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Abstract: Using object-based image analysis (OBIA) techniques for land use-land cover classification
(LULC) has become an area of interest due to the availability of high-resolution data and segmentation
methods. Multi-resolution segmentation in particular, statistically seen as the most used algorithm,
is able to produce non-identical segmentations depending on the required parameters. The total effect
of segmentation parameters on the classification accuracy of high-resolution imagery is still an open
question, though some studies were implemented to define the optimum segmentation parameters.
However, recent studies have not properly considered the parameters and their consequences on
LULC accuracy. The main objective of this study is to assess OBIA segmentation and classification
accuracy according to the segmentation parameters using different overlap ratios during image object
sampling for a predetermined scale. With this aim, we analyzed and compared (a) high-resolution
color-infrared aerial images of a newly-developed urban area including different land use types;
(b) combinations of multi-resolution segmentation with different shape, color, compactness, bands,
and band-weights; and (c) accuracies of classifications based on varied segmentations. The results
of various parameters in the study showed an explicit correlation between segmentation accuracies
and classification accuracies. The effect of changes in segmentation parameters using different
sample selection methods for five main LULC types was studied. Specifically, moderate shape and
compactness values provided more consistency than lower and higher values; also, band weighting
demonstrated substantial results due to the chosen bands. Differences in the variable importance of
the classifications and changes in LULC maps were also explained.

Keywords: segmentation; object-based classification; orthophoto; land cover; high resolution
imagery; infrared; accuracy

1. Introduction

One of the most widely-used processes in remote sensing is land use-land cover classification
(hereafter, LULC), and various approaches have been implemented to obtain thematic information on
the earth’s surface characteristics through diversely-scaled remote sensing data [1]. Spatial information
extraction using high-resolution remote sensing imagery, such as airborne, unmanned aerial systems
(UAS), and satellite images, utilizes the advantages of object-based image analysis (OBIA). A great deal
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of research that relates to earth observation, such as land cover mapping, biodiversity, and disaster
management, uses OBIA techniques to obtain valuable temporal geospatial knowledge [2–6].

Image segmentation as a preceding part of object-based classification is crucial to the success
of OBIA. In image processing, Reference [7] categorized segmentation methods from an algorithmic
perspective into four classes, as point-based, edge-based, region-based, and combinations thereof.
In OBIA, region-based and combined segmentation algorithms stand out since the algorithms create a
homogenous subset of the image with respect to criteria, such as spectral values, geometry, and texture.
In 2017, Reference [8] statistically explained that studies on segmentation using multi-resolution
segmentation [9,10] of eCognition software account for 80.9% in reviewed studies. The other preferred
segmentation methods beside the multi-resolution algorithm are mean-shift segmentation [11,12] and
the combined segmentation process of ENVI (Environment for Visualizing Images) software [13,14].

Multi-resolution segmentation is a technique for converting adjacent one-pixel objects into
multi-pixel objects with step-by-step merging according to their united-form features, resulting in an
increase in their heterogeneities controlled by the defined scale parameter. Besides the importance of the
scale parameter, shape-color heterogeneities within a determined scale have an impact on segment features
and thus, segmentation. In multi-resolution segmentation, the increase of heterogeneity f is a function
of the weighted spectral and shape heterogeneities. Spectral heterogeneity is a function of standard
deviation depending on the band value and number of pixels of the objects to merge. Furthermore,
shape heterogeneity is a function of both object smoothness and compactness. Smoothness is defined as
the ratio between the border length of the object and bounding box of the object, whereas compactness
is described as the ratio between the border length of the object and number of object pixels [9,10].
Equations (1)–(3) compute the increase of heterogeneity (f), while w is weight, ∆h is heterogeneity, n is
number of pixels, and σband is standard deviations.

f = wcolor ∗ ∆hcolor + wshape ∗ ∆hshape
wcolor ∈ [0, 1], wshape ∈ [0, 1] and wcolor + wshape = 1

(1)

∆hcolor = ∑
band

wband(nmerge ∗ σband,mege − (nobj1 ∗ σband,obj1 + nobj2 ∗ σband,obj2)) (2)

∆hshape = wcomp ∗ ∆hcomp + wsmooth ∗ ∆hsmooth
wcomp ∈ [0, 1], wsmooth ∈ [0, 1] and wcomp + wsmooth = 1

(3)

