.9  88.1  0.0  0.8  0.0  0.2  0.0  0.0  0.2  1.3  
4 0.0  0.0  0.0  0.0  85.3  2.5  2.3  0.0  0.0  0.0  0.0  0.0  
5 0.0  0.0  0.0  0.0  2.9  90.7  0.0  0.0  0.9  3.0  0.0  0.0  
6 0.6  0.2  0.0  0.0  0.0  0.0  86.4  1.0  1.4  1.0  1.3  0.0  
7 0.2  0.2  0.0  0.0  0.0  0.0  1.7  86.9  0.9  0.0  7.7  1.3  
8 0.0  0.2  0.0  0.5  0.0  1.7  1.1  0.7  92.2  2.0  1.9  7.9  
9 0.0  0.0  0.0  0.5  0.0  2.5  0.6  0.0  0.0  91.1  0.0  1.3  

10 0.6  0.5  0.0  0.0  0.0  0.0  2.8  9.3  3.2  0.0  88.1  1.3  
11 0.2  0.5  0.0  1.6  0.0  0.0  0.0  0.0  0.5  2.0  0.0  82.9  

 TPR 88.5  F1: 88.2 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Figure 10. Parameter Tuning Process and ROC of Support Vector Machines (SVM), where (a)
Description of the parameter tuning process of SVM, where y-axis is ACC and x-axis is iteration;
(b) ROC of SVM.

Table 7. Parameter Tuning Process of SVM Classifier.

I 1 C Gamma ACC I 1 C Gamma ACC I 1 C Gamma ACC

0 43.936 0.03 50.9% 6 0.001 0.03 74.3% 16 0.002 0.08 71.2%
0 5.636 0.09 88.6% 7 99.999 0.10 78.4% 17 99.996 0.04 85.4%
0 7.577 0.07 64.6% 8 0.007 0.03 68.5% 18 0.004 0.07 65.7%
0 43.207 0.08 50.0% 9 0.004 0.03 87.5% 19 100.000 0.00 75.0%
0 79.405 0.04 52.1% 10 100.000 0.09 59.9% 20 100.000 0.00 51.1%
1 99.999 0.09 63.8% 11 0.002 0.02 88.6% 21 0.005 0.04 86.8%
2 0.001 0.04 82.2% 12 0.008 0.07 87.1% 22 0.001 0.07 88.6%
3 99.999 0.07 76.4% 13 0.004 0.07 88.7% 23 0.002 0.07 88.7%
4 0.004 0.10 88.6% 14 0.003 0.01 88.8% 24 0.001 0.01 88.9%
5 99.996 0.09 86.3% 15 0.002 0.08 69.5% 25 0.003 0.06 86.2%

1 Iteration.
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Table 8. The Confusion Matrix of the SVM Classifier.

SVM
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 92.2 6.8 0.0 2.7 0.0 0.0 2.8 1.0 0.0 0.0 0.4 3.9

88.0

1 5.7 88.1 5.9 5.9 2.9 1.7 2.3 1.0 0.9 1.0 0.4 0.0
2 0.2 0.0 88.2 0.5 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.2 3.4 5.9 88.1 0.0 0.8 0.0 0.2 0.0 0.0 0.2 1.3
4 0.0 0.0 0.0 0.0 85.3 2.5 2.3 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 2.9 90.7 0.0 0.0 0.9 3.0 0.0 0.0
6 0.6 0.2 0.0 0.0 0.0 0.0 86.4 1.0 1.4 1.0 1.3 0.0
7 0.2 0.2 0.0 0.0 0.0 0.0 1.7 86.9 0.9 0.0 7.7 1.3
8 0.0 0.2 0.0 0.5 0.0 1.7 1.1 0.7 92.2 2.0 1.9 7.9
9 0.0 0.0 0.0 0.5 0.0 2.5 0.6 0.0 0.0 91.1 0.0 1.3
10 0.6 0.5 0.0 0.0 0.0 0.0 2.8 9.3 3.2 0.0 88.1 1.3
11 0.2 0.5 0.0 1.6 0.0 0.0 0.0 0.0 0.5 2.0 0.0 82.9

