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Abstract: The European Common Agricultural Policy (CAP) post-2020 timeframe reform will
reshape the agriculture land use control procedures from a selected risk fields-based approach
into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling
greater transparency and comparability of CAP results in different Member States. In this paper,
we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the
BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond
to land use anomaly observations in the assessment of agricultural parcel management activities.
We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and
crop fields in one growing season, and in particular those that can be associated with time-defined
greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and
currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized
procedures to support and verify the BFAST Monitor anomaly detection results using the analysis
of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series
standard deviation output, where geographical objects of interest are parcels of particular land use.
The validation of land use candidate anomalies in view of land use ineligibilities was performed
with the information on declared land annual use and field controls, as obtained in the framework
of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves
efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel
greenness. As such it can already be introduced to help the process of agricultural land use control
within certain CAP activities in the preparation and adaptation phase.

Keywords: crop monitoring; time series analysis; NDVI object-based temporal profiles; change
detection; permanent meadows; arable fields; GEOBIA

1. Introduction

The European Common Agriculture Policy (CAP) was set up five decades ago with the goal
of ensuring food security, and to support the farmers and agricultural activities of Member States
(MS) by implementing a system of agricultural subsidies. The CAP has responded to the economic,
environmental and other challenges that Europe has faced at different times by undergoing several
reforms. The latest CAP reform, planned for the period after 2020, will see, among other commitments,
a reshaping of the updates in the monitoring procedures of CAP measures, including the procedure
for control and monitoring system support (Integrated Administration and Control System, IACS) [1]
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and the procedure for Control with Remote Sensing (CwRS). The CAP already encourages MS to
use Copernicus services (Sentinel data, Copernicus Data and Information Access Service-DIAS)
for monitoring the implementation of its measures. However, after 2020 the MS will need to
implement some of those updates with reference to the use of common data (Sentinel) to enable
better comparability of CAP results achieved by different MS, and to shift from sample inspections to
large-scale monitoring [2].

In each MS, subsidy administration and control are carried out by a National Control and
Paying Agency (NCPA) [3]. During the process of subsidy control, each NCPA must decide on the
compliance of farmers’ declaration as well as on the adequacy of agricultural practices on each parcel,
and consequently determine whether the management of the agricultural land meets the requirements
of the subsidy payment scheme (i.e., the process of CAP measures). Each NCPA is responsible for
maintaining the national land parcel identification system (LPIS) and controlling at least 5% of those
declarations by performing On-The-Spot checks (OTS, classical/field-based or using remote sensing)
and penalizing farmers who submit incorrect information [3]. OTS checks are performed on a yearly
basis, but each year on different sample zones. In Slovenia, the governmental body responsible
for these controls is the Agency of the Republic of Slovenia for Agricultural Markets and Rural
Development (ARSKTRP), which has been operating since 2000 as a body within the Ministry of
Agriculture, Forestry and Food of the Republic of Slovenia (MKGP).

The aim of CwRS is to check the claimed parcels in the office as much as possible using imagery
available for the current year [3]. The primary result of these checks is a control result (diagnosis) at a
parcel level. High- and very high-resolution satellite images (i.e., WorldView, SPOT), which the CwRS
is currently based on, provide up-to-date location insights and can reduce the number of field visits.
However, not all cases of control are solved based on image interpretation. The upcoming reform
thus aims to promote the use of satellite data with a special focus on freely available Sentinel-1 and
Sentinel-2 time series imagery and DIAS in order to make a substantial reduction in the number of
field visits, paying particular attention to a regular monitoring system, and therefore supporting the
modernization and simplification of the CAP in the post-2020 timeframe [1].

The NCPAs can make the right decisions if they possess accurate information on agricultural
practices actually being performed, and any major changes that have occurred at the parcel level.
This information is now expected to be provided with time series analysis of Sentinel observations.
Time series in this respect are defined as a series of consecutive observations, acquired at regular or
irregular time intervals [4]. The Sentinel-1 (S-1) and Sentinel-2 (S-2) are new and powerful sources
of radar and optical data for a complete agro-environmental monitoring. In addition to the entire
crop or pasture lifecycles, and for monitoring any land change, legal or illegal, the S-1 and S-2 data
appear suitable for various application domains (forestry, urban, water, etc.) [5]. Demonstrating a high
capacity for the characterization of environmental phenomena, the S-1 and S-2 data are able to describe
trends as well as discrete change events [4]. Sentinel satellites capture the Earth’s surface with high
temporal resolution (i.e., several days), enabling the processes on the Earth’s surface to be studied
continuously over a period of time (e.g., throughout the growing season).

Procedures for analyzing and interpreting data that fully integrate the time dimension are a field
of intensive research. Assessing the location, extent, type, and frequency of land cover transitions,
as well as identifying spatial and temporal patterns of change through interpretation and analysis
of frequent land cover information, can provide insights into the underlying processes and drivers
of change [4]. Remote sensing techniques are widely used in agriculture and agronomy. The use of
remote sensing is necessary, as the monitoring of agricultural activities faces special problems not often
seen in other economic sectors, e.g., agricultural production follows strong seasonal patterns related to
the biological lifecycle of crops [5].

The identification and monitoring of agricultural practices is relevant for a range of ecological,
conservation, and political issues [6]. Grassland in particular is a type of land cover spurring
conflict between agriculture and conservation, as the intensification of land use is a major threat
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to grassland biodiversity. In the context of grassland and rangeland monitoring, remote sensing
approaches have been developed for the characterization of grassland type and vegetation change
for conservation planning, the mapping of pasture and grassland productivity and the derivation of
biophysical properties [7]. Jakovels et al. [8] highlight the clear interest from a number of end-users
in Latvia for grassland mapping and management practice monitoring solutions. They propose and
explore the capability of Sentinel (S-1 radar and S-2 optical) data use and fusion for the assessment
of grassland management activities. Grasslands mapping was performed using S-2 temporal data
sets, while detection of mowing and ploughing was carried out using S-1 radar data, the latter also
being useful during cloudy weather conditions when optical data is not available. Asam et al. [6]
assessed the feasibility of optical RapidEye data to derive leaf area index (LAI) time series and relate
them to grassland management in Bavarian alpine uplands. Their analysis is based on exploring
LAI variability identified using the standard deviation, where different levels of variability indicate
different numbers of mowing events. For an accurate identification of mowing events they emphasize
the importance of selection of the time series temporal resolution, and suggest an acquisition frequency
of two to three weeks.

The majority of the EU MS use remote sensing to check at least a part of the subsidies for
agricultural areas [9]. Successful demonstration of using S-1 and S-2 images in support of CAP was
demonstrated in Denmark. A pilot study completed by DHI GRAS and supported by the Danish
Agrifish Agency focused on the integration of S-1 and S-2 data within the field of grass mowing
and catch crop monitoring [10]. The Copernicus Sentinel satellites are also being used to detect and
better evaluate the management practices of grasslands in Estonia. The automatic satellite-based
grassland mowing detection system has great potential in the context of the CAP, where one of the
requirements for subsidy payments is regular mowing of grasslands [11]. Processes for objective
and automated identification of agricultural parcel features concerning the CAP have also been
developed for several use cases in Spain and Portugal. Estrada et al. [9] proposed processing and
combining S-2 and LIDAR data for the identification of irrigated areas and landscape elements,
while an S-2 based crop identification methodology for the monitoring of the CAP Cross Compliance
and Greening obligations was also investigated for a smallholder agricultural zone [2]. Schmedtmann
and Campagnolo [12] developed a reliable control system of parcel-based crop classification to partially
replace Computer-Assisted Photo Interpretation (CAPI) for crop identification, with the overarching
goal of reducing control costs and completion time.