In OBIA, some pre- or post-processing interventions are needed to overcome the weakness
of existing segmentation methods so as to obtain an ideal representation of image objects [15–18].
For example, due to the identical spectral/spatial properties of road-like objects and contextual
structures like parking lots and railways, Reference [15] applied image filtering techniques to
remove irregularities in the extracted road segments. On the other hand, the detection of optimized
parameters of multi-resolution segmentation, such as scale, shape, and compactness, were discussed
in order to delineate more appropriate image object boundaries. To enhance the quality of image
segmentation, Reference [16] proposed an optimization procedure that provided an improvement
in segmentation accuracy between 20% and 40%. Nevertheless, processing time of the proposed
method increased substantially due to the multiple segmentation. In 2014, Reference [17] proposed an
unsupervised multi-band approach for scale parameter selection in the multi-scale image segmentation
process whereas the index of spectral homogeneity was used to determine multiple appropriate scale
parameters. However, the method was evaluated by only two object classes without comparing it with
widely-used scale selection methods. Another unsupervised scale selection method was explained in
Reference [18] based on the computation of local variances to select optimal scale parameters.

As a supervised optimization method, Reference [19] described a stratified OBIA for
semi-automated mapping of geomorphological image objects. The results, which were obtained by
comparing 2-D frequency distribution matrices of training samples and image objects, provided a more
effective digital landscape analysis for automated geomorphological mapping, although the phase
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of delineating training samples was considered a major drawback. Multi-resolution segmentation
was examined and compared by using both supervised and unsupervised approaches to produce
the desired object geometry [20]. Since supervised segmentation requires an indefinite amount of
work, unsupervised methods offer an important alternative to detect the optimal scale parameter of
multi-resolution segmentation. Different multi-resolution segmentation parameters have also been
combined, and then their segmentation results were compared to analyze the effect of parameter
selection, providing the proper segmentation of specific objects. Various segmentation results were
evaluated by comparing the influence of spatial resolution; spectral band sets and the classification
approach for mapping urban land cover [21]. The results showed that spatial resolution is clearly the
first and most influential factor for urban land-use mapping accuracy. Moreover, it has also been stated
that the second priority is the classifier; and third, the spectral band set could lead to significant gains.

In OBIA, accuracy assessment of image segmentation is considered as both a qualitative
assessment based on visual interpretation and a quantitative assessment using reference data.
Approaches for quantitative assessment are grouped into two main categories: geometric methods
and non-geometric methods. Geometric methods focus on the geometry of the reference objects and
segment polygons to determine the similarity among them; whereas non-geometric methods are
related with the properties of the objects such as the spectral content [22]. Reference [23] demonstrated
measures that facilitate the identification of optimal segmentation results and have utility in reporting
the overall accuracy of segmentation relative to a training set. Reference [24] proposed the region-based
precision and recall measures for evaluating segmentation quality. Reference [24] also defined the
F-measure, the sum of precision and recall, and Euclidean distances were proposed to compare the
quality of different image partitions. On the other hand, References [25,26] described a new discrepancy
measure called the segmentation evaluation index, which redefines the corresponding segment using
a two-sided 50% overlap instead of a one-sided 50% overlap.

Using OBIA techniques for LULC classification became an area of interest due to the availability
of high-resolution data and segmentation methods. OBIA classifications instead of classic pixel-based
methods were reported to present better performance by dealing with more characteristics such as
shape of sample features [27,28]. In fact, as mentioned in Reference [29], the spectral properties
of a certain area depend on changes in vegetative cover phenology, whereas spatial properties of
the same area such as shape and size are more probable to remain permanent. On the other hand,
the spatial characteristics of the data used are considered to be one of the most essential parameters
affecting the success of classification since the discrimination of objects from each other is associated
with pixel size. Even though there have been considerable number of studies conducted using
moderate resolution satellite imageries such as Landsat and SPOT (Satellite Probatoire d’Observation
de la Terre—Satellite for Observation of Earth) series, the coarse spatial properties of the imageries
may present issues when detailed-level mapping is required. Also, it was reported that there is
relation between study area and pixel size, and higher resolution satellite data such as WorldView-2,
QuickBird (QB), GeoEye-1, and Ikonos were mainly used in small-size areas [8]. Moreover, as cited
in Reference [30], high-resolution aerial imageries are suggested for precise results in OBIA LULC
mapping where finer products are necessary [31–36]. According to Reference [37], spatial resolution is
a more significant parameter for urban land cover in comparison to spectral resolution and brings to
aerial photography an important role in urban studies. Furthermore, another essential consideration
is the selection of an appropriate classification technique among a range of algorithms such as the
decision tree, support vector machines, and random forest. The study in Reference [8] documented
that the most widely-employed supervised classifier is nearest-neighborhood, whereas use of random
forest classifier resulted in higher overall accuracy.