TPR 88.5 F1: 88.2

3.4.3. AbaBoost

Figure 11a and Table 9 show the changes in ACC in the process of parameter tuning, which was
obtained using Bayesian optimization and five-fold cross-validation. From Table 9, we can see that the
highest ACC was achieved when “n_estimators” was 233.10 (233) and “learning_rate” was 0.02, and
the corresponding value was 84.3%. The ROC curve is plotted in Figure 11b, and the confusion matrix
is presented in Table 10. The weighted mean of AUC was 0.95. The F1-score was 84.4%. The PPV was
91.5%. The TPR was 79.6%. These indicators show that the AdaBoost is weaker than the SVM model
when identifying MDRT.
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Figure 11. Parameter Tuning Process and ROC of AdaBoost, where (a) Description of the parameter
tuning process of AdaBoost, where y-axis is ACC and x-axis is iteration; (b) ROC of AdaBoost.
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Table 9. Parameter Tuning Process of AdaBoost Classifier.

I 1 n_e(int) 2 l_r 3 ACC I n_e(int) l_r ACC I n_e(int) l_r ACC

0 130.42 (130) 0.07 82.5% 6 78.22 (78) 0.00 81.2% 16 160.28 (160) 0.00 75.9%
0 89.48 (89) 0.06 83.8% 7 94.43 (94) 0.00 75.4% 17 183.11 (183) 0.00 79.3%
0 216.15 (216) 0.07 82.2% 8 192.64 (192) 0.10 81.6% 18 18.81 (18) 0.10 81.4%
0 230.86 (230) 0.08 82.3% 9 29.19 (29) 0.10 80.1% 19 84.10 (84) 0.10 81.1%
0 233.10 (233) 0.02 84.3% 10 150.89 (150) 0.10 81.0% 20 65.29 (65) 0.10 80.9%
1 10.00 (10) 0.01 75.6% 11 119.18 (119) 0.10 81.1% 21 71.37 (71) 0.10 80.4%
2 250.00 (250) 0.05 81.3% 12 204.05 (204) 0.00 80.0% 22 113.07 (113) 0.00 75.6%
3 171.39 (171) 0.00 75.2% 13 39.52 (39) 0.10 81.1% 23 125.01 (125) 0.00 75.7%
4 50.67 (50) 0.00 75.3% 14 140.94 (140) 0.00 75.8% 24 210.52 (210) 0.10 81.4%
5 108.26 (108) 0.00 82.1% 15 242.32 (242) 0.10 82.0% 25 58.44 (58) 0.10 81.8%

1 Iteration; 2 n_estimators (the value converted to type “int”); 3 learning_rate.

Table 10. The Confusion Matrix of the AdaBoost Classifier.

Ada
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 96.5 11.2 5.9 5.9 0.0 0.8 5.1 2.9 0.9 0.0 4.7 7.9

91.5

1 1.8 85.9 11.8 16.8 8.8 11.0 5.1 1.0 9.2 16.8 0.2 14.5
2 0.0 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.5 0.0 76.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 72.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 8.8 3.4 80.7 0.0 4.6 1.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.7 0.0 0.0 1.3 2.6
8 0.0 0.2 0.0 0.0 0.0 11.9 4.5 0.0 78.4 8.9 0.4 3.9
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.3 0.0 0.0
10 1.6 2.2 0.0 1.1 0.0 0.8 4.5 20.5 6.9 0.0 93.4 2.6
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.4

TPR 79.6 F1: 84.4

3.4.4. Random Forest

Figure 12a and Table 11 show the changes in ACC in the process of parameter tuning, which
was obtained using Bayesian optimization and five-fold cross-validation. From Table 11, we can see
that the highest ACC was achieved when “n_estimators” was 151.51 (151), “min_samples_split” was
9.24 and “max_features” was 0.40, and the corresponding value was 90.9%. The ROC curve is plotted
in Figure 12b, and the confusion matrix is presented in Table 12. The weighted mean of AUC was
0.98. The F1-score was 90.9%. The PPV was 93.7%. The TPR was 88.8%. These indicators show that
the RF has remarkably outperformed the KNN, SVM and Aba models. However, from the confusion
matrix, we find that when identifying class2, the RF is weaker than the other classifiers. It still cannot
effectively identify MDRT.
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Figure 12. Parameter Tuning Process and ROC of Random Forest (RF), where (a) Description of the
parameter tuning process of RF, where y-axis is ACC and x-axis is iteration; (b) ROC of RF.