An important step towards modernization and simplification of the CAP in the post-2020
timeframe is being made with the implementation of the SEN4CAP project [1] by the European
Space Agency (ESA) in direct collaboration with DG-AGRI, DG-Grow and DG-JRC. The state-of-the-art
SEN4CAP project aims at providing the European and national CAP stakeholders with validated
algorithms, products and best practices for agriculture monitoring relevant for the management
of various CAP measures, e.g., crop diversification, permanent grassland identification, detection
of fallow land, catch crops, nitrogen-fixing crops, land abandonment. The main premise of the
suggested monitoring of CAP measures is that the declared agricultural parcel state can be tracked
using a proposed color-code expressed as ‘traffic lights’ for each payment scheme and the related
eligibility conditions. The process of allocating traffic lights consists of assigning an eligibility status
to an agricultural parcel. The process is based on a channeling approach: the parcel is monitored
until a characteristic manifestation through the applied markers is observed that allows a decision
to be made for the application year. The markers are customized observations of signs of plant
status in relation to the agricultural activities performed, that can be derived from specific vegetation
status indicators (e.g., signs of ploughing, harvesting, grassland mowing, overgrowth) [1]. The main
objective of introducing the described system is to optimize the process of verifying the suitability
of land management, in particular reducing the scope of OTS controls and to shift the controls from
a sampling pattern scheme (sample inspections) to covering all agricultural areas in the country
(large scale monitoring).
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Objectives of the Study

The aim of our study is to evaluate the time series approach using S-2 data for the identification
of irregularities in the assessment of the agricultural object (parcel)-based management practice.
The objective is to identify certain signs of ineligible (inconsistent) areas on permanent meadows and
crop fields in one growing season.

Appropriate measures of agricultural policy require only mowing to be carried out on permanent
meadows (mowing is also time defined and limited), and that agricultural fields should be ploughed
annually or harvested depending on the type of crop planted. Permanent changes in land cover may
be the consequence of biotic or abiotic factors, and should be treated in a meaningful manner in the
monitoring process. Therefore, when analyzing the detection of irregularities of land use, we are
paying particular attention to signs of ploughing or other permanent changes in the land cover in
the case of permanent meadows, whereas for crop fields we focus on overgrowing, abandonment
or absence of ploughing. In both cases, the observation of the phenomenon is associated with the
observation of the continuity in greenness (the unbroken and consistent existence of vegetation).

In the process of crop fields analysis, no attention has been given to the classification of crop types,
but instead to land use anomaly detection. The baseline detection of changes was done using the BFAST
Monitor method [13], a methodology for change analysis based on time-series data. This methodology
is mostly used to characterize the spatial and temporal changes in forest areas. To date, only a few
attempts of its application for agricultural land use changes analysis can be found in the literature [14].
In our case, BFAST Monitor was used in combination with the analysis of object-based temporal
(NDVI) profiles and computation of time series standard deviation as an indication of NDVI variability
in one growing season. The complete semi-automatic methodology was developed to obtain results in
a relatively fast time and designed in a way that the outputs can serve as a risk parcel warning layer of
unjustified use in further control procedures of the national paying agency, ARSKTRP.

A further contribution of this study is the assessment of the suitability of Sentinel-2 data for
monitoring fragmented and small-size agricultural land in Slovenia in the context of ongoing reforms
within the monitoring CAP area-related measures, considering the spatial, spectral and time resolution
of Sentinel-2 observations.

2. Study Area and Data

2.1. Study Area

Our case studies are three areas located in the vicinity of the city of Maribor in the northwestern
part of Slovenia. Each of these three areas around the Duplek, Kungota and Zbigovci settlements cover
approximately 7 km2 (2.25 km × 3 km) and represent one national digital orthophoto sheet (DOF 5),
a spatial unit which is relevant for national mapping authorities, including those related to the CAP.
The exact location of all three areas are seen on Figure 1. The study regions are relatively similar in
geographic and landscape characteristics, and are mostly associated with agriculture. Agricultural land
is comprised of permanent meadows and a variety of agricultural fields. Land categories are defined
by the official MKGP land use layer RABA (record of agricultural and forest land use). The agricultural
practices of meadow and crop field maintenance are diverse in all regions, and agricultural parcels
vary greatly in size and shape. The phenological analysis of these fragmented and heterogeneous areas
using S-2 images is thus challenging.
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products. It combines the physical approach with the standard Minnaert method. The total irradiance 
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manual but necessary in order to avoid poor-quality data bias of time series analysis and potentially 
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Figure 1. The location of the study areas Duplek, Kungota and Zbigovci. Analyzed DOF sheets
(national topographic and CAP mapping units) are marked in red.

2.2. Data Sources

The time series analysis in this study required all available S-2 optical images in the growing
seasons over the study areas. S-2 images (Level-1C) are available approximately every five to 10 days
and were downloaded for the three test areas from the European Space Agency’s (ESA) Sentinel
Scientific Data Hub. We downloaded only those S-2 image tiles obtained over study areas with
less than 20% cloud coverage. The dataset collection encompasses images from the 2015 season,
when the first S-2A images were publicly available, as well as 2016 and 2017 seasons, when the S-2B
satellite became operational. All downloaded image tiles were pre-processed using the automatic
near-real-time image processing chain STORM that performs all processing steps from the input optical
images to analysis-ready products automatically [15,16]. As the image tiles are already orthorectified,
we only applied atmospheric and topographic corrections.

Atmospheric conditions influence satellite measurements of the Earth’s surface. The retrieval of
accurate and physically-based surface properties is particularly important in vegetation monitoring,
and even more in phenological monitoring. Various uncertainties may enter into the vegetation and
other higher-level products developed from remotely-sensed data, as well their interpretation, due to
atmospheric and topographic impacts.

Both corrections applied to S-2 data are implemented as a module within the image processing
chain STORM. Atmospheric correction uses the ATCOR algorithm (ATmospheric CORrection) [17] and
provides top-of-the-canopy reflectance, as well as cloud and cloud shadow masks. The topographic
correction TC@STORM [18] was developed specifically for the development of STORM products.
It combines the physical approach with the standard Minnaert method. The total irradiance is
modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle
and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the
terrain (dependent on sky-view factor and albedo).

Satellite observations with assigned cloud and cloud shadow masks were removed from the
dataset collection. Additionally, the entire dataset was visually inspected and refined (haze and cloud
shadow contaminated observations were withdrawn from the time series dataset). This step was
manual but necessary in order to avoid poor-quality data bias of time series analysis and potentially
misleading results. The total number of analysis-ready image tiles over the three-year period is shown
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in Table 1. Only visible bands (blue, green, red) and the near-infrared band with a 10 m spatial
resolution were used.

Table 1. A total number of analysis-ready images in the growing season (March–September) for each
study area over the selected years.

2015 2016 2017 Together

Duplek 3 13 24 40

Kungota 5 10 25 40

Zbigovci 2 18 26 46

To observe phenological patterns we calculated the NDVI for each dataset image. NDVI is
a relative and indirect measure of the amount of photosynthetic biomass or plant growth vitality,
and has been proven to be an effective tool for monitoring vegetative changes across a wide range of
terrestrial ecosystems [19]. Its annual average value or peak can provide information on photosynthetic
activity [20], its seasonal amplitude is associated with the composition of evergreen and deciduous
vegetation [21], and the length of the growth season can be associated with phenological changes [22].
Therefore, NDVI is an appropriate index for time series analysis because of its ability to demonstrate
the various changes in vegetation under consideration.

In addition to the satellite images, ancillary information was prepared in the form of land
parcel data sets of permanent meadows and crop fields. Adequate ancillary data was a key factor to
obtain spatial land use class information in the required detail, and to separate land use types under
consideration from other land use types.

The basic layer set of objects for permanent meadow identification was the existing administrative
layer of agricultural land use RABA. The RABA dataset consists of 25 land use classes, most of which
are different types of agricultural land. The classes are systematically and precisely defined on the
basis of aerial photography interpretation, updated in a three- to five-year cycle. We considered data
sets for the permanent meadows layer from the 2016 RABA layer. To satisfy the least conditions of
statistically significant areas for calculations using S-2 images, we only included permanent meadows
with an area larger than 1000 m2. The minimum mapping unit thus represented 10 pixels on S-2
datasets. The final numbers of suitable permanent meadows were 93 for Duplek, 109 for Kungota and
85 for Zbigovci.