Recent studies mentioned above focused on discovering optimal segmentation parameters and
particularly, the scale parameter was exclusively considered. As cited in Reference [38], earlier studies
have mainly focused on the scale parameter due to its key role on determination of segmentation
size [22,23,39]. However, shape, compactness, and band weight were not considered together in
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terms of segmentation and classification accuracy. In particular, it has not been explained yet how an
elaborate change in segmentation parameters might have a significant effect on LULC classifications.
The main objective of this study is to assess OBIA segmentation and classification accuracy depending
on shape-color, compactness-smoothness, and band weight parameters using different overlap ratios
during image object sampling for a predetermined scale. In order to achieve this objective, three aspects
were analyzed and compared: (a) high-resolution color-infrared aerial images of a recently-developed
urban area including different land-use types; (b) combinations of multi-resolution segmentation with
different shape-color, compactness-smoothness, and band-weights; and (c) accuracies of classifications
based on varied segmentations.

The paper is organized as follows. Section 2 introduces the study area, image properties and
data pre-processing. Section 3 presents a series of applied steps including definition of segmentations
and object-based classifications in the methodology. The outcomes which demonstrate accuracy
assessments and their comparisons are discussed in Section 4. Specifically, Section 4.1 shows
segmentation accuracy while Section 4.2 defines classification accuracies. Variable importance based
on mean decrease accuracy is analyzed in Section 4.3. Then, classification maps were produced and
overviewed visually as shown in Section 4.4. Finally, conclusions and future prospects are considered
in Section 5.

2. Study Area and Data Pre-Processing

Canakkale province is located between 25◦40’–27◦30’ E and 39◦27’–40◦45’ N on both sides of
the Dardanelles Straits in the North-Aegean part of Turkey, combining Asia and Europe. The city of
Canakkale has dramatically expanded through north and south due to urban development in recent
years. The study area (≈160 ha) was selected on the northern edge of the city depending on the
variations in LULC types. A relatively low residential density in the newly-developed area, enabling
discrimination of buildings, roads, green areas, concrete, and bare soils, was the main criteria for
selection of the study area (Figure 1).ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 28 
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Figure 1. Study area: (a–c) Google Earth imagery, (d) ortho-mosaic image.
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Aerial images at 30 cm ground sample distance acquired by Microsoft UltraCam Eagle
photogrammetric digital aerial camera (Table 1) over the city of Çanakkale, Turkey were used to
produce orthophotos. For this purpose, each aerial image 30% vertically and 60% horizontally
overlaps neighboring images. Initial exterior orientation parameters were estimated by onboard
global positioning systems (GPS) and an inertial measurement unit (IMU) system during image
acquisition. Initial exterior orientation parameters were adjusted to calculate accurately the exterior
orientation parameters of each image using ground control points. In order to produce ortho-images
with four spectral bands (red, green, blue (RGB), and near infrared (NIR)), oriented images were used.
The mosaic image was generated from these orthophotos with horizontal accuracy of mosaic images
within ±2 m based on a 90% confidence interval (Table 2). Then, the study area was clipped from the
mosaic image.

Table 1. Microsoft UltraCam Eagle photogrammetric large-format digital aerial camera specification.

Microsoft UltraCam Eagle Digital Aerial Camera

Image size 20010 × 13080 pixels
Physical pixel size 5.2 µm

Focal length 80 mm
Spectral bands PAN + R, G, B, NIR

Table 2. Mosaic image features obtained using photogrammetric process.

Image Features

Accuracy ±2 m (Horizontal)

Datum Coordinate System WGS84 (World Geodetic System 1984)
UTM (Universal Transverse Mercator) Projection

Spatial Resolution 30 cm
Spectral bands RGB + NIR

File Format GeoTIFF
Compression Format ECW (Enhanced Compressed Wavelet)

As cited in Reference [40], selection of the training set, and sufficiency of its size and completeness
are challenging points in OBIA classification as well as pixel-based approaches [41–44]. Samples were
collected manually depending on the magnitude and homogeneity of patches for each class. In this
context, it could be seen that patches are larger and spectrally more homogenous for the bare soil
class whereas buildings have varied types of roofing material and shape. Therefore, less samples
were able to represent discrimination of the bare class from the others, while buildings required
more samples. On the other hand, distribution of the patch size and spectral properties of the green
spaces (agriculture and recreation areas), roads (asphalt, with/without shadow), and concrete areas
(sidewalks and interlocking pavers) were homogenous compared to the building class. This leads to
the approximate number of samples for the mentioned classes in Figure 2.