Table 11. Parameter Tuning Process of Random Forest Classifier.

I 1 n_e(int) 2 m_s 3 m_f 4 ACC I 1 n_e(int) 2 m_s m_f ACC

0 109.17 (109) 14.51 0.66 88.8% 11 60.86 (60) 2.00 0.10 86.2%
0 128.93 (128) 11.59 0.16 88.9% 12 188.44 (188) 8.18 0.11 88.1%
0 82.95 (82) 7.90 0.76 88.1% 13 10.00 (10) 2.00 1.00 85.5%
0 173.56 (173) 3.06 0.55 90.2% 14 163.27 (163) 8.70 0.11 86.9%
0 151.51 (151) 9.24 0.40 90.9% 15 70.61 (70) 15.00 1.00 87.4%
1 199.83 (199) 14.90 0.40 88.9% 16 118.81 (118) 4.19 1.00 88.3%
2 158.00 (158) 2.04 0.40 88.7% 17 188.43 (188) 2.26 0.99 88.2%
3 10.00 (10) 15.00 0.40 79.7% 18 94.25 (94) 14.94 0.99 88.2%
4 170.47 (170) 14.97 0.40 88.3% 19 144.86 (144) 8.30 1.00 87.9%
5 51.23 (51) 15.00 0.40 85.2% 20 81.62 (81) 14.96 0.12 86.8%
6 199.98 (199) 2.05 0.40 89.6% 21 182.48 (182) 14.97 0.10 87.1%
7 138.00 (138) 2.03 0.40 87.7% 22 29.87 (29) 15.00 1.00 86.6%
8 29.14 (29) 2.00 0.40 82.8% 23 75.74 (75) 2.00 1.00 87.4%
9 144.82 (144) 14.97 0.40 87.1% 24 120.71 (120) 14.92 0.16 88.9%

10 104.86 (104) 2.00 0.40 87.7% 25 199.81 (199) 8.60 0.97 88.5%
1 Iteration; 2 n_estimators (the value converted to type “int”); 3 min_samples_split; 4 max_features.

Table 12. The Confusion Matrix of the Random Forest Classifier.

RF
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 94.7 5.6 5.9 2.2 0.0 0.8 2.3 0.0 0.9 0.0 1.3 7.9

93.7

1 3.9 90.5 11.8 10.3 2.9 2.5 2.8 0.2 0.5 0.0 0.0 1.3
2 0.0 0.0 76.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.4 1.5 0.0 87.6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.3
4 0.0 0.2 0.0 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.2 0.0 0.0 0.0 11.8 93.2 1.1 0.0 2.3 0.0 0.0 1.3
6 0.2 0.2 0.0 0.0 0.0 1.7 88.1 0.0 1.8 0.0 0.4 5.3
7 0.4 0.7 0.0 0.0 0.0 0.0 0.6 92.6 0.9 0.0 7.0 5.3
8 0.0 0.5 0.0 0.0 0.0 0.8 1.7 0.0 89.4 0.0 0.4 3.9
9 0.0 0.0 5.9 0.0 2.9 0.8 0.0 0.0 0.5 99.0 0.0 0.0

10 0.2 0.7 0.0 0.0 0.0 0.0 3.4 7.1 3.2 0.0 90.9 1.3
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 72.4

TPR 88.8 F1: 90.9



ISPRS Int. J. Geo-Inf. 2018, 7, 308 20 of 27

3.4.5. Gradient Boosting Decision Tree

Figure 13a and Table 13 show the changes in ACC in the process of parameter tuning, which was
obtained using Bayesian optimization and five-fold cross-validation. From Table 13, we can see that
the highest ACC was achieved when “n_estimators” was 181.32 (181), “learning_rate” was 0.10 and
“subsample” was 0.90, and the corresponding value was 86.9%. The ROC curve is plotted in Figure 13b,
and the confusion matrix is presented in Table 14. The weighted mean of AUC was 0.97. The F1-score
was 85.1%. The PPV was 88.5%. The TPR was 82.8%. The results imply a small improvement over the
KNN model, but GBDT is weaker than SVM and RF model.
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Table 13. Parameter Tuning Process of GBDT Classifier. 
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Figure 13. Parameter Tuning Process and ROC of Gradient Boosting Decision Tree (GBDT), where
(a) Description of the parameter tuning process of GBDT, where y-axis is ACC and x-axis is iteration;
(b) ROC of GBDT.