In order to obtain the crop field data set, we used the official Graphical Units of Land Use layer
(GERK). For crop fields a different database than in the case of permanent meadows was used because
the class crop field in the RABA layer might aggregate crop fields parcel objects (possibly of different
crops), and therefore be less precise than GERK. GERK is an individual spatial unit of unified piece of
agricultural land with the same land use, which is cultivated by one farmer and represents the basis
for direct subsidy payments. Both RABA and GERK layers are a public property and freely available
on MKGP webpages. The minimum area considered for crop fields was also 1000 m2, and the final
number of suitable crop fields was 159 for the case of Duplek, 95 for Kungota and 117 for Zbigovci.

3. Methodology

3.1. Reference Phenology of Observed Agriculture Land in One Growing Season

Observation of the vegetation cycle and knowledge of periodic processes and causes for their
occurrence lead to the understanding and detection of anomalies in the growth cycle. For the purpose
of our study we examined the reference state and characteristic development of the growth cycle of a
permanent meadow and crop field in one growing season, in addition to the visual interpretation of
the NDVI vegetation index time series.

Figure 2 shows examples of a permanent meadow and crop field with the expected development
pattern in the 2017 growing season. Dark green shades represent high values of NDVI (>0.5,
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usually above 0.6), indicating the presence and active growth of vegetation, or vegetation vigor.
Red shades visualize lower NDVI values (<0.4) and represent a more substantial lack of vegetation
cover. Developmental disturbances in vegetation vigor can be further associated with biotic (e.g., severe
drought) or abiotic (e.g., ploughing) factors and triggers. Beige shades (0.4 < NDVI < 0.5) also represent
relatively high values of NDVI, and are usually a reflection of young growth or the result of mowing
and/or mild drought or of smaller soil outcrops. Both crop types have different temporal patterns due
to diverse land use characteristics and the agricultural practices that are applied.

Figure 3 shows that a characteristic permanent meadow maintains high NDVI values throughout
the growing season (usually above 0.5). Sign of mowing can be detected by the slight drop of NDVI in
the middle of the season. In the case of a crop field, the growth cycle depends on the specific type of the
crop grown. Nonetheless, most agricultural crops show a typical pattern of NDVI value consisting of a
drop at the beginning of the growing season (indicating tillage), high values in the middle (showing
full bloom) and a drop again at the end of the growing season (indicating harvest).

Both growth cycles, visible in Figure 3, represent a reference (baseline) condition for further
analysis of the detection of possible deviations or anomalies on permanent meadows and crop fields
in Slovenia and other countries with similar climatic conditions.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 24 

 

visualize lower NDVI values (<0.4) and represent a more substantial lack of vegetation cover. 
Developmental disturbances in vegetation vigor can be further associated with biotic (e.g., severe 
drought) or abiotic (e.g., ploughing) factors and triggers. Beige shades (0.4 < NDVI < 0.5) also 
represent relatively high values of NDVI, and are usually a reflection of young growth or the result 
of mowing and/or mild drought or of smaller soil outcrops. Both crop types have different temporal 
patterns due to diverse land use characteristics and the agricultural practices that are applied. 

Figure 3 shows that a characteristic permanent meadow maintains high NDVI values 
throughout the growing season (usually above 0.5). Sign of mowing can be detected by the slight 
drop of NDVI in the middle of the season. In the case of a crop field, the growth cycle depends on the 
specific type of the crop grown. Nonetheless, most agricultural crops show a typical pattern of NDVI 
value consisting of a drop at the beginning of the growing season (indicating tillage), high values in 
the middle (showing full bloom) and a drop again at the end of the growing season (indicating 
harvest). 

Both growth cycles, visible in Figure 3, represent a reference (baseline) condition for further 
analysis of the detection of possible deviations or anomalies on permanent meadows and crop fields 
in Slovenia and other countries with similar climatic conditions. 

 
Figure 2. Growth cycle of a permanent meadow and crop field with no irregularities in the 2017 
growing season, shown on the layer of NDVI vegetation index derived from Sentinel-2 imagery 
acquired at different times. Dark green shades represent high NDVI values and active vegetation. 

 
Figure 3. Example of NDVI values of a permanent meadow and crop field with no irregularities 
during the 2017 growing year (thick lines represent linear smoothing). In the case of a permanent 

Figure 2. Growth cycle of a permanent meadow and crop field with no irregularities in the 2017
growing season, shown on the layer of NDVI vegetation index derived from Sentinel-2 imagery
acquired at different times. Dark green shades represent high NDVI values and active vegetation.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 24 

 

visualize lower NDVI values (<0.4) and represent a more substantial lack of vegetation cover. 
Developmental disturbances in vegetation vigor can be further associated with biotic (e.g., severe 
drought) or abiotic (e.g., ploughing) factors and triggers. Beige shades (0.4 < NDVI < 0.5) also 
represent relatively high values of NDVI, and are usually a reflection of young growth or the result 
of mowing and/or mild drought or of smaller soil outcrops. Both crop types have different temporal 
patterns due to diverse land use characteristics and the agricultural practices that are applied. 

Figure 3 shows that a characteristic permanent meadow maintains high NDVI values 
throughout the growing season (usually above 0.5). Sign of mowing can be detected by the slight 
drop of NDVI in the middle of the season. In the case of a crop field, the growth cycle depends on the 
specific type of the crop grown. Nonetheless, most agricultural crops show a typical pattern of NDVI 
value consisting of a drop at the beginning of the growing season (indicating tillage), high values in 
the middle (showing full bloom) and a drop again at the end of the growing season (indicating 
harvest). 

Both growth cycles, visible in Figure 3, represent a reference (baseline) condition for further 
analysis of the detection of possible deviations or anomalies on permanent meadows and crop fields 
in Slovenia and other countries with similar climatic conditions. 

 
Figure 2. Growth cycle of a permanent meadow and crop field with no irregularities in the 2017 
growing season, shown on the layer of NDVI vegetation index derived from Sentinel-2 imagery 
acquired at different times. Dark green shades represent high NDVI values and active vegetation. 

 
Figure 3. Example of NDVI values of a permanent meadow and crop field with no irregularities 
during the 2017 growing year (thick lines represent linear smoothing). In the case of a permanent 

Figure 3. Example of NDVI values of a permanent meadow and crop field with no irregularities during
the 2017 growing year (thick lines represent linear smoothing). In the case of a permanent meadow,
a drop of values appropriately corresponds to the mowing season, whereas in the case of crop field a
drop represents tillage or harvest.
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3.2. Approach Design

Two important considerations influenced the design of the approach: the selection of mapping
unit or unit of phenomena observation, and the short timeframe of available data to conduct an
analysis of time series between the years.

Due to the object-oriented interest in agriculture applications in general, and having an
agricultural parcel as a base unit in monitoring CAP measures, the use of Geographic Object Based
Image Analysis (GEOBIA) [23] is a good choice. Several GEOBIA-based applications have shown
benefits in time-related agriculture applications, especially when crop classification is the main
consideration [4,24]. GEOBIA typically relies on segmentation algorithms, where image segments
are first partitioned from an image into uniform regions, which are later related to meaningful
geographic objects [25] and classified accordingly. However, when a spatial database, such as the Land
Parcel Information System (LPIS), or in our case operational national-level administrative layers of
agricultural land use (RABA, GERK), are available, this segmentation step is not necessary. Therefore,
we do not need to produce meaningful objects from an image using segmentation, and so avoid the
possible uncertainties that might occur when creating real world objects from image segments [26].
Geographical objects in our case are agricultural parcels that form a subset of an already existing
spatial information system of high spatial resolution, which represents the physical structure of the
landscape. These real-world objects (parcels) provide an up-to-date record of land use in graphical
and textual format. The proposed anomaly detection approach is focused on the temporal analysis,
seasonal development and specific anomaly identification in parcel objects, thus combining pixel- and
object-based analysis.

Important considerations in time series analysis are the length (total time span) and density of
the time series dataset (density of time intervals of observations). While some algorithms require
uniform spacing between dates to provide calculations and outputs, others can also deal with uneven
distributions. However, the main prerequisite for most time series analysis algorithms is a sufficient
length of consecutive observations, providing a reference over several years, also referred to as stable
history. In this respect, S-2 data with the available observation period (data delivery) since 2015
enables only a short time series dataset. In the timeframe of this study the observation period is
only over three growing seasons. This is identified as a weak starting point in providing sufficient
and stable reference/history information (two growing seasons with normal development expected)
to find the true trends in an observed year (and thus relevant anomaly detection) for the BFAST
Monitor algorithm. Due to this poor starting point for anomaly detection performed on short time
series analysis, we introduce two additional procedures to control and verify the BFAST Monitor
algorithm results.