In OBIA classification, segments as image objects are interpreted based on their object features and
thus segments that overlap delineated samples are considered as training and validation samples in
OBIA. For the sake of clarity, segments that represent defined samples will be called sample-segments
in the remainder of this paper.
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3. Methodology

Separately designed subsections constituted the complete methodology of this study (Figure 3).
The four band orthophoto explained in the previous section was used as the input. The segmentations
and classification samples were determined in the first step. Then, three sample segmentation methods
(SSM) were applied using Python scripts to define samples for object-oriented classification. Afterward,
recently generated data including object features and the geometries of segments were transferred to
the PostgreSQL 9.6.0/PostGIS 2.5 database. The geospatial datasets organized in the PostGIS database
were handled in two separate analyses. The first analysis, implemented in Matlab R2016a, concerned
segments and segmentation accuracy; whereas the second analysis, produced in R 3.5.1 software,
was for random forest classification [45]. Subsequently, LULC maps based on the assignment of image
objects to classes were illustrated in Matlab. Finally, segmentation and classification accuracies were
examined numerically and compared graphically.

In general, the outcome of the multi-resolution segmentation algorithm is managed by three
main factors: scale, shape, and compactness. For the purpose of this study, weighted bands were also
considered in addition to shape and compactness. Both shape and compactness were assessed as 0.1,
0.3, 0.5, 0.7, and 0.9 while the scale value was constant. The optimized scale level 65 was determined
using the estimation of scale parameter (ESP) tool, which was introduced in Reference [46] and
enhanced in Reference [18]. ESP is an iterative tool that calculates the local variance of image-objects
for each scale step starting from the user-defined starting scale parameter. Due to insignificant changes
and a large amount of data, 0.3 and 0.7 were eliminated. In order to analyze spectral effects in the
segmentation process, single band or multiple bands were weighted. When all these combinations
are considered, a total of 108 segmentation attempts was implemented. These segmentation attempts
were enumerated from 1 to 108 as their segmentation number (SN). Table 3 presents the shape and
compactness criteria and weighted bands for each attempt whereas S, C, and WB indicate shape,
compactness, and weighted bands, respectively.



ISPRS Int. J. Geo-Inf. 2018, 7, 424 7 of 26

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 28 

 

3. Methodology 

Separately designed subsections constituted the complete methodology of this study (Figure 3). 
The four band orthophoto explained in the previous section was used as the input. The segmentations 
and classification samples were determined in the first step. Then, three sample segmentation 
methods (SSM) were applied using Python scripts to define samples for object-oriented classification. 
Afterward, recently generated data including object features and the geometries of segments were 
transferred to the PostgreSQL 9.6.0/PostGIS 2.5 database. The geospatial datasets organized in the 
PostGIS database were handled in two separate analyses. The first analysis, implemented in Matlab 
R2016a, concerned segments and segmentation accuracy; whereas the second analysis, produced in 
R 3.5.1 software, was for random forest classification [45]. Subsequently, LULC maps based on the 
assignment of image objects to classes were illustrated in Matlab. Finally, segmentation and 
classification accuracies were examined numerically and compared graphically. 

 
Figure 3. Workflow diagram. Figure 3. Workflow diagram.

The number of segments for each SN is given in Figure 4. Since shape is known to be the most
influential criterion, the number of segments decreased while the shape criteria increased. When the
shape was stabilized, increase in compactness led to a higher number of segments. In addition to the
above, a decrease in the number of segments was observed by weighting the NIR band. In contrast,
the weighted red band increased the number of segments.
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Table 3. Produced segmentations using different parameters.

S0.1 S0.5 S0.9 WB

C0.1 C0.5 C0.9 C0.1 C0.5 C0.9 C0.1 C0.5 C0.9 R G B NIR

Se
gm

en
tN

o.