Table 13. Parameter Tuning Process of GBDT Classifier.

I 1 n_e(int) 2 l_r 3 Subsample ACC I 1 n_e(int) 2 l_r Subsample ACC

0 218.76 (218) 0.96 0.35 25.3% 11 113.85 (113) 0.10 0.10 64.8%
0 240.10 (240) 0.82 0.77 34.9% 12 30.64 (30) 0.10 0.10 70.4%
0 123.81 (123) 0.37 0.88 81.9% 13 176.71 (176) 1.00 0.10 34.9%
0 17.96 (17) 0.68 0.56 71.3% 14 151.52 (151) 0.10 0.90 85.4%
0 137.47 (137) 0.76 0.18 38.0% 15 187.40 (187) 0.10 0.10 59.4%
1 72.03 (72) 0.10 0.10 69.2% 16 207.85 (207) 0.10 0.90 85.9%
2 99.14 (99) 1.00 0.10 24.4% 17 156.08 (156) 1.00 0.10 32.7%
3 44.94 (44) 1.00 0.90 30.3% 18 145.83 (145) 1.00 0.90 22.5%
4 181.32 (181) 0.10 0.90 86.2% 19 229.98 (229) 0.10 0.10 53.2%
5 164.68 (164) 1.00 0.90 24.1% 20 129.97 (129) 0.10 0.10 31.7%
6 196.56 (196) 1.00 0.10 32.3% 21 37.08 (37) 1.00 0.90 25.2%
7 10.00 (10) 0.10 0.10 72.9% 22 24.64 (24) 1.00 0.90 24.5%
8 250.00 (250) 0.10 0.10 27.2% 23 52.90 (52) 0.10 0.10 69.0%
9 61.47 (61) 1.00 0.90 23.5% 24 106.94 (106) 1.00 0.90 27.3%

10 82.64 (82) 1.00 0.90 26.2% 25 119.00 (119) 1.00 0.90 22.5%
1 Iteration; 2 n_estimators (the value converted to type “int”); 3 learning_rate.
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Table 14. The Confusion Matrix of the GBDT Classifier.

GBDT
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 92.4 8.3 5.9 3.8 2.9 0.0 1.1 0.2 0.0 0.0 1.1 6.6

88.5

1 6.0 86.4 17.6 9.2 2.9 0.8 0.0 0.0 0.5 1.0 0.0 0.0
2 0.0 0.2 58.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.2 1.5 11.8 84.9 0.0 0.0 0.6 0.0 0.9 4.0 0.0 0.0
4 0.0 0.2 0.0 0.0 88.2 0.8 0.0 0.0 0.0 1.0 0.0 0.0
5 0.0 0.0 0.0 0.0 5.9 90.7 2.3 0.0 1.8 3.0 0.0 0.0
6 0.4 0.5 0.0 0.0 0.0 1.7 80.1 0.5 3.2 1.0 1.3 3.9
7 0.4 1.7 0.0 0.5 0.0 0.8 2.3 86.4 2.3 0.0 12.8 6.6
8 0.0 0.5 0.0 0.5 0.0 2.5 7.4 0.5 88.5 4.0 1.1 1.3
9 0.0 0.0 5.9 0.5 0.0 1.7 0.0 0.0 0.5 85.1 0.0 2.6

10 0.6 0.5 0.0 0.0 0.0 0.8 5.7 12.4 2.3 1.0 83.8 9.2
11 0.0 0.2 0.0 0.5 0.0 0.0 0.6 0.0 0.0 0.0 0.0 69.7