3.3. Methodolgical Framework

The methodological workflow consists of the following steps: (1) BFAST Monitor time series
analysis; (2) time series graphs analysis and (3) time series standard deviation computation.
The sequence and connectivity of all steps is presented in the workflow shown in Figure 4.

Firstly, NDVI layers calculated from pre-processed S-2 data satellite data enter a BFAST Monitor
time series analysis. The advantages of analyzing permanent meadows and crop fields with time series
are that they can detect dynamic (short and long term) processes, as well as the magnitude of these
changes. Each change of values on a particular image indicates possible changes, from which we can
get information on both the locations and times of such changes. Secondly, the objects of potential
change, which are the results of the automatic BFAST Monitor time series algorithm, present input
data for time series graph analysis, consisting of descriptive statistics on the temporal development
of objects. Finally, these results are compared with the time series standard deviation output raster,
which is calculated using the NDVI time series stack.

In brief, the time series standard deviation method and the BFAST Monitor method focus on time
series analysis at the pixel level, while the time series graphs method works on the object level.
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The final results of land use type anomalies are selected change objects detected with the BFAST
Monitor time series method, which are refined and additionally examined using time series graphs
and a standard deviation computation approach. The procedure is semi-automatic and runs separately
for permanent meadows and crop fields.
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this study.

3.3.1. Anomaly Detection with the BFAST Monitor Time Series Approach

To detect changes in permanent meadows and crop fields over time, we performed time series
analysis using BFAST Monitor [13] applying the bfastSpatial package in the R statistical environment.
This methodology was originally developed on Landsat and MODIS data, but can also be applied
to other optical satellite data. In our case, the methodology was adapted for time series analysis of
S-2 images.

The input data for the BFAST Monitor approach was NDVI time series, calculated from
S-2 surface reflectance values at 10 m spatial resolution. These NDVI layers for all dates were
stacked into a multi-layer and multi-time raster object on which time series analysis was executed.
We assumed that the pixels from the historical period are generally stable and do not contain abrupt
changes. Although S-2 images are relatively dense, they are asymmetrically accessible over time
(fewer observations in the first years, with the number increasing with time). To facilitate reliable
monitoring, the history period needs to be free of disturbances, and thus a stable history needs to be
ensured. Though Verbesselt et al. [13] suggest a stable history period of at least two years to accurately
monitor changes (as applied for MODIS data), our history period includes all available observations of
roughly two years (2015, 2016), 2015 being the year of irregular data accessibility, as S-2A was launched
in June 2015. The complete dataset from 2017 represents monitoring data.

The basic principle of the BFAST Monitor algorithm is the combination of time series
decomposition into seasonal, trend, and remainder components with methods for detecting structural
changes in both the trend and seasonal components [27]. The method works by fitting the data on
a period defined as stable history and checks the stability of that same model during the period
defined as the monitoring period [28]. Discrepancies between model predictions and data during the
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monitoring period are estimated, and when the observed data deviate significantly from the model
then a break or a time of change in a decimal year is detected. The differences between the expected
and observed (actual) values during the monitoring period are also shown in the form of positive or
negative magnitudes of changes. We predicted that the correlation between magnitude and irregular
use of permanent meadows is shown in negative values (the drop of NDVI as a cause of tillage or bare
soils outbreaks), whereas crop field changes that indicate possible overgrowing or abandonment are
shown with positive magnitude values (the increase of NDVI as a cause of overgrowing, lack of crop
treatment practices).

As the BFAST magnitude results provide magnitude intensity values, these have to be ranked
in order to select those showing a potential land use anomaly. Based on the severity of changes
for candidate anomalies only objects with pixel values under or over two empirically determined
thresholds were included for subsequent analysis. Thus, objects containing areas of pixels with
negative magnitude of changes lower than −0.22 were chosen for permanent meadows, and objects
containing pixels with positive magnitude over 0.4 were chosen for crop fields.

The results of BFAST Monitor can be presented on a single pixel (point) in the form of time graphs,
or on a raster (area). Mapping the results enables a detailed (due to pixel-based calculations) and clear
visual insight into possible changes in the study area under consideration. However, raster processing
is much more complicated and time consuming than calculating time series on an individual pixel.
A parallelized approach was applied to accelerate the computational time of raster time series analysis,
drastically speeding up the processing (instead of taking five hours the results were obtained roughly
in 10 min).

3.3.2. Time Series Graphs

The time series graphs approach is based on the analysis of NDVI temporal development curve for
each individual object of permanent meadow or crop field. Basic descriptive statistics (mean, standard
deviation) are calculated for each candidate object obtained from the BFAST Monitor algorithm.
As already mentioned, a parcel object represents the basic unit of observation for this method. Thus,
the mean and standard deviation were calculated for each object on each satellite image of the time
series. Temporal graphs provide an insight into the growth cycle of the analyzed vegetation type
during the growing season (or longer), and thus enable effective identification of deviations from
the expected trend of observed phenomena within a growing cycle (see Figure 2). What needs to be
defined is thus the threshold value that enables effective distinction between the active vegetation
growth and non-vegetation. The empirically selected value was set to 0.4, taking into consideration
the findings in Section 3.1 (Figure 3).

All the statistical calculations are averaged per geographical object (parcel), thus the time series
graph approach deals well with radiometric noise persisting between satellite observations. As such it
serves as a complementary measure of anomaly detection at the object level, being less sensitive to
direct NDVI readings, but still able to intercept changes.

This approach complements the BFAST time series methodology, described in the previous
chapter, and constitutes an additional control of candidate anomaly objects. If confirmed by both
methods, such a change object is labeled as a land use anomaly.

3.3.3. Time Series Standard Deviation

Compared to the time series analysis based on detection of trends and breaks, in this simple
approach we calculate the standard deviation for the individual pixel over the entire NDVI time series
in one growing season. The final result is a raster layer of the standard deviation values over the
anticipated period. Few agricultural activities at an object level result in a low standard deviation
value over a growing season, while changes and leaps in NDVI values (potentially due to changes
between soils covered with vegetation and bare soils) significantly increase the standard deviation
value for the growing season.
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The time series standard deviation layer provides informative data for the pixel variability over
time. Low variability is expected on permanent grassland pixels if grassland was present and only
grassland related activities such as mowing were implemented. On the other hand, high variability
is expected on crop fields if appropriately managed (plant growth, harvest, new growth) while low
variability could be associated with abandonment and thus irregularity of crop field land use.

The time series standard deviation is an accumulative measure and as such additionally informs
the verification of possible areas with unjustified land use in the growing season (i.e., in comparison
with the official farmers’ declarations).

4. Results and Validation

The results of our approach are shown in Figure 5 to Figure 9. At the same time, we also provide
an analysis of their reliability and relevance, crucial for the assessment of the proposed workflow.
This is followed by a validation section, giving the results of methodological correspondence and
cross-comparison, as well as of the validation with independent data from official land use controls of
the national paying agency (ARSKTRP).

4.1. Results and Workflow Assessment

Firstly, our results show the detected magnitudes of change for each of the analyzed land use
types obtained from the BFAST Monitor analysis of trends and deviations. It is noticeable that both
positive and negative changes are present over all study areas and on both land use types under
consideration. For the purpose of detecting irregularities, we focused only on negative changes in
the case of permanent meadows (displayed in red color scale, Figure 5) and positive changes in the
case of crop fields (displayed in blue color scale, Figure 6). The empirically determined thresholds
are applied to label objects with a severe level of change. A sample of 10 thresholded objects with the
highest magnitudes is highlighted in Figure 5 (left, Duplek area). The selected objects are further used
to display the results of other methods and cross-compare their performances, as well as for sample
visualization of the results in this paper.
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Figure 5. The magnitudes of detected changes on permanent meadows obtained with the BFAST
Monitor method for the three study areas. From the selection of all detected anomaly pixels, only those
objects (parcels) with stronger share of negative magnitude values (dark red) were selected as
candidates for the land use anomaly sample and further verification.
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Figure 6. The magnitudes of detected changes on agricultural fields obtained with the BFAST Monitor
method for the three study areas. From the selection of all detected anomaly pixels, only those objects
(parcels) with a stronger share of positive magnitude values (dark blue) were selected as candidates for
the land use anomaly sample and further verification.