1 13 25 37 49 61 73 85 97
√ √ √ √

2 14 26 38 50 62 74 86 98
√

3 15 27 39 51 63 75 87 99
√

4 16 28 40 52 64 76 88 100
√

5 17 29 41 53 65 77 89 101
√

6 18 30 42 54 66 78 90 102
√ √

7 19 31 43 55 67 79 91 103
√ √

8 20 32 44 56 68 80 92 104
√ √

9 21 33 45 57 69 81 93 105
√ √

10 22 34 46 58 70 82 94 106
√ √

11 23 35 47 59 71 83 95 107
√ √

12 24 36 48 60 72 84 96 108
√ √ √
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In Figure 5, the effects of shape and compactness and the weighting bands on segmentation are
demonstrated. Figure 5b presents SN 1 with a shape of 0.1, compactness of 0.1, and each band has
the same weight. The segmentation attempt produced 16514 segments with these criteria. With the
same compactness and band weights, SN 73 (Figure 5c) produced only 4892 segments with the shape
criterion of 0.9. When Figure 5c,d is compared, the enhancing effect of compactness on the number
of segments can be seen. With the same shape and band weights for SN 73 (Figure 5c) and SN 97
(Figure 5d), SN 97 had 6904 segments while the compactness was 0.9. SN 98 (Figure 5e) and SN 101
(Figure 5f) indicate the band weighting effects for red and NIR. The number of segments is 7178 and
6463, respectively.
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Although there is no standard approach for image segmentation accuracy assessment, Reference [47]
summarized image segmentation accuracy in two main categories, namely, the empirical discrepancy
(supervised) and empirical goodness (unsupervised) methods. Then, Reference [22] tabularized the
most common related studies with their metrics and references. In this study, over segmentation, area
fit index, and quality rate assessment were considered, then the root mean square error (RMSE) was
calculated using these assessment values (Equation (4)). Noting that li indicates the ith sample of the
total m samples and sj indicates jth segment of the total n intersecting segments with the ith sample,
these assessments are explained as follows:

• Oversegmentation assessment was proposed by Reference [23] and applied in References [48,
49]. Oversegmentation of a single sample (OSli) can be defined as subtracting the division
of the total intersecting area of the sample and segments from one (Equation (5)). The overall
oversegmentation of the segmentation (OS) can be calculated using the means of all OSli (Equation
(6)). OS and OSli have a range between 0 and 1, with 0 as a perfect match.

• Area fit index assessment was proposed by Reference [50] and applied in References [23,51,52].
The area fit index of a single sample (AFIli) can be defined as dividing the sum of the subtracted
segments from the sample area by the sample area (Equation (7)). The overall oversegmentation
of the segmentation (AFI) can be calculated by the means of all AFIli (Equation (8)). AFI and
AFIli have a range between 0 and 1, with 0 as a perfect match.

• Quality rate assessment was proposed by Reference [53] and applied in References [48,54,55].
The quality rate of a single sample (QRli) can be defined as dividing the total intersecting area of
the sample and the segments by the union area of the sample and the segments (Equation (9)).
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The overall over segmentation of the segmentation (QR) can be calculated by the means of all
QRli (Equation (10)). QR and QRli have a range between 0 and 1, with 1 as a perfect match.

RMSE =

√
OS2 + AFI2 + (1−QR)2

3
(4)

OSli = 1−

n
∑

j=1
area(li ∩ sj)

area(li)
(5)

OS =

m
∑

i=1
OSli

m
(6)

AFIli =

n
∑

j=1
area(li) area(sj)

area(li)
(7)

AFI =

m
∑

i=1
AFIli

m
(8)

QRli =

n
∑

j=1
area(li ∩ sj)

area(li ∪ sn
j=1)

(9)

OR =

m
∑

i=1
QRli

m
(10)

In this study, the machine learning algorithm called random forest, which yields relatively more
accurate results than other classifiers [56], was preferred to label undefined urban image objects of
distinctive segmentation. Another reason for choosing random forest is its ability to handle a large
data set with higher dimensionality. Random forest as an ensemble classifier works with a large
collection of de-correlated decision trees. One third of the samples, also known as out-of-bag (OOB)
samples, are used in an internal cross-validation technique for OOB error estimation. While M and N
denote, respectively, the total number of input variables and the number of trees, six essential steps to
implement the random forest classification algorithm can be explained briefly as follows [57]:

1. Randomly select m variable subsets from M where m < M.
2. Calculate the best split point among the m feature for node d.
3. Divide the node into two nodes using the best split.
4. Repeat the first three steps until a certain number of nodes has been reached.
5. Repeat the first four steps to build the forest N times.
6. Predict new observations with a majority vote.

Labeled segments, which represent delineated samples as training data, were defined in three
categories by the distinct segment selection method (Table 4). Segment selection methods (SSM) differ
depending on the ratio calculated using the overlap area between segments and delineated samples.
If a training segment is totally covered by a sample, in other words no points of a segment geometrically
lie in the exterior of a sample, it is called SSM 1. If a segment maximally overflows a sample by 10% of
the overlap area, it is called SSM 2. In addition, if a segment maximally overflows a sample by 20% of
the overlap area, it is called SSM 3. Figure 6 shows labeled training segments from a building sample
using the three distinct criteria.
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Table 4. Three criteria for training segment definition.