TPR 82.8 F1: 85.1

3.4.6. Extreme Gradient Boosting

Figure 14a and Table 15 show the changes in ACC in the process of parameter tuning, which was
obtained using Bayesian optimization and five-fold cross-validation. From Table 15, we can see that
the highest ACC was achieved when “min_child_weight” was 3.55 (3), “colsample_bytree” was 1.00,
“max_depth” was 10.00 (10), “subsample” was 1.00, “gamma” was 0, “alpha” was 0 and “eta” was 0.10,
and the value was 92.7%. The ROC curve is plotted in Figure 14b, and the confusion matrix is presented
in Table 16. The weighted mean of AUC was 0.99. The F1-score was 91.2%. The PPV was 92.5%.
The TPR was 90.0%. The confusion matrix also shows that although XGBoost outperformed other
classifiers when identifying modes 0, 1, 3, etc., it is not good at identifying mode 2 with only 76.5%
accuracy (much less than the figure of 88.2% achieved by SVM). SVM might be better at dealing with
small samples (mode 2 has only 42 labeled trajectories) than XGboost. Overall, these indicators show
that the XGBoost classifier has remarkably outperformed the other classifiers when identifying MDRT.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  21 of 27 
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7 1.00 (1)  0.10  5.00 (5)  1.00  0.00  0.00  0.10  87.6% 
8 6.02 (6)  1.00  10.00 (10)  1.00  1.00  0.00  0.10  91.8% 
9 1.00 (1)  0.10  10.00 (10)  1.00  1.00  1.00  0.10  88.7% 

10 10.00 (10)  0.10  5.00 (5)  1.00  1.00  0.00  0.10  88.7% 
11 1.00 (1)  1.00  7.46 (7)  1.00  0.00  1.00  0.10  72.6% 
12 6.91 (6)  0.10  10.00 (10)  1.00  0.00  1.00  0.10  86.5% 
13 1.00 (1)  1.00  7.54 (7)  1.00  1.00  0.00  0.10  92.5% 
14 3.91 (3)  1.00  5.00 (5)  1.00  0.00  0.00  0.10  91.8% 
15 10.00 (10)  1.00  8.12 (8)  1.00  1.00  0.00  0.10  92.2% 
16 10.00 (10)  1.00  5.00 (5)  1.00  0.00  1.00  0.10  91.3% 
17 9.23 (9)  0.10  8.51 (8)  1.00  1.00  1.00  0.10  88.4% 
18 1.00 (1)  1.00  10.00 (10)  0.50  1.00  1.00  0.00  89.9% 
19 8.29 (8)  1.00  10.00 (10)  1.00  1.00  1.00  0.00  85.6% 
20 6.18 (6)  0.10  5.00 (5)  0.50  0.00  0.00  0.10  86.4% 
21 2.72 (2)  0.10  5.00 (5)  0.50  1.00  1.00  0.10  88.6% 
22 5.34 (5)  1.00  7.52 (7)  1.00  0.00  0.00  0.10  91.8% 
23 1.00 (1)  0.10  8.99 (8)  0.50  0.00  0.00  0.10  85.5% 
24 3.55 (3)  1.00  10.00 (10)  1.00  0.00  0.00  0.10  92.7% 
25 1.00 (1)  1.00  5.00 (5)  0.50  0.00  1.00  0.10  90.8% 

1 Iteration; 2 min_child_weight (the value converted to type “int”); 3 colsample_bytree; 4 max_depth 
(the value converted to type “int”). 
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Figure 14. Parameter Tuning Process and ROC of XGBoost, where (a) Description of the parameter
tuning process of XGboost, where y-axis is ACC and x-axis is iteration; (b) ROC of XGBoost.
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Table 15. Parameter Tuning Process of XGBoost Classifier.