In order to understand the BFAST Monitor magnitude results in more detail, extreme values of
changes in the NDVI were additionally considered. This information is crucial to decide the reliability
of the automatic outputs. Extreme values in the NDVI changes can represent either an actual drop in
values or apparent or even false changes. False changes were recognized mainly as the consequence of
an insufficient number of reference observations (unstable historical period), which can lead to the
generation of wrong trends. In general, inaccurate or apparent changes may also be present despite
careful data preprocessing (e.g., elimination but not exclusion of geometric and atmospheric errors
and noise reduction), and might also be the consequence of an erroneous cloud mask. This means that
areas under undetected small clouds and cloud shadows might be present on the images, and thus
might have different spectral values than the actual values on the surface. Since we used only cloudless
S-2 images (as ensured by double-checking using the STORM processing atmospheric mask and visual
inspection), the low NDVI values are considered as reliable information about any irregularities, but the
short historical period might still present an issue. This examination confirms that short time series are
highly sensitive to any differences between the years taken as the learning or historic period, and if an
diversity exists then the trend calculation returns unstable results, which are very likely incorrect trend
predictions. This confirms that when a time series is short (i.e., a few years only, as is the case with S-2
data) or the historic years summarize different meteorological conditions (e.g., agriculture drought
year, normal year) it is necessary to test the BFAST Monitor time series analysis results additionally,
using statistical approaches as a supplement. We proposed two verification measures, i.e., time series
graphs and/or time series standard deviations in the further steps, which can provide additional
information in the case of insufficient data.

Moving to the results of time series graphs, it must be re-emphasized that the mean and standard
deviation are calculated based on the whole object (from all pixels in the object). This means the
NDVI values can still be high despite the presence of irregularities (ineligible, non-compliant use)
inside the object. The mean NDVI development curve for the 10 analyzed permanent meadows objects
(from Figure 5), which could represent irregularities in the expected annual phenology (i.e., permanent
greenness), displayed using temporal graphs is shown for illustration in Figure 7. In more detail, see,
for example, object no. 7 that still exhibits high and thus non-suspect NDVI mean values close to 0.4
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in August-October in the top figure, while its standard deviation trajectory points to a much more
pronounced deviation from the other objects and expected temporal behavior of permanent meadows
under the CAP allowable management regime, in the bottom figure. Specifically, this case suggests that
the complementary consideration of both measures (mean and standard deviation) is beneficial and a
necessary control measure in our anomaly detection workflow. Our results suggest that the temporal
graph of standard deviation values is a useful measure for deviation observation, and additionally
allows for deviation detection in the object parts.
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As outlined above, it is crucial to consider different measures of anomaly detection, in order to
build a framework that produces reliable results. The rationale behind our approach is that attempting
to automatically define land use anomalies will lead to poor accuracies if (1) the context for the anomaly
recognition is not well defined, and (2) algorithm performance is not systematically examined. Thus,
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as a supplementary verification, we introduce a comparison between two consecutive years that may
indicate whether such anomaly situation on the agricultural parcel was present during the previous
year. For the illustration of such a measure for anomaly candidate selection, a deviation from the
reference growth cycle of permanent meadows is noted in Figure 7 in the case of objects no. 2 and
no. 7 (darker yellow and blue), and in Figure 8 in the case of crop field object no. 4 (light green).
From Figures 7 and 8 we can observe that for permanent meadows the occurrence of a drop in
mean NDVI resembles irregularities, which are represented in high standard deviations, whereas
for crop fields we search for anomalies with a high mean NDVI and low standard deviation in time
series graphs.
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Figure 8. Temporal graph (NDVI development curve) of the selected ten crop fields in Duplek area
shows the trajectories of mean and standard deviation values. The irregular behavior of one crop field
is highlighted as a thicker line (object 4).

Objects of interest were later inspected beyond the given growing season, and the results of this
comparison are given for objects of permanent meadows in Figure 9. Here we are interested in the
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deviations of the mean values of the NDVI temporal graph and in drops below the 0.4 threshold
(an indicator of potential land use anomaly candidates in 2017), and also if it shows similar deviations
as in the previous growing season (2016).
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Figure 9. Mean deviations of the selected ten permanent meadows through the years 2016/2017. Falls
in NDVI values under the threshold of 0.4 are marked in red.

The results of the inter annual comparison show that for object no. 7 (Figure 9) no remarkable
deviations from the expected trajectory can be observed in the 2016 growing season. In contrast, if we
focus on the development curve of object no. 2 (dark yellow line), remarkable declines (marked by
two red circles) in the value of NDVI in both the 2016 and 2017 growing seasons are clearly noticeable.
Nevertheless, both problematic objects’ mean NDVI values are within the established threshold
value, which separates active vegetation areas from inactive ones (bare ground, soil or built-up area).
Finally, additional confirmation was obtained through visual interpretation of S-2 imagery (Figure 10),
which revealed characteristic bright surfaces during the problematic dates. This case is very likely to
represent a disparity between the declared use (permanent meadow) and the actual state of land in
nature (non-vegetated ground).

Using the results of the inter annual comparison it was possible to confirm that the two objects
that were limiting the mean NDVI criteria for anomaly detection truly contain pixels with obvious
changes. Our results thus suggest that interannual information on their significant differences from
the expected seasonal trajectory can be defined and included in the verification workflow process.

To explore the potential contribution of yet another simply derived measure, we examined the
results of the third proposed method—the time series standard deviation. The layer of computed
pixel-based standard deviation values (Figure 11) obtained at the end of the growing season represents
a simple descriptive statistic—the variability in NDVI values as accumulated over the growing season.
The result is thus a single raster layer indicating variability intensity. As such the layer enables an
efficient differentiation between intensively managed areas (ploughed crop fields or other abiotic
changes implying ineligible use, shown in red with high standard deviation values) and less intensively
managed areas (permanent meadows and other vegetation, shown in green tones). As expected,
the results confirm that this method does not provide information on the time that such changes
occurred within one growing season, although being pixel-based it can support a clear spatial indication
of changes within objects.



ISPRS Int. J. Geo-Inf. 2018, 7, 405 16 of 24

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  16 of 24 

 

 
Figure 10. S-2 images (left: 2016 growing season, right: 2017 growing season) provided additional 
information to confirm problematic dates of changes for a particular object (object no. 2). Digital 
orthophoto in the background with 1 m spatial resolution, but single date land use state information 
(April 2016). 

 
Figure 11. NDVI standard deviation calculated on all three study areas. Permanent meadows are 
outlined in black. The ten objects for which the main verification was carried out (for the needs of 
visual representation of results in this paper) are highlighted in the Duplek example (left). 

Our results suggest that the time series standard deviation layer provides useful information for 
the detection of deviations in parts of the object. It is thus recommended to include this measure in 
the workflow to confirm the changes indicated with the time series graph method. 

4.2. Validation of Results 

Using the selected approaches for the S-2 images time series analysis, anomalies in the 2017 
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automatic time series approach and magnitude determination were inspected with the combination 
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anomaly detection capacity and completeness level, and to identify the circumstances in which 
possible miss-detections might occur. Based on the results we can introduce all the necessary logic 
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Figure 10. S-2 images (left: 2016 growing season, right: 2017 growing season) provided additional
information to confirm problematic dates of changes for a particular object (object no. 2). Digital
orthophoto in the background with 1 m spatial resolution, but single date land use state information
(April 2016).
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Figure 11. NDVI standard deviation calculated on all three study areas. Permanent meadows are
outlined in black. The ten objects for which the main verification was carried out (for the needs of
visual representation of results in this paper) are highlighted in the Duplek example (left).

Our results suggest that the time series standard deviation layer provides useful information for
the detection of deviations in parts of the object. It is thus recommended to include this measure in the
workflow to confirm the changes indicated with the time series graph method.