SSM Total Area (AT) of Training
Segments for any Class

Condition Based on Sample
Area (Al) and Segment Area (As)

1
AT =

n
∑

l=1

k
∑

s=1
(Al ∩As)

1.0× (Al ∩As) = As
2 1.1× (Al ∩As) ≥ As
3 1.2× (Al ∩As) ≥ As
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LULC classification C can be expressed as C = {c1, c2, . . . , cm} and ci indicates any ith (1 ≤ i ≤ m)

class of C whereas m indicates the total number of classes in C. Training samples L, defined as
representative of any class ci, can be written as Li = {li1, li2, . . . , lin}, where lij indicates the jth sample

of class ci. Moreover, labeled training segments S are explained as Sj =
{

sj1, sj2, . . . , sjk

}
where k

indicates the total number of overlapping segments satisfying the criterion with sample lij (Figure 7).
When the three different SSMs are considered, the implementation of 324 random forest classifications,
three times the 108 segmentations, were predicted in this study.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 28 
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Many and various object features, which are based on spectral information, shape, texture,
geometry, and contextual semantic knowledge, can be selected to classify image objects after the
segmentation step is implemented in OBIA. In total, fourteen variables—mean values of band layers,
maximum difference, brightness, GLCM (gray-level co-occurrence matrix) derivatives, and shape
index—as significant object features in LULC classifications [21,58,59] were used in this study (Table 5).
Each GCLM measure was calculated using the mean value of red, green, blue, and NIR band values.

Table 5. Image object features used as classification variables.

No Name Explanation

1 Brightness Brightness defines the sum of the mean intensities
of all object layers.

2 Maximum difference
Maximum difference defines the absolute

difference of the minimum and maximum object
mean intensities.

3, 4, 5, 6 RMean, GMean, BMean, NIRMean

The mean features represent the mean intensities
of red, green, blue, and NIR layer pixels forming

the image object.

7 Shape index The shape index describes the smoothness of an
image object border.

8, 9, 10, 11, 12, 13, 14 GLCMHom, GLCMCon, GLCMDis, GLCMEnt,
GLCMMean, GLCMStd, GLCMCor

Homogeneity, contrast, dissimilarity, entropy,
mean, standard deviation, and correlation are

derivatives of GLCM that quantify surface texture.

4. Results and Discussion

4.1. Segmentation Accuracy

As the first step of segmentation accuracy analysis, OS, AFI, and QR assessment criteria were
evaluated (Figure 8a–c). It can be clearly seen that their distribution showed almost the same trends.
To reduce the random error, the RMSE criterion proposed in this study was used as a combination of
these three assessments. Figure 8a–d illustrate that RMSE resulted in low accuracies for SSM 1 when
compared to SSM 2 and SSM 3. As indicated before, this emerged from the inadequate representation
of samples by SSM 1. Also, the shape and compactness criteria and the weighted band effect on
segment accuracy could not be sufficiently distinguished in SSM 1.
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Figure 8. (a) Over segmentation, (b) area fit index, (c) 1-Quality rate, and (d) root mean square error
of segmentations.

When SSM 2 and SSM 3 were compared, it could be stated that SSM 3 produced higher accuracies
with an average of 6% OS, 8% AFI, 5% QR, and 6% RMSE. On the other hand, when the value changes
in shape and compactness and the weighted band were considered, similar behaviors in accuracy were
observed in SSM 2 and SSM 3. For both methods, lower RMSE values were obtained with 0.5 shape
values. Higher shape values needed higher compactness values in order to produce low RMSE values
when the compactness changes were individually examined. Although band weighting affected RMSE
only slightly; the weighted NIR band caused a moderate reduction in accuracy. Particularly, the equally
weighted and the red-NIR-weighted bands achieved high accuracy in segmentation parameters S01,
producing small segment sizes, whereas blue-weighted band segmentation in S05 and S09 was noticed
to be the most accurate.

4.2. Classification Accuracy

As shown in Table 6, 257 out of 324 classifications were successfully implemented in the
study. Due to the considerable increase in segment size at high shape values, SSM 1 provided
low sample-segment numbers that strongly influence the classifications. Moreover, it is observed
that SSM 2 also caused failure on 17 classifications. Sample-segments obtained by SSM 3 successfully
accomplished the remained 108 classifications.

Table 6. Number of random forest classifications.

SSM 1 SSM 2 SSM 3 Total

Number of accomplished classifications 58 91 108 257
Number of unaccomplished classifications 50 17 0 67

When considering the number of sample-segments in the OBIA classification, sample-segments for
each class were determined properly according to the size of the collected samples and segmentation
parameters (Figure 9). Additionally, the number of sample-segments was proportional to the total
number of segments of each segmentation attempt. It was also noted that the ratio between the number
of sample-segments and total number of segments of each segmentation remained nearly unchanged.
Thus, the ratio which trivialized the differences in the number of sample-segments also protected the
number of assignments to the training number for each classification.
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Figure 9. Number of sample-segments for each class in classifications based on SSM 3.