I 1 m_c_w(int) 2 c_b 3 m_d(int) 4 Subsample Gamma Alpha eta ACC

0 4.25 (4) 0.16 9.03 (9) 0.50 0.77 0.66 0.01 61.9%
0 7.57 (7) 0.54 8.77 (8) 0.72 0.31 0.34 0.04 91.7%
0 9.37 (9) 0.30 9.79 (9) 0.68 0.95 0.42 0.05 91.1%
0 9.77 (9) 0.43 6.35 (6) 0.75 0.20 0.57 0.02 91.5%
0 8.61 (8) 0.86 5.66 (5) 0.84 0.17 0.12 0.08 91.2%
1 10.00 (10) 1.00 10.00 (10) 1.00 0.00 1.00 0.10 60.8%
2 10.00 (10) 0.10 10.00 (10) 0.50 0.00 0.00 0.00 69.9%
3 1.00 (1) 1.00 5.00 (5) 1.00 1.00 1.00 0.10 92.1%
4 6.01 (6) 0.10 5.00 (5) 1.00 1.00 1.00 0.10 88.7%
5 8.46 (8) 1.00 7.31 (7) 0.50 1.00 1.00 0.00 65.0%
6 1.00 (1) 1.00 10.00 (10) 1.00 0.00 0.00 0.10 92.6%
7 1.00 (1) 0.10 5.00 (5) 1.00 0.00 0.00 0.10 87.6%
8 6.02 (6) 1.00 10.00 (10) 1.00 1.00 0.00 0.10 91.8%
9 1.00 (1) 0.10 10.00 (10) 1.00 1.00 1.00 0.10 88.7%
10 10.00 (10) 0.10 5.00 (5) 1.00 1.00 0.00 0.10 88.7%
11 1.00 (1) 1.00 7.46 (7) 1.00 0.00 1.00 0.10 72.6%
12 6.91 (6) 0.10 10.00 (10) 1.00 0.00 1.00 0.10 86.5%
13 1.00 (1) 1.00 7.54 (7) 1.00 1.00 0.00 0.10 92.5%
14 3.91 (3) 1.00 5.00 (5) 1.00 0.00 0.00 0.10 91.8%
15 10.00 (10) 1.00 8.12 (8) 1.00 1.00 0.00 0.10 92.2%
16 10.00 (10) 1.00 5.00 (5) 1.00 0.00 1.00 0.10 91.3%
17 9.23 (9) 0.10 8.51 (8) 1.00 1.00 1.00 0.10 88.4%
18 1.00 (1) 1.00 10.00 (10) 0.50 1.00 1.00 0.00 89.9%
19 8.29 (8) 1.00 10.00 (10) 1.00 1.00 1.00 0.00 85.6%
20 6.18 (6) 0.10 5.00 (5) 0.50 0.00 0.00 0.10 86.4%
21 2.72 (2) 0.10 5.00 (5) 0.50 1.00 1.00 0.10 88.6%
22 5.34 (5) 1.00 7.52 (7) 1.00 0.00 0.00 0.10 91.8%
23 1.00 (1) 0.10 8.99 (8) 0.50 0.00 0.00 0.10 85.5%
24 3.55 (3) 1.00 10.00 (10) 1.00 0.00 0.00 0.10 92.7%
25 1.00 (1) 1.00 5.00 (5) 0.50 0.00 1.00 0.10 90.8%

1 Iteration; 2 min_child_weight (the value converted to type “int”); 3 colsample_bytree; 4 max_depth (the value
converted to type “int”).

Table 16. The Confusion Matrix of the XGBoost Model.

XGB
A

0 1 2 3 4 5 6 7 8 9 10 11 PPV

P

0 95.1 4.9 0.0 1.6 0.0 0.0 0.6 0.2 0.0 0.0 1.7 2.6

92.5

1 4.1 93.2 11.8 5.9 0.0 0.0 1.1 0.2 0.9 0.0 0.0 0.0
2 0.0 0.0 76.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 1.2 5.9 91.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
4 0.0 0.0 0.0 0.0 85.3 2.5 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 8.8 95.8 1.1 0.0 0.9 0.0 0.2 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 90.9 0.0 2.8 0.0 0.6 1.3
7 0.2 0.2 0.0 0.0 0.0 0.0 1.1 93.1 0.5 0.0 5.5 3.9
8 0.0 0.2 0.0 0.0 5.9 0.8 2.3 0.0 92.7 2.0 0.9 2.6
9 0.0 0.0 5.9 0.5 0.0 0.8 0.0 0.0 0.0 97.0 0.0 0.0

10 0.6 0.2 0.0 0.0 0.0 0.0 2.8 6.4 2.3 0.0 91.1 3.9
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 85.5

TPR 90.0 F1: 91.2

3.5. The Comparison of Features and Classifiers

We tested different combinations of features and classifiers by ACC, which is shown in Figure 15
and Table 17. From this comparison, we can conclude the following: (i) In general, combinations of
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feature groups perform better than a single feature group; (ii) Different classifiers have their own
most suitable feature combinations; (iii) Overall, XGBoost is the most suitable classifier for identifying
MDRT with features GSF, LSF, TDFDF, and DSSDF; (iv) The DSSDF (4) is important since all the best
performances of different classifiers are related to it; (v) By comparing the results of “123” (XGBoost)
and “1234” (XGBoost), we find that DSSDF results in an accuracy improvement of 11.2%.
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Table 17. Impacts of Features and Classifiers on ACC.