4.2. Validation of Results

Using the selected approaches for the S-2 images time series analysis, anomalies in the
2017 growing season were detected. All objects containing potential changes obtained with
the semi-automatic time series approach and magnitude determination were inspected with the
combination of the time series graphs (mean, standard deviation development), and visual checks
of objects on S-2 imagery time series and the time series standard deviation raster layer. The main
objective of this multi-method cross-comparison was to obtain an insight into the overall quality of the
results, the anomaly detection capacity and completeness level, and to identify the circumstances in
which possible miss-detections might occur. Based on the results we can introduce all the necessary
logic checks to advance from a semi-automatic to a fully automatic workflow.
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The correctness of the obtained results (detected land use anomalies) for permanent meadows
using the proposed combined approach was verified by the inventory of the official land use controls
of the national paying agency, ARSKTRP. Due to time and personnel constraints this validation was
done only for the permanent meadows land use type. In total, nine objects of detected irregular use
were considered for validation by the national paying agency personnel. They examined the proposed
anomalous objects and compared them with the farmers’ declarations and other information collected
as part of the land use control process. They returned the information on their (in)correctness in
the form of an attribute table of inspected objects (true/false). The inspections confirmed that our
approach gives highly reliable results as all the signs of change were associated with real events or
reasons causing land use change.

We prepared Figure 12 for clearer presentation of the results obtained from this verification.
The figure gives, on one side, a visual overview of the perceived deviations from the expected
phenology of a permanent meadow and, on the other, the anomaly interpretation within the context of
an ineligible land use control process from the side of the national paying agency, using four objects
confirmed by this agency.

For example, Figure 12a depicts an inconsistency in permanent meadow land use, as areas of
both permanent meadow and crop field are present. But as the land owner reported the land use for
this particular parcel as half permanent meadow and half crop field, this is not an irregularity in the
context of recognizing anomalies in terms of the land use for the subsidy process. This only indicates
the discrepancy between the database used by the national paying agency (ARSKTRP) and the RABA
database, which was used to obtain objects of interest for the analysis. A similar example can be
seen in Figure 12b, where the use of a permanent meadow was declared only for half of the object.
Figure 12c,d show inconsistencies in the land use, but, unlike in the first two cases, the national paying
agency confirmed irregular use in both cases (the use of crop fields instead of permanent meadows).

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  17 of 24 

 

The correctness of the obtained results (detected land use anomalies) for permanent meadows 
using the proposed combined approach was verified by the inventory of the official land use controls 
of the national paying agency, ARSKTRP. Due to time and personnel constraints this validation was 
done only for the permanent meadows land use type. In total, nine objects of detected irregular use 
were considered for validation by the national paying agency personnel. They examined the 
proposed anomalous objects and compared them with the farmers’ declarations and other 
information collected as part of the land use control process. They returned the information on their 
(in)correctness in the form of an attribute table of inspected objects (true/false). The inspections 
confirmed that our approach gives highly reliable results as all the signs of change were associated 
with real events or reasons causing land use change.  

We prepared Figure 12 for clearer presentation of the results obtained from this verification. The 
figure gives, on one side, a visual overview of the perceived deviations from the expected phenology 
of a permanent meadow and, on the other, the anomaly interpretation within the context of an 
ineligible land use control process from the side of the national paying agency, using four objects 
confirmed by this agency.  

For example, Figure 12a depicts an inconsistency in permanent meadow land use, as areas of 
both permanent meadow and crop field are present. But as the land owner reported the land use for 
this particular parcel as half permanent meadow and half crop field, this is not an irregularity in the 
context of recognizing anomalies in terms of the land use for the subsidy process. This only indicates 
the discrepancy between the database used by the national paying agency (ARSKTRP) and the RABA 
database, which was used to obtain objects of interest for the analysis. A similar example can be seen 
in Figure 12b, where the use of a permanent meadow was declared only for half of the object. Figure 
12c,d show inconsistencies in the land use, but, unlike in the first two cases, the national paying 
agency confirmed irregular use in both cases (the use of crop fields instead of permanent meadows). 

 
Figure 12. Series of S-2 subsets of permanent meadows, where the phenomena of anomalies in land 
use management was detected, indicated with red colors. Red represents low NDVI values and 
inactive or less active vegetation. The first two examples (a and b) reveal the discrepancy between 
national land use databases—no actual irregularities (green check), whereas the last two (c and d) 
show actual irregularities in the land use (warning red cross). 

On the other hand, verification of the results on candidate anomalies in crop fields (abandoned 
and overgrown fields) was only possible by means of visual inspection of S-2 imagery, time series 

Figure 12. Series of S-2 subsets of permanent meadows, where the phenomena of anomalies in land use
management was detected, indicated with red colors. Red represents low NDVI values and inactive
or less active vegetation. The first two examples (a and b) reveal the discrepancy between national
land use databases—no actual irregularities (green check), whereas the last two (c and d) show actual
irregularities in the land use (warning red cross).
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On the other hand, verification of the results on candidate anomalies in crop fields (abandoned
and overgrown fields) was only possible by means of visual inspection of S-2 imagery, time series
graphs and time series standard deviation. The crop field phenological patterns are much more
complex and might vary from year to year because of using a rotational system, changes in agricultural
practices and/or varying meteorological conditions [29]. Due to this variability, a stable history which
is needed for relevant time series analysis and anomaly detection using BFAST Monitor algorithm
cannot be obtained in the case of crop field land use. Therefore, in the case of crop field time series
analysis it is important to observe the development of field characteristics on a multi-year basis,
taking into consideration possible differences in planted crops, their rotation between different years
and corresponding management regime (e.g., fallow land). When abandonment or overgrowth is
observed in this respect, we expect similar vegetative development to the permanent meadow land
use type, i.e., without sudden and major changes (due to ploughing or harvesting) and thus focus on
tracing the continuous greenness.

For the assessment of abandonment or overgrowth as anomalies at crop fields we conclude that
the use of a combined approach of times series graphs and time series standard deviation would
constitute a sufficient workflow and could outperform the BFAST Monitor algorithm. BFAST Monitor
does not guarantee that the trend can be reliably defined in complex and annually changing regimes
of crop fields, the situation typically prevailing in Slovenia.

The findings for the proposed methodology (given through examples in the previous sections)
are valid for all three study areas and both anomaly detection cases (permanent meadows and crop
fields workflows). Moreover, the level of the quality of the obtained results (quality of assignments,
completeness and reliability) is comparable across study areas.

4.3. Cross-Comparison of Methods

To compare the adapted time series methods used in this work, we matched their scale and
deviations of values for the 10 selected example permanent meadows in the Duplek study area.
As noted, these 10 meadows represent areas with high negative changes detected from trends using the
BFAST method. Changes do not always occur over the whole object and may be high only in certain
parts of the objects, but are still included in the analysis (see meadow anomaly images in Table 2).

Table 2. Cross-comparison of the methods used in this study and their main statistics. Values that have
the highest deviation are highlighted for each method.

Objects Mean Magnitude of an Object
(Method 1)

Lowest NDVI Value
(Method 2)

Time When Lowest NDVI
Appeared [Day-Month]

Mean NDVI Standard
Deviation (Method 3)

1 −0.212
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Table 2. Cont.

Objects Mean Magnitude of an Object
(Method 1)

Lowest NDVI Value
(Method 2)

Time When Lowest NDVI
Appeared [Day-Month]

Mean NDVI Standard
Deviation (Method 3)

5 −0.127
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Table 2 shows that mean negative values of magnitude range between −0.05 and −0.2. To see if
these objects of negative magnitudes really contain low NDVI values, we calculated the minimum
NDVI value for each of the objects and assigned the time when this drop appears using the time
series graph method (pixel-based statistics). As seen from the Table 2, objects 2 and 7 contain the
lowest NDVI values (both are under 0,4). Similarly, the mean NDVI standard deviation, calculated on
object-based units (meadow parcels), is the highest for both of these objects (over 0.15). Values that
deviate from normal behavior using all three methods indicate irregularities present in the analyzed
time period.

This comparison of methods is based on the deviation of statistical values relative to their average
values. The results highlight that their trend of boundary values coincides, especially for the time series
graph (method 2) and time series standard deviation method (method 3), where the most extreme
values are exactly for objects for which we suspect possible irregularities. The BFAST Monitor results
can give more diverse results, again due to varied values in some parts of the analyzed meadow objects.