The error matrix, also known as the confusion matrix, is one of the most-used accuracy assessment
techniques in supervised LULC classification [60]. Both user accuracy and producer accuracy calculated
in the error matrix indicate a degree of consistency between class prediction and validation data.
Having the largest sample-segment size, user accuracies of error matrices of SSM3 classifications
shown in Figure 10 indicate that the bare soil class has almost the highest accuracy in each user
accuracy of error matrices. However, bare soil accuracies decreased in S09-C01 while user accuracies
for the concrete class obtained higher values. This result indicates that compactness and band weights
become more sensitive in high shape values. Moreover, heterogeneous land-use objects, such as
buildings and roads, were significantly affected by band weighting, particularly at high shape values.
The determined effect was also observed partly in producer accuracies of error matrices (Figure 11).
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The kappa index produced from the error matrix determined the correspondence between
prediction values and actual values as an accuracy criterion. Obtained kappa values (color-based on
SSMs) are seen in Figure 12 as a result of random forest classifications. According to the figure, it is seen
that the higher the shape value of the segmentation, the greater the kappa accuracy of the classification
produced. The slope coefficient of the equation by SSM 1 was lower than those of SSM 2 and SSM
3 when the linear regressions were examined in Figure 12. Most likely, the missing classifications
belonging to the higher shape values in SSM 1 caused a decrease in the slope coefficient of the equation
SSM 1. On the other hand, when the intercept values were considered, SSM 2 and SSM 3 presented
higher kappa values than SSM 1. In addition, the slope coefficient of the equations by SSM 2 and SSM 3
were quite close to each other. The kappa results briefly indicated that SSM 2 and SSM 3 had a similar
effect on classification accuracy and led to greater accuracy than SSM 1.
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In the study, inconsistency among the number of sample-segments for each class was also
considered. For example, buildings, green areas, roads, concrete, and bare soils as depicted in
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Figure 9 have a different number of sample-segments for the implemented classifications; this is called
unequally-sampled classifications. An equal number of subset sample-segments for each class was
randomly selected and then classifications were also implemented. The kappa indices computed from
equally-sampled classifications were compared with the previous unequally-sampled classifications
produced using SSM 3. Although equally-sampled classifications achieved lower accuracies than
unequally-sampled classifications (Figure 13), the two types of classification, having different sampling,
showed a generally similar tendency in kappa accuracies due to the increasing shape parameter
value. It was also seen that accuracies became closer at higher shape values except for some band
weighting. Moreover, major accuracy changes occurred among equally-sampled classification due to
segmentation parameters.
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4.3. Variable Importance

In the random forest classification, mean decrease accuracy (MDA) and Gini index are the two
most-used algorithms for calculating variable importance measures [57,61,62]. In this study, MDA,
which evaluates and sorts the variable effect on classification accuracy, was used to interpret the
relation between segmentation criterion and classification variables. For each classification, the most
important three out of fourteen variables (Table 5) were determined. Furthermore, 254 classifications
were categorized based on their segmentation criteria, and percentages of the variable appearance
were computed (Figure 14).

As shown in Figure 14a–c, RMean and BMean were the most effective variables in these classifications.
It was also observed that Brightness, NIRMean, GLCMHom, GLCMCon, and GLCMStd variables had a
moderate impact. Particularly, increasing the shape value led to boosting the Brightness and GLCMHom
variables; however, the importance of NIRMean, GLCMCon, and GLCMStd variables dramatically
dropped in Figure 14a. As compactness and band weighting did not influence segmentation as
much as shape, these criteria did not have a continuous effect in variable importance (Figure 14b,c).
Furthermore, a significant impact of the brightness variable in OBIA LULC classification based on
NIR-weighted segmentation was determined.

The bias possibility in MDA was also considered due to correlated predictor variables such
as textural measures. Thus, a conditional permutation importance measure able to evaluate the
importance of correlated predictor variables was calculated using R Package Party [63,64]. The results
showed that random forest implementation utilizing conditional inference trees generally produced
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consistent results with R package RandomForest based on References [45,57]. Furthermore, minor
changes occurred in the determination of the three most important variables using conditional variable
importance. It is also recommended that conditional variable importance should be taken into account
in more detailed discussion of uncorrelated variable importance.
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4.4. Classification Results