KNN SVM Adaboost RF DBGT XGBoost

1 32.50 56.30 48.30 50.50 58.80 57.90

Combinations

2 20.70 21.40 24.40 40.00 24.00 25.00
3 29.70 46.00 32.80 35.00 33.00 33.90
4 48.50 60.20 47.40 63.60 61.10 62.20

12 34.40 59.00 49.60 81.10 70.10 78.70
13 36.10 60.00 51.30 83.40 69.00 81.00
14 47.10 70.30 64.90 82.50 88.10 82.10
23 30.20 29.50 33.80 37.00 36.10 36.00
24 53.60 58.70 51.50 67.60 65.20 66.00
34 63.10 68.00 52.90 73.30 70.00 73.70

123 36.10 49.50 52.40 81.90 67.70 81.50
134 48.50 57.00 66.00 88.60 89.60 80.20
124 45.30 70.30 65.40 91.60 87.70 90.20
234 55.00 74.20 52.00 74.60 71.60 75.00
1234 74.13 88.91 84.30 90.94 86.22 92.70

Classifiers

Features in DSSDF are important mainly because the modes in MDRT mainly differ in the details
of microscopic driving. It is difficult to capture these in general statistical methods. With PTCs as
benchmarks, the differences between different modes can be demonstrated by segmentation and
DTW calculations.
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The XGBoost has a complete theoretical system that makes the modeling and tuning process
clearer. At the same time, the construction process of its tree structure is more accurate and robust.
These advantages make it better in this study.

4. Conclusions

An approach including data preprocessing, feature extraction, classifiers modeling, training and
parameter tuning, and model evaluation was developed to infer Modes of Driving Railway Trains
(MDRT) using only GPS data. To obtain better performance, we proposed four groups of features with
corresponding extraction methods and used different classifiers including four ensemble classifiers
and two single classifiers to identify MDRT. The experiment revealed the following: (i) Combinations
of feature groups make sense when identifying MDRT, and proposed Driving Segmented Standard
Deviation Features play an important role in improving identification performance with an accuracy
improvement of 11.2% (using XGBoost); (ii) In general, combinations of feature groups perform better
than a single feature group; (iii) Different classifiers have their own most suitable feature combinations;
(iv) The XGBoost classifier is the best according to the evaluation indicators, with the highest accuracy
(92.70%) from five-fold cross-validation and Bayesian optimization.

The research results of this paper have strong application value in the field of railway
transportation. First, in the field of driver behavior habits, further analysis of the internal characteristics
of the MDRT can give operators a large deal of micro-decision-support information, such as the driving
strategy structure adopted by the driver after the delay, and the proportion of different driving
behaviors in the face of signal constraints [3]. The information can help to correct parameters of
planning and is of great significance for further optimizing the railway transportation plans [8]. Second,
in the field of automatic driving, MDRT can provide the auto-driving system with a decision-making
basis for different conditions in accordance with historical reality, reduce the optimization calculation
scale and improve the feasibility of the driving scheme. Finally, in the field of capacity utilization
optimization, combined with the random occupancy time model, the research results of this paper can
be combined with micro-simulation models [3,7,9] and conflict detection systems [10,11] in order to
improve the efficiency and feasibility of the optimization process.

In this paper, we used single classifiers and ensemble classifiers to identify MDRS. Testing more
classifiers (deep learning and Bayesian network, etc.) is one part of our future work. In addition,
analyzing the internal characteristics of MDRT is an important basic of implementing MDRT, which
is planned for further work. How to explain the ensemble model more intuitively is also a part of
our future work. Another aspect of the research that must be addressed is how to use fusion data to
identify MDRS. The utilization of fusion data might improve accuracy of identification. On one hand,
we need to strengthen the relevance of our research to existing railway data fusion systems [3,7–11].
On the other hand, approaches to collecting fusion data from other sensors in locomotives need to
be mastered.
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