5. Discussion

5.1. Reliability and Stability

Reliability and stability are the two main parameters to evaluate the results of the anomaly
detection workflow.

Reliability indicates the level of membership and completeness of the assigned anomaly objects
for a certain land use anomaly. The higher the membership, the better the completeness and the greater
the reliability. However, full assessment of reliability is only possible with the support of the actual
land use information for a given growing season. Farmers’ declarations on the actual land use obtained
within the subsidy granting process would be an option for such an estimation, although this data is
not publicly accessible. Nevertheless, the case of permanent meadows (where evaluation was done on
a sample of assigned anomalous objects by the national paying agency ARSKTRP) affirmed that the
reliability is high for most assignations, with clear arguments for the presence of all detected changes
in permanent meadow objects (see Figure 11). On the other hand, the reliability estimation for anomaly
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detection in the crop field land use (i.e., signs of field abandonment) was not carried out due to the
inaccessibility of validation data during the study timeframe.

Stability estimates the robustness and transferability of the proposed anomaly detection workflow.
We believe that the workflow is well conceptualized for the detection of specific land use anomalies
under a certain land use management regime (non-compliant land use), and in this regard is
robust and allows for geographic transferability. Minor parameter adaptations might be needed
as anomaly assignments are currently based on the thresholding conditions. However, in the case
of observing other signs of anomalies that are also important under CAP monitoring measures,
workflow transferability might be low. More specifically, both of the proposed workflows only take
into account anomalies that are associated with continuous greenness (e.g., signs of ploughing in
the permanent meadows, sign of vegetation overgrowth and lack of agricultural activities in the
crop fields), which can be well defined and described with vegetation monitoring indicators and
with consideration of observed phenomenon time constraints (expected field management regime),
and thus controlled for within the specifications of the workflow logic.

5.2. Relevance to Environmental CAP Schemes, Monitoring CAP Measures, Expandability

Identification and monitoring of plant growth on agricultural land through the entire growing
season using time series enables users to identify (1) growth development curves for different crop
types (and thus recognize particular crop types), as well as (2) different agrotechnical management
activities (mowing, plowing, harvesting). Since both characteristics are defined with a specific crop type
related time interval, such changes on agricultural land can be identified and monitored. Using Sentinel
time series and customized anomaly detection workflows are considered a promising combination to
monitor CAP-related measures. In particular, the measures that can be checked in this way are those
where the plant development needs to be monitored over time, and where the specific time regime is
foreseen and compulsory throughout the growing season.

Customized anomaly detection workflows can be designed to monitor CAP measures and
operations for the forthcoming post-2020 reform, i.e., the CAP area-related measures. The customized
anomaly detection workflow presented in this study for certain non-compliant land uses on permanent
grasslands and crop fields offers numerous possibilities for extension, although a higher complexity
may lead to lower anomaly detection rates in selected land use types.

One possible extension is the inclusion of additional anomaly types for additional land uses
(e.g., habitats). Currently, our approach identifies anomalies in land use that were recognized as the
most relevant issues for the national paying agency ARSKTRP within the subsidy granting process:
agricultural inactivity on parcels declared as crop fields and inappropriate agricultural treatment
of permanent meadows where only mowing is allowed. Our approach is thus designed to identify
anomalies in vegetation greenness as exhibited through the entire growing season. At the moment,
this and the scope and sparse context are limitations of the algorithm. With the extension of the
current anomaly workflow to other ineligibilities in land use or to other agricultural land use types,
new considerations taking into account precise definitions of allowable (compliant) practices within
permissible time regimes for the considered land use type could be introduced. In this way, different
customized anomaly detection workflows might detect specific ineligibilities in particular land use
types even more precisely.

In order to develop an all-inclusive anomaly workflow, new decisions (on anomaly measurements)
have to be defined. These decisions would enable the workflow to deal with many different compliant
regimes such as: greening of arable land, where arable land should be covered with winter greenery
between 15 November and 15 February, an unbroken green belt of grass where mowing or grazing
is not allowed between 15 July and 15 September in the operation “grassland habitat of butterflies”,
or where mowing and grazing is not allowed before 1 August in the operation “habitats of moist
extensive meadows”, to list a few of possible measures and operations of interest for monitoring within
CAP-related control measures. Nevertheless, the performance and ability of individual, customized or
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complex anomaly detection workflows first requires a precise definition to be aligned with the context
of supporting CAP processes, as well as the assessment of the workflow suitability, reliability and
usefulness according to the type of agricultural policy measure and associated non-compliant land use.

Another limitation of the current study is that anomalies are observed only on NDVI-based
vegetation observations. An important possible extension of our existing approach is the
implementation of complementary information on vegetation and soil conditions. The performance
and ability of other vegetation indices or biophysical parameters to detect certain land use anomalies
could be tested and meaningfully introduced. A precise study on the influence of different vegetation
indicators might reveal important relationships that could bring more confidence and introduce
weights to anomaly/change assignments.

5.3. Anomaly Detection Workflow Considerations and Direction of Improvements

The analysis of satellite image time series aids in understanding and recognition of spatial and
temporal patterns of change, as well as their location, extent, type, frequency, magnitude, the direction
of change and trends. The BFAST approach presented in this study enables the detection of anomalies
on permanent meadow and crop field objects based on a comparatively short time series of S-2 satellite
data. This implies that the whole history period, defined from 2015 to 2016, is identified as relatively
stable. Although time series graphs and time series standard deviation approaches showed that the
BFAST Monitor approach overestimated the segments of land use anomalies, no false positives were
detected. In this context, we can predict better and more reliable results using the presented BFAST
approach in the coming years, when temporally denser S-2 images will be available and consequently
a more stable history period will be possible to achieve. Still to consider is the fact that monitoring
agricultural land use on a single vegetation index can have its limitations, as the methodology might
not be satisfactory to capture the complex seasonality of heterogeneous land use, especially in the case
of permanent meadows. Crop rotation over the years is also a major challenge for analyzing anomalies
with time series, since annual crop differences associated with crop rotation system can disturb the
seasonal or trend observation (underlying the BFAST model components).

Compared to the BFAST approach, the time series standard deviation output does not require data
from previous growing seasons. However, despite its computational simplicity the standard deviation
approach provides an insight into parcels’ phenological variability and enables the identification of
abrupt changes.

Only optical satellite data were used as the primary source for analysis in this study. When relying
only on optical imagery it is important to ensure high time series quality, as this can impact the
robustness of the method besides the geometry, size and homogeneity of the observed object (parcel).
Concerning the temporal aspect, we estimate that at least one cloudless image should be available per
three or four weeks in order to reliably identify non-compliant use.

The experimental results in this study were obtained using a semi-automatic approach,
which means that inputs (and especially thresholds) are needed from an experienced user. To improve
our workflow, we plan to develop the methodological part into an automatic anomaly detection
procedure, where thresholds throughout the workflow will be selected using appropriate multi-level
thresholding techniques.

5.4. Agricultural Policy Area-Related Measures and Sentinel Data for the Monitoring of Cap Measures in the
Agricultural Landscape in Slovenia

The CAP post-2020 reform will reshape the agricultural land use control procedures, mainly by
fostering the use of Sentinel data and encouraging procedures based on regular monitoring. This will
have an impact on everyday practice for monitoring a variety of CAP measures. At the moment,
bodies responsible for CAP-related reporting seek information on the adequacy of Sentinel
data for monitoring agricultural land in Slovenia in accordance with the expected CAP reform.
Three considerations are identified as the most pressing: (1) how to respond to the replacement of the
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selected risk field-based monitoring approach with an all-inclusive one within the process of control
under subsidy granting; (2) how can measures regarding green payments, agri-environmental-climate
payments, organic farming, less-favored areas for agricultural production and coupled support
schemes be monitored appropriately and at sufficient detail with Sentinel data; and (3) how could
area-related agricultural policy measures, associated with the diverse size of the agricultural land from
25 m to 5 ha, be accomplished under updates referring to the usage of common data.