Figure 15 presents classification maps for various SSM and segmentation criteria. Especially,
buildings with shadows on the ground could not be detected separately as different classes using
SSM 1 (Figure 15a) due to inadequate sample representation by segments. Maps produced from SSM
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2 (Figure 15b) and SSM 3 (Figure 15c) were quite similar, whereas the first row of Figure 15 shows
differences in classification among SSMs. The effect of the shape value increase on the classification
maps is seen between Figures 15c and 15d. Objects with larger areas were appropriately classified,
while there were random errors for small area objects because of the high resolution. On the other
hand, increasing compactness causes a salt and pepper effect, as depicted in Figure 15e. Furthermore,
due to changes in the band weighting, some object types become more dominant in classification,
such as the NIR favored building class.
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The influence of the absolute sample size on class assignment obtained from classification
predictions was examined using Figure 16. Substantial differences in class assignment were achieved
between unequally and equally-sampled classifications at low shape values. Positive and negative
changes were especially determined between concrete and road classes. Positive change referred
to more assignments in classes with equal sampling whereas negative ones indicated an increase
in assignments in classes with unequal sampling. In this context, bare soil assignments were not
influenced exclusively, although that class had more sample-segments than others. On the other
hand, segments were mostly predicted as roads under unequally sampling, despite the class having a
moderate number of sample-segments compared to other classes. Moreover, concrete was determined
as the most influenced class due to its lower number of sample-segments. The results showed that the
number of sample-segments was not the unique reason for OBIA classification and class assignments.
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Figure 16. Percentage of change in class assignment in classifications based on SSM 3.

4.5. Comparison between Segmentation and Classification Accuracies

In Figure 17, segmentation RMSE values and classification kappa values were compared to
examine the explicit relationship between segmentation accuracy and classification accuracy. Since
lower RMSE and higher kappa values indicated better accuracies for segmentation and classification
respectively; 1-RMSE is given in Figure 17a–c illustrating SSM 1, 2, and 3, respectively. To provide
a comprehensible visualization between RMSE and kappa, each plot was highlighted with boxes
defining their shape and compactness values such as S01-C01, S01-C05, and S01-C09. As seen
in Figure 17a representing the classifications obtained using SSM 1, S05-C01 and S05-C05 were
substantially distinguished by the relative similarities between RMSE and kappa accuracy values.
In S01-C05, a partial consistency between RMSE and kappa accuracies was also determined, although it
did not as implicitly occur as in S05-C01 and S05-C05. On the other hand, graphical conformity between
segmentation and classification accuracy values was seen for S01-C05 and S05-C05 (Figure 17b).
Figure 17c mostly illustrates coherence between RSME and kappa values except for all combinations of
S09 besides some detected resemblances in both Figure 17a,b. In particular, more conformity between
RMSE and kappa values stands out for both S05-C01 and S05-C05 in Figure 17c. Furthermore, Euclidean
distances (ED) for each SSM, shape and compactness value, and the weighted bands are given at
the bottom-right of the related figure. Moreover, EDs for each highlighted shape and compactness
group are given in the boxes. The ED were computed by Equation (11) where x represents 1-RMSE,
y represents kappa, and x and y are the mean of 1-RMSE and kappa, respectively. Given ED values
also solidified the conformities mentioned above.

ED =
∑ ((x− x) ∗ (y− y))√

∑ (x− x)2 ∗ (y− y)2
(11)
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5. Conclusions

In this study, accuracies of multi-resolution segmentation and classification based on different
shape, color, compactness, and band-weights were analyzed. The proposed RMSE, defined in this
study as a remarkable coexistence of three profoundly different accuracy assessments, delivered
more objective and comprehensive segmentation accuracy. Weighting only the NIR band reduced
the accuracy of the segmentation. However, due to the high importance of the NIR band in the
classification, color-infrared images should be used for newly-developed urban areas.

When sample selection for OBIA is considered, sample-segments overflowing samples by 20%
provided more appropriate segment representation for the sample image objects. On the other hand,
the ratio of the total number of sample-segments to the total number of segments should not be less
than 0.5% for an accurate classification.

In general, a concrete correlation between segmentation and classification accuracies can be
stated. However, the largest deviations are expected in classifications derived using high shape values.
The compactness value exerted a greater effect when it was used with higher shape values. Kappa
indices also prove that high compactness for low shape values and low compactness for high shape
values should be selected.

In classification attempts, various segmentation parameters highlighted objects of some classes
while partly ignoring the remainder of the objects in other classes. For example, classifications using red
band-weighted segmentation led to some object loss in the building class. When all LULC categories
are classified using high resolution infrared aerial images, S05-C05 as segmentation parameters and
SSM 3 as sample selection method are recommended.

For the future, LULC sub-classes can be considered to highlight the effect of different band
combinations on various objects, as the present study was implemented for five classes. Classifications
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using high resolution satellite images having varied spectral bands and ranges should be discussed and
compared to each other to understand the broad relationship between segmentation and object-based
classification. Segmentation accuracy assessment methods should also be examined to better reflect
object-based classification needs in the future. Impact of different overflow values in sample selection
should be considered in terms of image-object representation.
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