There is a substantial difference in the extent and structure of agricultural land among the MS.
Comparatively small, fragmented and often narrow agricultural land prevails in Slovenia. Thus,
an assessment of suitability of Sentinel data for monitoring CAP area-related measures in Slovenia is
important. Concerning the minimum mapping unit (MMU), a study by Devos et al. [1]) suggested
that in order to derive meaningful information for the Earth observation products supporting CAP
procedures, the basic unit of analysis should contain at least 20 to 30 pixels. However, the selected
MMU of 0.1 ha (10 pixels) in our study resulted in a reliable output. In the case of small parcel objects,
it is also advisable to apply a buffer and take into consideration only pure pixels [12]. Similarly,
in the case of narrow parcels, it is necessary to ensure that only representative pixels are considered.
However, the usability of S-2 data might be limited in a longitudinal highly fragmented agricultural
landscape (where MMU of 0.1 ha pure pixels is not reached). Agricultural land parcels in Slovenia will
need to be classified according to size, shape and geographical position, and agricultural areas that
are appropriate for monitoring with S-2 under CAP-related measures will need to be defined. Thus,
depending on the different geographical and agricultural regions of Slovenia, all of the combinations
of Sentinel data, data processing methodologies, as well as monitoring of selected CAP measures
should be jointly considered.

The results of this study using S-2 time series have the potential to assist in agricultural parcel
monitoring and therefore support decision making on farmers’ compliance on a through-the-year
basis. The complete semi-automatic land use anomaly detection workflow was developed to obtain
results in a relatively fast time and designed in a way that output can be directly used as a risk parcel
warning layer of unjustified (non-compliant) use in further control procedures by the national paying
agency, ARSKTRP.

It seems it is not a trivial task to provide reliable information on changes in land use when
analysis is based on data from the last three years. Much longer time series are required, especially
in the case of crop fields, where sparse historic and no reference data are accessible. Obtaining
non-compliant use from S-2 data can therefore be assumed only generally, and the results of
the proposed anomaly detection workflow are currently a demonstration of possible approaches.
Nevertheless, the usefulness of the proposed anomaly detection workflow at this stage of development
is particularly important for the generation of a land change alerts layer which could significantly
reduce the time needed for screening of the territory, and help authorities in the preparation for the
upcoming CAP post-2020 reform.

6. Conclusions and Outlook

In this study, the feasibility of S-2 time series analysis to derive detection of phenological deviations
of permanent meadows and crop fields in one growing season is assessed. The results indicate
that a straightforward time series analysis approach can provide an efficient tool for ineligible land
use monitoring of permanent meadows and other agricultural land when the anomaly context is
clearly defined (e.g., expected permanent greenness). Three methods for identification of possible
non-compliant land use were tested on selected land use objects. It was found that the methodology
of detecting trends and anomalies with the BFAST tool gives overestimated forecasts of the number
of permanent meadow anomaly candidates due to the short time series and trend overestimation.
However, the results of the BFAST Monitor approach can be effectively supplemented and supervised
by examining the NDVI time series graphs of each agricultural object (parcel). The raster layer of time
series standard deviations also gives reliable results if the standard deviation is calculated at the end
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of the season to account for all the changes in the growing season. We estimate that the described time
series analysis approaches, as well as the proposed land use anomaly detection framework, are an
appropriate choice of S-2 data processing, and that S-2 data represent a rich source of information
which can support the monitoring of permanent meadows and crop fields (under the CAP post-2020
updates) of subsidy granting.

Future work will focus on the analysis of additional object (parcel)-based features other than the
spectral characteristics, such as size, geometry (e.g., narrow fields) and non-homogeneity land cover
(e.g., Karst pastures) in order to achieve the full potential of S-2 data for monitoring CAP measures in
the Slovenian agricultural landscape. The proposed methodology is currently semi-automatic, and we
plan to combine all three proposed algorithms to be fully automatic, independent of expert knowledge
and contributions. Another important next step is to ensure the robustness of the applied procedure
with sparse time series.
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18. Zakšek, K.; Čotar, K.; Veljanovski, T.; Pehani, P.; Oštir, K. Topographic Correction Module at Storm
(TC@ Storm). Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, 721–728. [CrossRef]

19. Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, NY, USA, 2013;
ISBN 978-0-19-969316-0.

20. Myneni, R.B.; Forrest, G.H.; Sellers, P.J.; Marshak, A. The interpretation of spectral vegetation indexes.
IEEE Trans. Geosci. Remote. Sens 1995, 33, 481–486. [CrossRef]

21. DeFries, R.; Hansen, M.; Townshend, J. Global discrimination of land cover types from metrics derived from
AVHRR pathfinder data. Remote. Sens. Environ. 1995, 54, 209–222. [CrossRef]

22. Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude
normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol.
2001, 45, 184–190. [CrossRef] [PubMed]

23. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van
der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm.
ISPRS J. Photogramm. Remote. Sens. 2014, 87, 180–191. [CrossRef] [PubMed]

24. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote. Sens. Environ. 2018, 204, 509–523. [CrossRef]

25. Castilla, G.; Hay, G.J. Image objects and geographic objects. In Object-Based Image Analysis: Spatial Concepts
for Knowledge-Driven Remote Sensing Applications; Lecture Notes in Geoinformation and Cartography;
Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–110,
ISBN 978-3-540-77058-9.

26. Smith, G.M.; Morton, R.D. Real World Objects in GEOBIA through the Exploitation of Existing Digital
Cartography and Image Segmentation. Photogramm. Eng. Remote. Sens. 2010, 76, 163–171. [CrossRef]

27. Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning:
Contribution of short-term trends to longer-term change. Glob. Chang. Boil. 2012, 18, 642–655. [CrossRef]

28. Dutrieux, L.P.; Verbesselt, J.; Kooistra, L.; Herold, M. Monitoring forest cover loss using multiple data
streams, a case study of a tropical dry forest in Bolivia. ISPRS J. Photogramm. Remote. Sens. 2015, 107, 112–125.
[CrossRef]

29. Petitjean, F.; Inglada, J.; Gancarski, P. Satellite Image Time Series Analysis under Time Warping. IEEE Trans.
Geosci. Remote. Sens. 2012, 50, 3081–3095. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://sentinels.copernicus.eu/web/sentinel/news/-/article/sentinels-help-monitor-grasslands-for-agricultural-subsidy-checks-in-europe
https://sentinels.copernicus.eu/web/sentinel/news/-/article/sentinels-help-monitor-grasslands-for-agricultural-subsidy-checks-in-europe
http://dx.doi.org/10.3390/rs70709325
http://dx.doi.org/10.1016/j.rse.2012.02.022
http://dx.doi.org/10.1016/j.proenv.2016.03.053
http://dx.doi.org/10.1109/TGRS.2015.2431434
http://dx.doi.org/10.3390/rs8040343
http://dx.doi.org/10.1364/AO.37.004004
http://www.ncbi.nlm.nih.gov/pubmed/18273372
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-721-2015
http://dx.doi.org/10.1109/36.377948
http://dx.doi.org/10.1016/0034-4257(95)00142-5
http://dx.doi.org/10.1007/s00484-001-0109-8
http://www.ncbi.nlm.nih.gov/pubmed/11769318
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://www.ncbi.nlm.nih.gov/pubmed/24623958
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.14358/PERS.76.2.163
http://dx.doi.org/10.1111/j.1365-2486.2011.02578.x
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.015
http://dx.doi.org/10.1109/TGRS.2011.2179050
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Data Sources 

	Methodology 
	Reference Phenology of Observed Agriculture Land in One Growing Season 
	Approach Design 
	Methodolgical Framework 
	Anomaly Detection with the BFAST Monitor Time Series Approach 
	Time Series Graphs 
	Time Series Standard Deviation 


	Results and Validation 
	Results and Workflow Assessment 
	Validation of Results 
	Cross-Comparison of Methods 

	Discussion 
	Reliability and Stability 
	Relevance to Environmental CAP Schemes, Monitoring CAP Measures, Expandability 
	Anomaly Detection Workflow Considerations and Direction of Improvements 
	Agricultural Policy Area-Related Measures and Sentinel Data for the Monitoring of Cap Measures in the Agricultural Landscape in Slovenia 

	Conclusions and Outlook 
	References

